organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acetone (2,6-di­chloro­benzo­yl)hydrazone: chains of π-stacked hydrogen-bonded dimers

CROSSMARK_Color_square_no_text.svg

aInstituto de Tecnologia em Fármacos, Far-Manguinhos, FIOCRUZ, 21041-250 Rio de Janeiro, RJ, Brazil, bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 31 May 2006; accepted 31 May 2006; online 14 June 2006)

In the title compound, C10H10Cl2N2O, the aryl ring is almost orthogonal to the rest of the mol­ecule. Mol­ecules are linked into centrosymmetric dimers by N—H⋯O hydrogen bonds, and these dimers are linked into chains by a single ππ stacking inter­action.

Comment

We report here the mol­ecular and supra­molecular structure of the title compound, (I)[link] (Fig. 1[link]). Apart from the dichloro­phenyl ring, the non-H atoms are nearly coplanar, as shown by the leading torsion angles (Table 1[link]). The aryl ring is almost orthogonal to the rest of the mol­ecule, with a dihedral angle of 82.5 (2)° between the aryl ring and the mean plane through the rest of the non-H atoms. This is a consequence of the repulsive inter­actions between the lone pairs of electrons on the two Cl atoms and those on atoms N2 and O7.

[Scheme 1]

The mol­ecules are linked by paired N—H⋯O hydrogen bonds (Table 2[link]) into cyclic centrosymmetric R22(8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) dimers (Fig. 2[link]), and these dimers are linked into chains by a single aromatic ππ stacking inter­action. The aryl rings of the mol­ecules at (x, y, z) and (1 − x, 2 − y, −z) are strictly parallel, with an inter­planar spacing of 3.593 (2) Å. The ring-centroid separation is 3.695 (2) Å, corresponding to a ring offset of 0.862 (2) Å. Propagation by inversion of this inter­action then links the hydrogen-bonded dimers into a π-stacked chain running parallel to the [01[\overline{1}]] direction (Fig. 3[link]), but there are no direction-specific inter­actions between adjacent chains.

[Figure 1]
Figure 1
A mol­ecule of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The molecular structure of compound (I)[link], showing the formation of a hydrogen-bonded (dashed lines) R22(8) dimer. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 3]
Figure 3
A stereoscopic view of part of the crystal structure of compound (I)[link], showing the formation of a π-stacked chain of hydrogen-bonded (dashed lines) dimers along [01[\overline{1}]]. For the sake of clarity, H atoms bonded to C atoms have been omitted.

Experimental

2,6-Dichloro­benzoyl­hydrazine (3 mmol) was dissolved in acetone (30 ml) and the solution was heated under reflux for 1 h. The solution was then cooled and the excess solvent was removed under reduced pressure. The resulting solid product, (I)[link], was crystallized from ethanol.

Crystal data
  • C10H10Cl2N2O

  • Mr = 245.10

  • Triclinic, [P \overline 1]

  • a = 7.4980 (3) Å

  • b = 8.1320 (2) Å

  • c = 9.7759 (3) Å

  • α = 71.609 (2)°

  • β = 80.822 (2)°

  • γ = 89.033 (2)°

  • V = 558.03 (3) Å3

  • Z = 2

  • Dx = 1.459 Mg m−3

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 120 (2) K

  • Lath, colourless

  • 0.42 × 0.10 × 0.08 mm

Data collection
  • Bruker Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.822, Tmax = 0.957

  • 13458 measured reflections

  • 2568 independent reflections

  • 1970 reflections with I > 2σ(I)

  • Rint = 0.045

  • θmax = 27.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.096

  • S = 1.03

  • 2568 reflections

  • 138 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0449P)2 + 0.2175P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected torsion angles (°)

C2—C1—C7—N1 101.4 (2)
C1—C7—N1—N2 −2.8 (2)
C7—N1—N2—C8 175.32 (16)
N1—N2—C8—C9 178.37 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O7i 0.85 2.09 2.9232 (18) 169
Symmetry code: (i) -x+1, -y+1, -z+1.

All atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 (aromatic) or 0.98 Å (meth­yl) and N—H = 0.85 Å, and with Uiso(H) = kUeq(C,N), where k = 1.5 for the methyl groups and k = 1.2 for all other H atoms.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Acetone (2,6-dichlorobenzoyl)hydrazone top
Crystal data top
C10H10Cl2N2OZ = 2
Mr = 245.10F(000) = 252
Triclinic, P1Dx = 1.459 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4980 (3) ÅCell parameters from 2540 reflections
b = 8.1320 (2) Åθ = 2.9–27.5°
c = 9.7759 (3) ŵ = 0.56 mm1
α = 71.609 (2)°T = 120 K
β = 80.822 (2)°Lath, colourless
γ = 89.033 (2)°0.42 × 0.10 × 0.08 mm
V = 558.03 (3) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2568 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1970 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.8°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.822, Tmax = 0.957l = 1212
13458 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.2175P]
where P = (Fo2 + 2Fc2)/3
2568 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.34 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6756 (2)0.8506 (2)0.18118 (17)0.0197 (4)
C20.7648 (2)0.8102 (2)0.06043 (19)0.0225 (4)
Cl20.80670 (8)0.59432 (6)0.07718 (5)0.03773 (16)
C30.8217 (3)0.9350 (3)0.07220 (19)0.0276 (4)
C40.7856 (3)1.1063 (3)0.0867 (2)0.0306 (5)
C50.6953 (3)1.1521 (2)0.0295 (2)0.0273 (4)
C60.6420 (2)1.0247 (2)0.16195 (19)0.0213 (4)
Cl60.52761 (7)1.08133 (6)0.30856 (5)0.03135 (15)
N10.6983 (2)0.67279 (18)0.43117 (15)0.0213 (3)
N20.8638 (2)0.75866 (19)0.41427 (16)0.0221 (3)
C70.6030 (2)0.7097 (2)0.32012 (18)0.0213 (4)
O70.46049 (18)0.63126 (16)0.33026 (13)0.0288 (3)
C80.9384 (2)0.7238 (2)0.52866 (19)0.0217 (4)
C91.1187 (3)0.8105 (3)0.5128 (2)0.0304 (4)
C100.8629 (3)0.6040 (2)0.6766 (2)0.0284 (4)
H30.88470.90370.15220.036*
H40.82341.19350.17770.040*
H50.66991.26990.01870.035*
H10.65670.59180.50830.026*
H9A1.15390.88570.41180.039*
H9B1.20920.72220.53740.039*
H9C1.11090.88020.57890.039*
H10A0.73680.63130.70310.037*
H10B0.93380.61810.74840.037*
H10C0.86830.48400.67530.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0177 (9)0.0220 (9)0.0171 (9)0.0042 (7)0.0063 (7)0.0011 (7)
C20.0221 (9)0.0238 (9)0.0205 (9)0.0013 (7)0.0077 (7)0.0035 (7)
Cl20.0544 (4)0.0293 (3)0.0310 (3)0.0131 (2)0.0103 (2)0.0106 (2)
C30.0254 (10)0.0374 (11)0.0163 (9)0.0007 (8)0.0030 (7)0.0032 (8)
C40.0299 (11)0.0314 (10)0.0212 (9)0.0071 (8)0.0045 (8)0.0053 (8)
C50.0280 (10)0.0203 (9)0.0290 (10)0.0041 (8)0.0096 (8)0.0014 (8)
C60.0194 (9)0.0233 (9)0.0211 (9)0.0035 (7)0.0052 (7)0.0055 (7)
Cl60.0327 (3)0.0336 (3)0.0308 (3)0.0005 (2)0.0033 (2)0.0155 (2)
N10.0221 (8)0.0220 (7)0.0151 (7)0.0069 (6)0.0035 (6)0.0015 (6)
N20.0204 (8)0.0244 (8)0.0199 (8)0.0060 (6)0.0028 (6)0.0045 (6)
C70.0231 (9)0.0224 (9)0.0164 (8)0.0028 (7)0.0039 (7)0.0027 (7)
O70.0276 (7)0.0296 (7)0.0225 (7)0.0123 (6)0.0085 (6)0.0038 (5)
C80.0237 (9)0.0212 (9)0.0211 (9)0.0002 (7)0.0043 (7)0.0076 (7)
C90.0245 (10)0.0362 (11)0.0303 (10)0.0058 (8)0.0063 (8)0.0090 (9)
C100.0303 (11)0.0317 (10)0.0214 (9)0.0040 (8)0.0101 (8)0.0031 (8)
Geometric parameters (Å, º) top
C1—C21.391 (2)N1—N21.395 (2)
C1—C61.392 (2)N1—H10.8475
C1—C71.502 (2)N2—C81.280 (2)
C2—C31.379 (2)C7—O71.228 (2)
C2—Cl21.7387 (18)C8—C101.493 (2)
C3—C41.382 (3)C8—C91.498 (2)
C3—H30.95C9—H9A0.98
C4—C51.379 (3)C9—H9B0.98
C4—H40.95C9—H9C0.98
C5—C61.383 (2)C10—H10A0.98
C5—H50.95C10—H10B0.98
C6—Cl61.7360 (18)C10—H10C0.98
N1—C71.347 (2)
C2—C1—C6116.86 (15)N2—N1—H1122.3
C2—C1—C7120.72 (15)C8—N2—N1115.92 (14)
C6—C1—C7122.13 (16)O7—C7—N1121.67 (15)
C3—C2—C1122.47 (17)O7—C7—C1120.05 (15)
C3—C2—Cl2118.67 (15)N1—C7—C1118.27 (15)
C1—C2—Cl2118.86 (13)N2—C8—C10126.04 (16)
C2—C3—C4118.84 (18)N2—C8—C9117.10 (16)
C2—C3—H3120.6C10—C8—C9116.85 (16)
C4—C3—H3120.6C8—C9—H9A109.5
C5—C4—C3120.68 (17)C8—C9—H9B109.5
C5—C4—H4119.7H9A—C9—H9B109.5
C3—C4—H4119.7C8—C9—H9C109.5
C4—C5—C6119.33 (17)H9A—C9—H9C109.5
C4—C5—H5120.3H9B—C9—H9C109.5
C6—C5—H5120.3C8—C10—H10A109.5
C5—C6—C1121.81 (17)C8—C10—H10B109.5
C5—C6—Cl6119.56 (14)H10A—C10—H10B109.5
C1—C6—Cl6118.62 (13)C8—C10—H10C109.5
C7—N1—N2120.40 (14)H10A—C10—H10C109.5
C7—N1—H1117.2H10B—C10—H10C109.5
C2—C1—C7—N1101.4 (2)C4—C5—C6—C10.6 (3)
C1—C7—N1—N22.8 (2)C4—C5—C6—Cl6179.81 (14)
C7—N1—N2—C8175.32 (16)C2—C1—C6—C50.3 (3)
N1—N2—C8—C9178.37 (15)C7—C1—C6—C5174.12 (16)
C6—C1—C2—C31.3 (3)C2—C1—C6—Cl6178.92 (13)
C7—C1—C2—C3175.21 (17)C7—C1—C6—Cl65.1 (2)
C6—C1—C2—Cl2178.85 (13)N2—N1—C7—O7177.13 (16)
C7—C1—C2—Cl25.0 (2)C2—C1—C7—O778.5 (2)
C1—C2—C3—C41.4 (3)C6—C1—C7—O795.0 (2)
Cl2—C2—C3—C4178.78 (14)C6—C1—C7—N185.1 (2)
C2—C3—C4—C50.4 (3)N1—N2—C8—C101.3 (3)
C3—C4—C5—C60.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O7i0.852.092.9232 (18)169
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The X-ray data were collected at the EPSRC X-Ray Crystallographic Service, University of Southampton; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds