organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydrogen-bonding patterns in 2-amino-4,6-di­meth­oxy­pyrimidine–4-amino­benzoic acid (1/1)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and bFaculty of Health and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, England
*Correspondence e-mail: tommtrichy@yahoo.co.in

(Received 14 June 2006; accepted 16 June 2006; online 23 June 2006)

In the title cocrystal, C6H9N3O2·C7H7NO2, the 2-amino-4,6-dimethoxy­pyrimidine mol­ecule inter­acts with the carboxyl group of the 4-amino­benzoic acid mol­ecule through N—H⋯O and O—H⋯N hydrogen bonds, forming a cyclic hydrogen-bonded motif [R22(8)]. This motif further self-organizes through N—H⋯O hydrogen bonds to generate an array of six hydrogen bonds with the rings having the graph-set notation R23(6), R22(8), R42(8), R22(8) and R23(6). The 4-amino­benzoic acid mol­ecules self-assemble via N—H⋯O hydrogen bonds to form a supra­molecular chain along the c axis.

Comment

Pyrimidine and amino­pyrimidine derivatives are biologically important compounds as they occur in nature as components of nucleic acids. Some amino­pyrimidine derivatives are used as anti­folate drugs (Hunt et al., 1980[Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533-536.]; Baker & Santi, 1965[Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252-1257.]). The adducts of carboxylic acids with 2-amino­heterocylic ring systems form a graph-set motif of R22(8) (Lynch & Jones, 2004[Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.]). The crystal structure of 2-amino-4,6-dimeth­oxy pyrimidine has also been reported (Low et al., 2002[Low, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o289-o294.]). The crystal structure of 4-amino­benzoic acid (Lai & Marsh, 1967[Lai, T. F. & Marsh, R. E. (1967). Acta Cryst. 22, 885-893.]) is known. The inter­play of strong N—H⋯O and O—H⋯N hydrogen bonds, and weak C—H⋯O inter­actions, forms supra­molecular motifs, involved in the mol­ecular packing of organic solids. (Taylor & Kennard, 1982[Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.]). In the present study, the hydrogen-bonding patterns in the 2-amino-4,6-dimethoxy­pyrimidine–4-amino­benzoic acid (1/1) cocrystal, (I)[link], are investigated.

[Scheme 1]

The asymmetric unit (Fig. 1[link]) contains one 2-amino-4,6-dimethoxy­pyrimidine mol­ecule and one 4-amino­benzoic acid mol­ecule, which are linked by N2—H2B⋯O3 and O4—H4⋯N1 hydrogen bonds (Table 1[link]), forming an eight-membered ring of graph-set notation R22(8) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). This type of pairing has been observed in the crystal structure of 2-amino­pyrimidine–fumaric acid (Goswami et al., 1999[Goswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K., Fun, H.-K. & Razak, I. A. (1999). Acta Cryst. C55, 583-585.]) and 2-amino­pyrimidine–(+)-camphoric acid (Goswami et al., 2000[Goswami, S., Mukherjee, R., Ghosh, K., Razak, I. A., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, 477-478.]). This motif further self organizes through N—H⋯O hydrogen bonds (Fig. 2[link]) to generate an array of six hydrogen bonds with the rings having the graph-set notations R23(6), R22(8), R42(8), R22(8) and R23(6). The 4-amino­benzoic acid mol­ecules self-assemble via N—H⋯O hydrogen bonds to form a supra­molecular chain along the c axis, with the graph-set notation C(9); this is shown in Fig. 3[link]. The pyrimidine ring is centrosymmetrically linked through a pair of C—H⋯O hydrogen bonds involving a methyl group (C7) and meth­oxy atom O2. A ππ stacking inter­action between two amino­pyrimidine groups (at x, y, z and −x, 1 − y, −z), with a perpendicular separation of 3.306 Å, a centroid–centroid distance of 3.4129 (8) Å and a slip angle (the angle between the centroid vector and the normal to the plane) of 14.39° has also been observed. These are typical aromatic stacking values (Hunter, 1994[Hunter, C. A. (1994). Chem. Soc. Res. 23, 101-109.]).

[Figure 1]
Figure 1
A view of the asymmetric unit of (I)[link], showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2]
Figure 2
Hydrogen-bonding (dashed lines) patterns in compound (I)[link].
[Figure 3]
Figure 3
Hydrogen-bonding (dashed lines) patterns in the supra­molecular chain in compound (I)[link] [symmetry code: (ii) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z].

Experimental

A hot methanol solution (20 ml) of 2-amino-4,6-dimeth­oxy pyrimidine (38 mg, Aldrich) and 4-amino­benzoic acid (34 mg, Loba Chemie) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature; after a few days, colourless plate-like crystals were obtained.

Crystal data
  • C6H9N3O2·C7H7NO2

  • Mr = 292.30

  • Monoclinic, P 21 /c

  • a = 6.6358 (4) Å

  • b = 7.5560 (5) Å

  • c = 27.4226 (16) Å

  • β = 94.418 (2)°

  • V = 1370.89 (15) Å3

  • Z = 4

  • Dx = 1.416 Mg m−3

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • Plate, colourless

  • 0.44 × 0.32 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: none

  • 14577 measured reflections

  • 3130 independent reflections

  • 2469 reflections with I > 2σ(I)

  • Rint = 0.032

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.127

  • S = 1.03

  • 3130 reflections

  • 194 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0746P)2 + 0.4081P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.30 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.016 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.86 2.07 2.8546 (17) 152
N2—H2B⋯O3 0.86 1.96 2.8180 (17) 172
O4—H4⋯N1 0.82 1.83 2.6426 (16) 171
N4—H4A⋯O2ii 0.86 2.47 3.0621 (18) 127
N4—H4A⋯O4ii 0.86 2.45 3.1566 (18) 140
C7—H7C⋯O2iii 0.96 2.60 3.4578 (18) 150
Symmetry codes: (i) -x+1, -y+2, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z.

All H atoms were positioned geometrically and were refined using a riding model. The C—H, O—H and N—H bond lengths are 0.93–0.96, 0.82 and 0.86 Å, respectively [Uiso(H) = 1.2Ueq(parent atom)].

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology. Vol. 276, Macromolecular Crystallography, part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: PLATON (Spek, 2003).

2-amino-4,6-dimethoxypyrimidine–4-aminobenzoic acid (1/1) top
Crystal data top
C6H9N3O2·C7H7NO2F(000) = 616
Mr = 292.30Dx = 1.416 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 50 reflections
a = 6.6358 (4) Åθ = 3.5–27.5°
b = 7.5560 (5) ŵ = 0.11 mm1
c = 27.4226 (16) ÅT = 293 K
β = 94.418 (2)°Block, colourless
V = 1370.89 (15) Å30.44 × 0.32 × 0.08 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2469 reflections with I > 2σ(I)
Radiation source: Bruker–Nonius FR591 rotating anodeRint = 0.032
Graphite monochromatorθmax = 27.5°, θmin = 3.5°
φ and ω scansh = 88
14577 measured reflectionsk = 99
3130 independent reflectionsl = 3535
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0746P)2 + 0.4081P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3130 reflectionsΔρmax = 0.45 e Å3
194 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (4)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31949 (15)0.65274 (14)0.06558 (4)0.0243 (3)
O20.10312 (15)0.62294 (13)0.10295 (4)0.0217 (3)
N10.08267 (17)0.75316 (15)0.04909 (4)0.0191 (3)
N20.29134 (19)0.87629 (17)0.00431 (5)0.0253 (4)
N30.01324 (18)0.76844 (16)0.03678 (4)0.0195 (3)
C20.1169 (2)0.79880 (18)0.00271 (5)0.0189 (4)
C40.1827 (2)0.68686 (18)0.02791 (5)0.0193 (4)
C50.2328 (2)0.62919 (19)0.01814 (5)0.0201 (4)
C60.0914 (2)0.66662 (18)0.05589 (5)0.0187 (4)
C70.2659 (2)0.7008 (2)0.11380 (5)0.0253 (4)
C80.2692 (2)0.5117 (2)0.11441 (5)0.0235 (4)
O30.54244 (16)0.93414 (15)0.08183 (4)0.0259 (3)
O40.31653 (16)0.82162 (15)0.12926 (4)0.0255 (3)
N40.9479 (2)1.1681 (2)0.28970 (5)0.0359 (5)
C90.6046 (2)0.96732 (18)0.16731 (5)0.0199 (4)
C100.5327 (2)0.9594 (2)0.21373 (5)0.0250 (4)
C110.6456 (3)1.0262 (2)0.25418 (5)0.0285 (5)
C120.8345 (2)1.10420 (19)0.24943 (6)0.0255 (4)
C130.9069 (2)1.1109 (2)0.20280 (6)0.0254 (5)
C140.7943 (2)1.04466 (19)0.16252 (5)0.0226 (4)
C150.4837 (2)0.90465 (19)0.12278 (5)0.0200 (4)
H2A0.319000.905700.033300.0300*
H2B0.377000.897200.020200.0300*
H50.352800.570100.022800.0240*
H7A0.211400.818500.113100.0300*
H7B0.384100.696500.136300.0300*
H7C0.166600.619500.124200.0300*
H8A0.394400.571500.105600.0280*
H8B0.259000.486600.148800.0280*
H8C0.264800.403000.096400.0280*
H40.254000.804700.102700.0310*
H4A0.902901.160300.318200.0430*
H4B1.063701.215800.286400.0430*
H100.407300.908700.217600.0300*
H110.595401.019100.284900.0340*
H131.032801.160900.199000.0300*
H140.844701.051300.131900.0270*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0209 (5)0.0329 (6)0.0182 (5)0.0042 (4)0.0035 (4)0.0017 (4)
O20.0212 (5)0.0271 (6)0.0166 (5)0.0056 (4)0.0005 (4)0.0028 (4)
N10.0188 (6)0.0212 (6)0.0174 (6)0.0017 (5)0.0016 (5)0.0004 (5)
N20.0229 (7)0.0361 (7)0.0166 (6)0.0102 (5)0.0005 (5)0.0010 (5)
N30.0189 (6)0.0212 (6)0.0181 (6)0.0003 (5)0.0009 (5)0.0004 (5)
C20.0206 (7)0.0192 (7)0.0169 (7)0.0004 (5)0.0012 (5)0.0014 (5)
C40.0186 (7)0.0192 (7)0.0193 (7)0.0019 (5)0.0031 (5)0.0013 (5)
C50.0173 (7)0.0223 (7)0.0204 (7)0.0028 (5)0.0004 (6)0.0009 (5)
C60.0211 (7)0.0174 (6)0.0176 (7)0.0009 (5)0.0015 (5)0.0003 (5)
C70.0250 (8)0.0337 (8)0.0167 (7)0.0009 (7)0.0023 (6)0.0022 (6)
C80.0218 (7)0.0266 (8)0.0224 (7)0.0048 (6)0.0033 (6)0.0037 (6)
O30.0248 (6)0.0361 (6)0.0167 (5)0.0060 (5)0.0010 (4)0.0019 (4)
O40.0250 (6)0.0331 (6)0.0181 (5)0.0088 (5)0.0012 (4)0.0003 (4)
N40.0475 (9)0.0392 (8)0.0192 (7)0.0113 (7)0.0092 (6)0.0018 (6)
C90.0237 (7)0.0184 (7)0.0173 (7)0.0000 (6)0.0011 (6)0.0006 (5)
C100.0295 (8)0.0246 (7)0.0207 (7)0.0039 (6)0.0014 (6)0.0010 (6)
C110.0402 (9)0.0287 (8)0.0165 (7)0.0044 (7)0.0012 (7)0.0001 (6)
C120.0345 (9)0.0189 (7)0.0215 (7)0.0007 (6)0.0075 (6)0.0003 (6)
C130.0238 (8)0.0264 (8)0.0252 (8)0.0032 (6)0.0031 (6)0.0001 (6)
C140.0244 (8)0.0253 (8)0.0178 (7)0.0008 (6)0.0000 (6)0.0001 (6)
C150.0206 (7)0.0205 (7)0.0188 (7)0.0015 (6)0.0011 (6)0.0004 (5)
Geometric parameters (Å, º) top
O1—C41.3465 (17)C5—H50.9303
O1—C71.4420 (18)C7—H7A0.9597
O2—C61.3401 (17)C7—H7C0.9601
O2—C81.4399 (17)C7—H7B0.9604
O3—C151.2370 (17)C8—H8C0.9600
O4—C151.2985 (17)C8—H8B0.9592
O4—H40.8200C8—H8A0.9601
N1—C21.3538 (18)C9—C151.4860 (19)
N1—C61.3527 (18)C9—C101.3947 (19)
N2—C21.3244 (18)C9—C141.4032 (19)
N3—C41.3213 (18)C10—C111.385 (2)
N3—C21.3517 (18)C11—C121.400 (2)
N2—H2B0.8608C12—C131.401 (2)
N2—H2A0.8588C13—C141.379 (2)
N4—C121.375 (2)C10—H100.9296
N4—H4A0.8599C11—H110.9310
N4—H4B0.8598C13—H130.9300
C4—C51.3999 (19)C14—H140.9288
C5—C61.3720 (19)
O1···C8i3.1974 (17)C8···H7Cv3.0493
O2···N4ii3.0621 (18)C8···H52.5688
O2···O43.1968 (15)C8···H7Bi2.8881
O3···C6iii3.2806 (17)C9···H7Bvi3.0207
O3···N2iv2.8546 (17)C11···H10vii3.0194
O3···N22.8180 (17)C12···H10vii2.9848
O3···C5iii3.3144 (18)C13···H4Bix3.0049
O4···N12.6426 (16)C14···H4Bix2.9701
O4···N4ii3.1566 (18)C15···H2B2.8479
O4···O23.1968 (15)C15···H8Aiii2.6966
O1···H8Ci2.8535C15···H7Avi2.7636
O1···H8Ai2.7127H2A···O3iv2.0663
O2···H42.7394H2A···H2Biv2.5109
O2···H7Cv2.5958H2B···H2Aiv2.5109
O2···H4Aii2.4653H2B···H2Biv2.5660
O3···H142.5035H2B···O31.9631
O3···H8Aiii2.8402H2B···C152.8479
O3···H2B1.9631H2B···H42.5608
O3···H2Aiv2.0663H2B···N2iv2.8479
O4···H102.5376H4···O22.7394
O4···H7Avi2.8337H4···N11.8298
O4···H4Aii2.4505H4···C62.7452
O4···H8Aiii2.8043H4···H2B2.5608
N1···O42.6426 (16)H4···C22.8220
N1···C153.4128 (18)H4A···O4vii2.4505
N1···C4v3.4484 (18)H4A···H112.4184
N2···O32.8180 (17)H4A···O2vii2.4653
N2···O3iv2.8546 (17)H4B···C13x3.0049
N3···C6v3.4087 (18)H4B···C14x2.9701
N3···C5v3.4388 (19)H4B···H132.4254
N4···O4vii3.1566 (18)H5···H8C2.4139
N4···O2vii3.0621 (18)H5···H5i2.4751
N1···H41.8298H5···C82.5688
N2···H2Biv2.8479H5···H8A2.3083
N3···H7C2.7701H7A···O4vi2.8337
N3···H7A2.4142H7A···N32.4142
N3···H8Cv2.8670H7A···C15vi2.7636
N4···H8Bvii2.9070H7B···C9vi3.0207
C2···C5v3.383 (2)H7B···C8i2.8881
C2···C2vi3.4115 (19)H7C···O2v2.5958
C4···N1v3.4484 (18)H7C···C8v3.0493
C4···C6v3.3535 (19)H7C···N32.7701
C5···C2v3.383 (2)H8A···O3viii2.8402
C5···N3v3.4388 (19)H8A···C52.7365
C5···O3viii3.3144 (18)H8A···C15viii2.6966
C6···N3v3.4087 (18)H8A···O4viii2.8043
C6···C4v3.3535 (19)H8A···C7i3.0730
C6···O3viii3.2806 (17)H8A···O1i2.7127
C7···C15vi3.314 (2)H8A···H52.3083
C7···C8i3.477 (2)H8B···N4ii2.9070
C8···O1i3.1974 (17)H8C···C52.7644
C8···C7i3.477 (2)H8C···N3v2.8670
C8···C15viii3.408 (2)H8C···H52.4139
C15···C8iii3.408 (2)H8C···O1i2.8535
C15···N13.4128 (18)H10···O42.5376
C15···C7vi3.314 (2)H10···C11ii3.0194
C2···H42.8220H10···C12ii2.9848
C5···H8C2.7644H11···H4A2.4184
C5···H8A2.7365H13···H4B2.4254
C6···H42.7452H13···C7iv3.0822
C7···H13iv3.0822H14···O32.5035
C7···H8Ai3.0730
C4—O1—C7117.13 (11)H7B—C7—H7C109.43
C6—O2—C8117.14 (11)O2—C8—H8B109.44
C15—O4—H4109.45O2—C8—H8C109.45
C2—N1—C6117.36 (11)H8A—C8—H8B109.55
C2—N3—C4115.59 (12)O2—C8—H8A109.41
C2—N2—H2A120.03H8A—C8—H8C109.46
C2—N2—H2B119.97H8B—C8—H8C109.51
H2A—N2—H2B120.00C14—C9—C15119.16 (12)
H4A—N4—H4B120.01C10—C9—C14118.41 (12)
C12—N4—H4B120.06C10—C9—C15122.37 (12)
C12—N4—H4A119.93C9—C10—C11120.89 (13)
N1—C2—N3124.50 (12)C10—C11—C12120.78 (14)
N1—C2—N2117.45 (12)N4—C12—C11120.76 (14)
N2—C2—N3118.05 (13)N4—C12—C13121.02 (13)
O1—C4—C5116.07 (12)C11—C12—C13118.19 (14)
O1—C4—N3118.76 (12)C12—C13—C14121.01 (13)
N3—C4—C5125.16 (12)C9—C14—C13120.72 (13)
C4—C5—C6114.86 (12)O3—C15—C9120.05 (12)
O2—C6—C5126.07 (12)O4—C15—C9117.02 (12)
N1—C6—C5122.50 (12)O3—C15—O4122.93 (13)
O2—C6—N1111.43 (11)C9—C10—H10119.61
C6—C5—H5122.56C11—C10—H10119.50
C4—C5—H5122.59C10—C11—H11119.64
O1—C7—H7B109.49C12—C11—H11119.58
O1—C7—H7C109.55C12—C13—H13119.41
O1—C7—H7A109.52C14—C13—H13119.58
H7A—C7—H7B109.39C9—C14—H14119.69
H7A—C7—H7C109.43C13—C14—H14119.60
C7—O1—C4—N32.95 (18)C4—C5—C6—N10.2 (2)
C7—O1—C4—C5176.20 (12)C10—C9—C14—C130.1 (2)
C8—O2—C6—N1172.72 (11)C15—C9—C10—C11177.09 (14)
C8—O2—C6—C56.5 (2)C14—C9—C10—C110.0 (2)
C2—N1—C6—C51.8 (2)C10—C9—C15—O48.2 (2)
C6—N1—C2—N2176.98 (12)C15—C9—C14—C13177.30 (13)
C6—N1—C2—N32.0 (2)C10—C9—C15—O3171.01 (14)
C2—N1—C6—O2177.50 (11)C14—C9—C15—O36.1 (2)
C2—N3—C4—O1179.85 (12)C14—C9—C15—O4174.77 (13)
C4—N3—C2—N2178.36 (13)C9—C10—C11—C120.3 (2)
C4—N3—C2—N10.7 (2)C10—C11—C12—N4179.01 (14)
C2—N3—C4—C51.1 (2)C10—C11—C12—C130.7 (2)
N3—C4—C5—C61.3 (2)N4—C12—C13—C14179.12 (14)
O1—C4—C5—C6179.61 (12)C11—C12—C13—C140.8 (2)
C4—C5—C6—O2178.93 (13)C12—C13—C14—C90.5 (2)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y+2, z; (v) x, y+1, z; (vi) x, y+2, z; (vii) x+1, y+1/2, z+1/2; (viii) x1, y, z; (ix) x+2, y1/2, z+1/2; (x) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3iv0.862.072.8546 (17)152
N2—H2B···O30.861.962.8180 (17)172
O4—H4···N10.821.832.6426 (16)171
N4—H4A···O2vii0.862.473.0621 (18)127
N4—H4A···O4vii0.862.453.1566 (18)140
C7—H7C···O2v0.962.603.4578 (18)150
Symmetry codes: (iv) x+1, y+2, z; (v) x, y+1, z; (vii) x+1, y+1/2, z+1/2.
 

Acknowledgements

DL thanks the EPSRC National Crystallography Service (Southampton, England) for the X-ray data collection.

References

First citationBaker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationGoswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K., Fun, H.-K. & Razak, I. A. (1999). Acta Cryst. C55, 583–585.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGoswami, S., Mukherjee, R., Ghosh, K., Razak, I. A., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, 477–478.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHunter, C. A. (1994). Chem. Soc. Res. 23, 101–109.  CrossRef CAS Web of Science Google Scholar
First citationHunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533–536.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLai, T. F. & Marsh, R. E. (1967). Acta Cryst. 22, 885–893.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLow, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o289–o294.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology. Vol. 276, Macromolecular Crystallography, part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds