metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(2-methyl­phenyl­imino)phen­yl]mercury(II)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Manchester, Sackville Street, Manchester, England
*Correspondence e-mail: k.r.flower@manchester.ac.uk

(Received 19 May 2006; accepted 29 May 2006; online 9 June 2006)

The structure of the cyclo­mercurated 2-phenyl­imino­phenyl title compound, [Hg(C14H12N)2], shows that the mercury coordination is essentially square planar

Comment

The structure of the title compound, (I)[link], is shown in Fig. 1[link]. Organomercurials are often used as transmetallation reagents in the synthesis of organometallic complexes (Roper & Wright, 1977[Roper, W. R. & Wright, L. J. (1977). J. Organomet. Chem. 142, C1-C6.]). Several years ago we reported a synthetic route for the preparation of a range of functionalized 1-mercurio-2-phenyl­imino­phenyls (Flower et al., 2002[Flower, K. R., Howard, V. J., Naguthney, S., Pritchard, R. G., Warren, J. E. & McGown, A. T. (2002). Inorg. Chem. 41, 1907-1912.]) and from the structural data obtained concurred with a previous report of Batsanov (1998[Batsanov, A. S. (1998). J. Chem. Soc. Dalton Trans. pp. 1541-1546.]) that the van der Waals radius of mercury is in the range 2.0–2.2 Å, rather than the often quoted value of 1.55 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). Here, and in the following paper (Flower & Pritchard, 2006[Flower, K. R. & Pritchard, R. G. (2006). Acta Cryst. E62, m1469-m1470.]), we report two additional structures of this type of compound. All of the bond lengths and angles in the two structures are as expected. The Hg—N distances in (I)[link] and bis-2-(2-isopropyl­phenyl­imnophen­yl)­mercury, (II), range from 2.787 (10) to 2.850 (10) Å and are comfortably within the sum of the van der Waals radii (3.5–3.7 Å), if the van der Waals radius of Hg is considered to be 2.0–2.2 Å, indicating significant Hg—N inter­actions. This gives rise to an overall distorted square-planar geometry at Hg in both cases. Other examples of square planar HgII complexes are known (Balasubramani et al., 2005[Balasubramani, K., Thomas, P., Bocelli, G. & Cantoni, A. (2005). J. Coord. Chem. 58, 1689-1694.]; Haid et al., 2003[Haid, R., Gutmann, R., Czermak, G., Langes, C., Oberhauser, W, Kopacka, H., Ongania, K.-H. & Bruggeller, P. (2003). Inorg. Chem. Commun. 6, 61-67.]; Cheng et al., 1994[Cheng, Y., Emge, T. J. & Brennan, J. G. (1994). Inorg. Chem. 33, 3711-3714.]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atomic numbering scheme. Displacement ellipsoids are shown at the 30% probability level.

Experimental

Caution: preparation of an organomercurial. Organomercurials are extremely toxic. To Hg(C6H4-2-CHO)2 (1 g, 2.4 mmol) dissolved in ethanol (10 ml) containing p-toluene­sulfonic acid (10 mg, 0.05 mmol) was added 2-methyl­aniline (0.56 g, 6 mmol) and the solution was refluxed for 5 h, during which time white crystals of (I)[link] precipitated. The crystalline material was collected by filtration, washed with water and dried in a desiccator. Yield 0.93 g, 68%. An analytically pure sample was obtained through recrystallization from hot ethanol, and crystals suitable for the diffraction study were grown by dissolving approximately 10 mg of (I)[link] in CH2Cl2 (0.2 ml) in a small vial (1 × 5 cm), layering ethanol (5 ml) on top and leaving the vial to to stand for 24 h. Elemental analysis C28H24HgN2 requires: C 57.56, H 4.11, N 4.76%; found: C 57.79, H 4.22, N 4.91%.

Crystal data
  • [Hg(C14H12N)2]

  • Mr = 589.08

  • Monoclinic, P 21 /c

  • a = 11.9925 (3) Å

  • b = 11.3864 (3) Å

  • c = 16.6542 (5) Å

  • β = 97.6730 (10)°

  • V = 2253.79 (11) Å3

  • Z = 4

  • Dx = 1.736 Mg m−3

  • Mo Kα radiation

  • μ = 6.85 mm−1

  • T = 293 (2) K

  • Plate, yellow

  • 0.2 × 0.15 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.254, Tmax = 0.707

  • 14711 measured reflections

  • 5084 independent reflections

  • 3476 reflections with I > 2σ(I)

  • Rint = 0.086

  • θmax = 27.4°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.092

  • S = 1.02

  • 5084 reflections

  • 283 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0284P)2 + 5.7069P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.54 e Å−3

  • Δρmin = −1.64 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.00103 (15)

H atoms were positioned geometrically and treated as riding, with C—H = 0.93 and 0.96 Å, and with Uiso(H) values of 1.2 and 1.5 times Ueq(C). The highest residual peak is located 1.03 Å from Hg1 and deepest hole is located 0.92 Å from Hg1..

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-888.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

(I) top
Crystal data top
[Hg(C14H12N)2]F(000) = 1144
Mr = 589.08Dx = 1.736 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13603 reflections
a = 11.9925 (3) Åθ = 1.0–27.5°
b = 11.3864 (3) ŵ = 6.85 mm1
c = 16.6542 (5) ÅT = 293 K
β = 97.673 (1)°Plate, yellow
V = 2253.79 (11) Å30.2 × 0.15 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
5084 independent reflections
Radiation source: Enraf–Nonius FR5903476 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
Detector resolution: 9 pixels mm-1θmax = 27.4°, θmin = 3.2°
CCD rotation images, thick slices scansh = 1515
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1414
Tmin = 0.254, Tmax = 0.707l = 2119
14711 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0284P)2 + 5.7069P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5084 reflectionsΔρmax = 1.54 e Å3
283 parametersΔρmin = 1.64 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00103 (15)
Special details top

Experimental. 1H NMR (CDCl3, 200 MHz): δ 8.50 (s, CH, JHHg = 10.41 Hz), 7.65–7.06 (m, 14H, aryl-H), 6.73 (d, 2H, aryl-H, JHH = 7.07 Hz), 2.15 (s, 3H, CH3). 13C{1H} NMR (CDCl3, 100 MHz): δ 167.5, 164.6, 151.2, 143.9, 139.1, 133.4, 131.9, 131.3, 130.0, 127.3, 126.6, 125.4, 118.4, 18.3.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.51462 (2)0.41352 (2)0.389990 (15)0.02255 (12)
C10.4516 (6)0.3315 (6)0.4861 (4)0.0235 (16)
C20.3449 (7)0.3543 (6)0.5050 (4)0.0320 (18)
H20.3010.40990.47460.038*
C30.3004 (7)0.2977 (7)0.5676 (5)0.042 (2)
H30.22780.31450.57790.05*
C40.3658 (8)0.2160 (7)0.6143 (5)0.045 (2)
H40.33710.17610.65580.054*
C50.4737 (7)0.1950 (7)0.5985 (4)0.037 (2)
H50.5190.14380.6320.044*
C60.5164 (6)0.2467 (6)0.5351 (4)0.0256 (16)
C70.6273 (7)0.2110 (6)0.5197 (4)0.0285 (18)
H70.66330.15260.55250.034*
C80.7850 (7)0.2068 (6)0.4513 (4)0.0297 (18)
C90.7969 (8)0.0870 (7)0.4347 (4)0.040 (2)
H90.73650.03620.43610.048*
C100.8987 (10)0.0445 (9)0.4162 (5)0.059 (3)
H100.90660.03410.4030.07*
C110.9875 (9)0.1205 (10)0.4176 (5)0.062 (3)
H111.05640.09170.40640.075*
C120.9784 (7)0.2378 (9)0.4351 (5)0.050 (2)
H121.04040.2870.43590.06*
C130.8744 (6)0.2830 (7)0.4517 (4)0.0333 (19)
C140.8630 (7)0.4101 (7)0.4717 (5)0.041 (2)
H14A0.79250.43930.44510.062*
H14B0.92360.45360.45370.062*
H14C0.86550.4190.52920.062*
C150.5770 (6)0.4864 (5)0.2894 (4)0.0203 (15)
C160.6826 (6)0.4634 (6)0.2706 (4)0.0281 (17)
H160.72880.4130.30410.034*
C170.7238 (7)0.5116 (6)0.2042 (4)0.0308 (18)
H170.79550.49260.19290.037*
C180.6569 (6)0.5882 (6)0.1549 (4)0.0285 (17)
H180.68420.62420.11140.034*
C190.5489 (5)0.6109 (5)0.1710 (4)0.0146 (13)
H190.50220.65850.13560.018*
C200.5089 (6)0.5652 (5)0.2377 (4)0.0215 (15)
C210.3909 (6)0.5915 (6)0.2481 (4)0.0231 (15)
H210.35470.65280.21820.028*
C220.2222 (6)0.5675 (6)0.3016 (4)0.0240 (16)
C230.1905 (6)0.6849 (6)0.3109 (4)0.0290 (17)
H230.24380.74430.31150.035*
C240.0817 (7)0.7121 (6)0.3190 (4)0.0346 (19)
H240.06120.78990.3260.041*
C250.0029 (7)0.6249 (7)0.3169 (4)0.0347 (19)
H250.07160.64390.3210.042*
C260.0332 (6)0.5085 (7)0.3087 (4)0.0315 (18)
H260.02110.45010.30850.038*
C270.1438 (6)0.4775 (6)0.3007 (4)0.0249 (16)
C280.1756 (6)0.3514 (6)0.2904 (5)0.0342 (19)
H28A0.18680.33780.23520.051*
H28B0.11640.30140.3040.051*
H28C0.24380.33430.32550.051*
N10.6795 (5)0.2533 (5)0.4645 (3)0.0272 (13)
N20.3364 (5)0.5348 (5)0.2958 (3)0.0230 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.02761 (18)0.02238 (15)0.01747 (16)0.00002 (15)0.00228 (10)0.00166 (12)
C10.025 (4)0.025 (4)0.019 (4)0.007 (3)0.000 (3)0.005 (3)
C20.038 (5)0.032 (4)0.025 (4)0.004 (4)0.001 (4)0.005 (3)
C30.043 (6)0.048 (5)0.039 (5)0.005 (4)0.020 (4)0.008 (4)
C40.066 (7)0.034 (5)0.041 (5)0.017 (5)0.023 (5)0.001 (4)
C50.037 (5)0.054 (5)0.022 (4)0.016 (4)0.015 (4)0.016 (4)
C60.036 (4)0.030 (4)0.011 (3)0.004 (4)0.006 (3)0.003 (3)
C70.041 (5)0.025 (4)0.017 (4)0.000 (3)0.009 (3)0.006 (3)
C80.033 (5)0.037 (4)0.019 (4)0.005 (4)0.003 (3)0.006 (3)
C90.049 (6)0.047 (5)0.022 (4)0.009 (5)0.004 (4)0.005 (4)
C100.084 (8)0.064 (6)0.026 (5)0.029 (6)0.000 (5)0.005 (4)
C110.060 (7)0.093 (8)0.033 (5)0.047 (7)0.006 (5)0.011 (5)
C120.038 (5)0.082 (7)0.031 (5)0.001 (5)0.008 (4)0.019 (5)
C130.024 (4)0.057 (5)0.019 (4)0.006 (4)0.001 (3)0.010 (3)
C140.037 (5)0.057 (5)0.028 (4)0.008 (5)0.004 (4)0.004 (4)
C150.028 (4)0.020 (3)0.013 (3)0.005 (3)0.003 (3)0.004 (3)
C160.030 (5)0.032 (4)0.022 (4)0.008 (4)0.001 (3)0.003 (3)
C170.032 (5)0.037 (4)0.022 (4)0.002 (4)0.003 (4)0.000 (3)
C180.039 (5)0.023 (3)0.026 (4)0.009 (4)0.010 (3)0.002 (3)
C190.009 (3)0.019 (3)0.014 (3)0.004 (3)0.004 (3)0.007 (3)
C200.028 (4)0.021 (3)0.016 (3)0.003 (3)0.005 (3)0.003 (3)
C210.025 (4)0.023 (3)0.019 (3)0.000 (3)0.005 (3)0.001 (3)
C220.024 (4)0.033 (4)0.013 (3)0.002 (3)0.002 (3)0.000 (3)
C230.031 (5)0.035 (4)0.020 (4)0.001 (4)0.001 (3)0.004 (3)
C240.036 (5)0.030 (4)0.038 (5)0.008 (4)0.008 (4)0.005 (3)
C250.023 (4)0.051 (5)0.029 (4)0.008 (4)0.004 (4)0.004 (4)
C260.021 (4)0.048 (5)0.024 (4)0.007 (4)0.001 (3)0.002 (3)
C270.020 (4)0.028 (4)0.024 (4)0.001 (3)0.004 (3)0.001 (3)
C280.024 (5)0.036 (4)0.044 (5)0.001 (4)0.011 (4)0.001 (4)
N10.027 (3)0.037 (3)0.015 (3)0.006 (3)0.005 (3)0.006 (3)
N20.023 (3)0.023 (3)0.024 (3)0.001 (3)0.003 (3)0.002 (2)
Geometric parameters (Å, º) top
Hg1—C12.080 (7)C14—H14C0.96
Hg1—C152.095 (6)C15—C161.370 (9)
C1—C21.382 (10)C15—C201.423 (9)
C1—C61.427 (10)C16—C171.383 (9)
C2—C31.390 (10)C16—H160.93
C2—H20.93C17—C181.379 (10)
C3—C41.387 (11)C17—H170.93
C3—H30.93C18—C191.381 (9)
C4—C51.376 (11)C18—H180.93
C4—H40.93C19—C201.371 (8)
C5—C61.367 (9)C19—H190.93
C5—H50.93C20—C211.480 (9)
C6—C71.446 (10)C21—N21.270 (8)
C7—N11.274 (8)C21—H210.93
C7—H70.93C22—C271.388 (9)
C8—C131.379 (10)C22—C231.404 (9)
C8—C91.403 (10)C22—N21.435 (8)
C8—N11.415 (9)C23—C241.365 (10)
C9—C101.386 (12)C23—H230.93
C9—H90.93C24—C251.368 (10)
C10—C111.370 (14)C24—H240.93
C10—H100.93C25—C261.386 (10)
C11—C121.374 (13)C25—H250.93
C11—H110.93C26—C271.397 (10)
C12—C131.410 (10)C26—H260.93
C12—H120.93C27—C281.502 (10)
C13—C141.496 (10)C28—H28A0.96
C14—H14A0.96C28—H28B0.96
C14—H14B0.96C28—H28C0.96
C1—Hg1—C15176.5 (2)C16—C15—Hg1123.1 (5)
C2—C1—C6116.5 (6)C20—C15—Hg1119.7 (5)
C2—C1—Hg1122.3 (5)C15—C16—C17123.1 (7)
C6—C1—Hg1121.2 (5)C15—C16—H16118.5
C1—C2—C3122.9 (7)C17—C16—H16118.5
C1—C2—H2118.5C18—C17—C16119.0 (7)
C3—C2—H2118.5C18—C17—H17120.5
C4—C3—C2119.1 (8)C16—C17—H17120.5
C4—C3—H3120.5C17—C18—C19119.3 (6)
C2—C3—H3120.5C17—C18—H18120.4
C5—C4—C3119.0 (7)C19—C18—H18120.4
C5—C4—H4120.5C20—C19—C18121.6 (6)
C3—C4—H4120.5C20—C19—H19119.2
C6—C5—C4122.2 (7)C18—C19—H19119.2
C6—C5—H5118.9C19—C20—C15119.7 (6)
C4—C5—H5118.9C19—C20—C21117.5 (6)
C5—C6—C1120.1 (7)C15—C20—C21122.5 (6)
C5—C6—C7117.7 (6)N2—C21—C20123.4 (6)
C1—C6—C7122.2 (6)N2—C21—H21118.3
N1—C7—C6125.0 (6)C20—C21—H21118.3
N1—C7—H7117.5C27—C22—C23120.7 (7)
C6—C7—H7117.5C27—C22—N2117.3 (6)
C13—C8—C9120.8 (7)C23—C22—N2121.9 (6)
C13—C8—N1118.4 (6)C24—C23—C22120.2 (7)
C9—C8—N1120.7 (7)C24—C23—H23119.9
C10—C9—C8120.0 (9)C22—C23—H23119.9
C10—C9—H9120C23—C24—C25119.9 (7)
C8—C9—H9120C23—C24—H24120
C11—C10—C9118.8 (9)C25—C24—H24120
C11—C10—H10120.6C24—C25—C26120.5 (7)
C9—C10—H10120.6C24—C25—H25119.8
C10—C11—C12122.3 (9)C26—C25—H25119.8
C10—C11—H11118.9C25—C26—C27121.0 (7)
C12—C11—H11118.9C25—C26—H26119.5
C11—C12—C13119.6 (9)C27—C26—H26119.5
C11—C12—H12120.2C22—C27—C26117.6 (6)
C13—C12—H12120.2C22—C27—C28121.7 (6)
C8—C13—C12118.5 (8)C26—C27—C28120.7 (6)
C8—C13—C14121.0 (7)C27—C28—H28A109.5
C12—C13—C14120.4 (8)C27—C28—H28B109.5
C13—C14—H14A109.5H28A—C28—H28B109.5
C13—C14—H14B109.5C27—C28—H28C109.5
H14A—C14—H14B109.5H28A—C28—H28C109.5
C13—C14—H14C109.5H28B—C28—H28C109.5
H14A—C14—H14C109.5C7—N1—C8120.4 (6)
H14B—C14—H14C109.5C21—N2—C22119.0 (6)
C16—C15—C20117.1 (6)
C6—C1—C2—C30.8 (10)C16—C17—C18—C192.8 (10)
Hg1—C1—C2—C3178.1 (6)C17—C18—C19—C204.3 (10)
C1—C2—C3—C41.1 (11)C18—C19—C20—C154.0 (10)
C2—C3—C4—C51.3 (12)C18—C19—C20—C21178.1 (6)
C3—C4—C5—C64.0 (12)C16—C15—C20—C192.2 (9)
C4—C5—C6—C14.2 (12)Hg1—C15—C20—C19178.7 (5)
C4—C5—C6—C7174.8 (7)C16—C15—C20—C21176.0 (6)
C2—C1—C6—C51.8 (10)Hg1—C15—C20—C214.9 (8)
Hg1—C1—C6—C5179.3 (6)C19—C20—C21—N2163.7 (6)
C2—C1—C6—C7177.3 (6)C15—C20—C21—N210.2 (10)
Hg1—C1—C6—C71.7 (9)C27—C22—C23—C240.1 (10)
C5—C6—C7—N1178.0 (7)N2—C22—C23—C24177.7 (6)
C1—C6—C7—N13.0 (11)C22—C23—C24—C251.0 (11)
C13—C8—C9—C101.8 (11)C23—C24—C25—C261.7 (11)
N1—C8—C9—C10175.3 (6)C24—C25—C26—C271.4 (11)
C8—C9—C10—C112.5 (12)C23—C22—C27—C260.4 (10)
C9—C10—C11—C121.5 (13)N2—C22—C27—C26178.1 (6)
C10—C11—C12—C130.4 (13)C23—C22—C27—C28179.7 (6)
C9—C8—C13—C120.1 (10)N2—C22—C27—C282.6 (10)
N1—C8—C13—C12177.3 (6)C25—C26—C27—C220.3 (10)
C9—C8—C13—C14178.2 (7)C25—C26—C27—C28179.0 (7)
N1—C8—C13—C144.6 (10)C6—C7—N1—C8176.0 (6)
C11—C12—C13—C81.2 (11)C13—C8—N1—C7126.5 (7)
C11—C12—C13—C14179.3 (7)C9—C8—N1—C756.3 (9)
C20—C15—C16—C170.9 (10)C20—C21—N2—C22179.9 (6)
Hg1—C15—C16—C17180.0 (5)C27—C22—N2—C21135.0 (7)
C15—C16—C17—C181.2 (11)C23—C22—N2—C2147.3 (9)
 

Acknowledgements

We thank the EPSRC Crystallographic Service, University of Southampton, for collecting the data.

References

First citationBalasubramani, K., Thomas, P., Bocelli, G. & Cantoni, A. (2005). J. Coord. Chem. 58, 1689–1694.  CSD CrossRef CAS Google Scholar
First citationBatsanov, A. S. (1998). J. Chem. Soc. Dalton Trans. pp. 1541–1546.  CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationCheng, Y., Emge, T. J. & Brennan, J. G. (1994). Inorg. Chem. 33, 3711–3714.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–888.  CrossRef CAS IUCr Journals Google Scholar
First citationFlower, K. R., Howard, V. J., Naguthney, S., Pritchard, R. G., Warren, J. E. & McGown, A. T. (2002). Inorg. Chem. 41, 1907–1912.  CSD CrossRef PubMed CAS Google Scholar
First citationFlower, K. R. & Pritchard, R. G. (2006). Acta Cryst. E62, m1469–m1470.  CSD CrossRef IUCr Journals Google Scholar
First citationHaid, R., Gutmann, R., Czermak, G., Langes, C., Oberhauser, W, Kopacka, H., Ongania, K.-H. & Bruggeller, P. (2003). Inorg. Chem. Commun. 6, 61–67.  CSD CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRoper, W. R. & Wright, L. J. (1977). J. Organomet. Chem. 142, C1–C6.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds