metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(2-iso­propyl­phenyl­imino)phen­yl]mercury(II)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Manchester, Sackville Street, Manchester, England
*Correspondence e-mail: k.r.flower@manchester.ac.uk

(Received 19 May 2006; accepted 29 May 2006; online 9 June 2006)

The structure of the centrosymmetric cyclo­mercurated 2-phenyl­imino­phenyl title compound, [Hg(C16H16N)2], has been determined at 120 (2) K. The coordination geometry at the Hg atom is essentially square planar.

Comment

The stucture of the centrosymmetric title compound, (I)[link], is shown below. For a discussion of the structure, together with that of a similar complex, see Flower & Pritchard (2006[Flower, K. R. & Pritchard, R. G. (2006). Acta Cryst. E62, m1467-m1468.]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atomic numbering scheme. Unlabelled atoms are related to labelled atoms by 2 − x, −y, 2 − z. Displacement ellipsoids are shown at the 30% probability level.

Experimental

Caution: preparation of an organomercurial. . Organomercurials are extremely toxic. Compound (I)[link] was prepared by the method previously described (Flower & Pritchard, 2006[Flower, K. R. & Pritchard, R. G. (2006). Acta Cryst. E62, m1467-m1468.]) (yield 1.12 g, 75%). Elemental analysis C32H32N2Hg requires: C 59.58, H 4.99, N 4.4%; found: C 59.54, H 5.01, N 4.41%.

Crystal data
  • [Hg(C16H16N)2]

  • Mr = 645.19

  • Monoclinic, P 21 /c

  • a = 12.585 (3) Å

  • b = 8.2963 (17) Å

  • c = 13.244 (3) Å

  • β = 101.58 (3)°

  • V = 1354.7 (5) Å3

  • Z = 2

  • Dx = 1.582 Mg m−3

  • Mo Kα radiation

  • μ = 5.70 mm−1

  • T = 120 (2) K

  • Prism, yellow

  • 0.16 × 0.12 × 0.04 mm

Data collection
  • Enraf–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.462, Tmax = 0.804

  • 9987 measured reflections

  • 3078 independent reflections

  • 2244 reflections with I > 2σ(I)

  • Rint = 0.039

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.058

  • S = 1.06

  • 3078 reflections

  • 162 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0195P)2 + 0.6915P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.65 e Å−3

  • Δρmin = −1.50 e Å−3

H atoms were positioned geometrically and treated as riding, with C—H = 0.95–1.00 Å and Uiso(H) values of 1.2 or 1.5 times Ueq(C). The deepest hole is located 0.87 Å from Hg1.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-888.]).

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998)'; cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Bis[2-(2-isopropylphenylimino)phenyl]mercury(I) top
Crystal data top
[Hg(C16H16N)2]F(000) = 636
Mr = 645.19Dx = 1.582 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6064 reflections
a = 12.585 (3) Åθ = 2.9–27.5°
b = 8.2963 (17) ŵ = 5.70 mm1
c = 13.244 (3) ÅT = 120 K
β = 101.58 (3)°Prism, yellow
V = 1354.7 (5) Å30.16 × 0.12 × 0.04 mm
Z = 2
Data collection top
Enraf–Nonius KappaCCD area-detector
diffractometer
3078 independent reflections
Graphite monochromator2244 reflections with I > 2σ(I)
Detector resolution: 9.091 pixels mm-1Rint = 0.039
φ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1616
Tmin = 0.462, Tmax = 0.804k = 910
9987 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0195P)2 + 0.6915P]
where P = (Fo2 + 2Fc2)/3
3078 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 1.50 e Å3
Special details top

Experimental. 1H NMR (CDCl3, 200 MHz): δ 8.51 (s, 1H, CH, JHHg = 9.81 Hz), 7.63–7.10 (m, 14H, aryl-H), 6.68 (m, 2H, aryl-H), 3.47 (sept, 1H, CH, JHH = 7.20 Hz), 0.85 (d, 6H, CH3, JHH = 7.20 Hz). 13C{1H} (CDCl3, 100 MHz): δ 167.3, 164.6, 149.9, 143.6, 142.4, 139.1, 133.4, 131.3, 127.3, 126.3, 125.7, 125.1, 118.1, 27.7, 23.2.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg11010.01587 (6)
N11.11390 (19)0.2604 (3)1.10205 (17)0.0194 (5)
C10.9102 (2)0.0930 (4)1.1028 (2)0.0191 (6)
C20.8151 (3)0.0174 (3)1.1180 (3)0.0204 (7)
H20.7920.07981.08240.024*
C30.7540 (3)0.0832 (4)1.1847 (2)0.0233 (7)
H30.690.03011.19470.028*
C40.7861 (3)0.2257 (4)1.2364 (2)0.0240 (7)
H40.74390.27071.28140.029*
C50.8799 (2)0.3026 (4)1.2226 (2)0.0222 (7)
H50.90140.40091.25760.027*
C60.9432 (2)0.2362 (3)1.1573 (2)0.0177 (6)
C71.0429 (2)0.3225 (4)1.1468 (2)0.0193 (7)
H71.05460.42821.17440.023*
C81.2043 (2)0.3549 (4)1.0883 (2)0.0180 (6)
C91.1894 (3)0.5072 (3)1.0444 (3)0.0191 (7)
H91.11820.55011.02470.023*
C101.2776 (3)0.5972 (4)1.0290 (2)0.0225 (7)
H101.26710.70170.99940.027*
C111.3808 (3)0.5339 (4)1.0572 (3)0.0257 (8)
H111.44170.59541.04770.031*
C121.3954 (3)0.3805 (4)1.0992 (2)0.0236 (7)
H121.46680.33821.11830.028*
C131.3082 (2)0.2867 (4)1.1142 (2)0.0184 (6)
C141.3232 (2)0.1206 (4)1.1643 (2)0.0214 (7)
H141.25670.05621.13620.026*
C151.4204 (3)0.0284 (4)1.1401 (4)0.0373 (10)
H15A1.48780.08071.17480.056*
H15B1.4190.08291.16460.056*
H15C1.41680.02841.06550.056*
C161.3312 (3)0.1361 (4)1.2808 (2)0.0320 (8)
H16A1.26510.18671.29430.048*
H16B1.33950.02881.31240.048*
H16C1.39410.20271.31030.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01480 (10)0.01619 (10)0.01730 (10)0.00034 (6)0.00482 (6)0.00045 (6)
N10.0160 (14)0.0202 (13)0.0216 (13)0.0013 (11)0.0028 (10)0.0021 (11)
C10.0187 (16)0.0215 (17)0.0166 (14)0.0037 (13)0.0024 (11)0.0041 (12)
C20.0170 (17)0.0226 (17)0.0209 (17)0.0017 (13)0.0021 (13)0.0049 (12)
C30.0182 (17)0.0252 (18)0.0282 (17)0.0002 (14)0.0087 (13)0.0094 (14)
C40.0244 (18)0.0276 (18)0.0224 (16)0.0083 (15)0.0103 (13)0.0046 (13)
C50.0256 (18)0.0213 (17)0.0193 (15)0.0039 (14)0.0039 (12)0.0003 (12)
C60.0166 (16)0.0185 (16)0.0175 (14)0.0004 (12)0.0020 (11)0.0028 (12)
C70.0173 (16)0.0192 (16)0.0193 (15)0.0007 (13)0.0017 (12)0.0016 (12)
C80.0176 (16)0.0191 (15)0.0173 (14)0.0033 (13)0.0036 (11)0.0005 (12)
C90.0174 (17)0.0212 (17)0.0180 (16)0.0037 (13)0.0019 (13)0.0020 (11)
C100.0281 (18)0.0220 (17)0.0178 (15)0.0023 (15)0.0056 (12)0.0037 (13)
C110.0247 (19)0.032 (2)0.0222 (18)0.0076 (15)0.0079 (14)0.0004 (14)
C120.0176 (17)0.0276 (18)0.0245 (16)0.0009 (14)0.0013 (12)0.0001 (14)
C130.0191 (16)0.0205 (16)0.0157 (14)0.0006 (13)0.0037 (11)0.0017 (12)
C140.0178 (16)0.0165 (16)0.0292 (16)0.0006 (13)0.0030 (13)0.0020 (13)
C150.027 (2)0.032 (2)0.054 (3)0.0079 (16)0.0132 (19)0.0061 (17)
C160.037 (2)0.0272 (19)0.0297 (18)0.0003 (16)0.0029 (15)0.0074 (15)
Geometric parameters (Å, º) top
Hg1—C1i2.084 (3)C9—C101.387 (4)
Hg1—C12.084 (3)C9—H90.95
N1—C71.276 (4)C10—C111.381 (5)
N1—C81.423 (4)C10—H100.95
C1—C21.401 (5)C11—C121.387 (4)
C1—C61.409 (4)C11—H110.95
C2—C31.393 (5)C12—C131.391 (4)
C2—H20.95C12—H120.95
C3—C41.386 (4)C13—C141.525 (4)
C3—H30.95C14—C151.531 (5)
C4—C51.386 (4)C14—C161.532 (4)
C4—H40.95C14—H141
C5—C61.401 (4)C15—H15A0.98
C5—H50.95C15—H15B0.98
C6—C71.475 (4)C15—H15C0.98
C7—H70.95C16—H16A0.98
C8—C91.388 (4)C16—H16B0.98
C8—C131.402 (4)C16—H16C0.98
C1i—Hg1—C1180.0000 (10)C11—C10—H10120.2
C7—N1—C8119.3 (3)C9—C10—H10120.2
C2—C1—C6118.4 (3)C10—C11—C12119.9 (3)
C2—C1—Hg1121.3 (2)C10—C11—H11120
C6—C1—Hg1120.3 (2)C12—C11—H11120
C3—C2—C1120.8 (3)C11—C12—C13121.7 (3)
C3—C2—H2119.6C11—C12—H12119.1
C1—C2—H2119.6C13—C12—H12119.1
C4—C3—C2120.3 (3)C12—C13—C8117.6 (3)
C4—C3—H3119.9C12—C13—C14122.3 (3)
C2—C3—H3119.9C8—C13—C14119.9 (3)
C3—C4—C5119.9 (3)C13—C14—C15113.3 (3)
C3—C4—H4120C13—C14—C16109.9 (2)
C5—C4—H4120C15—C14—C16111.0 (3)
C4—C5—C6120.4 (3)C13—C14—H14107.5
C4—C5—H5119.8C15—C14—H14107.5
C6—C5—H5119.8C16—C14—H14107.5
C5—C6—C1120.2 (3)C14—C15—H15A109.5
C5—C6—C7117.8 (3)C14—C15—H15B109.5
C1—C6—C7122.0 (3)H15A—C15—H15B109.5
N1—C7—C6122.4 (3)C14—C15—H15C109.5
N1—C7—H7118.8H15A—C15—H15C109.5
C6—C7—H7118.8H15B—C15—H15C109.5
C9—C8—C13120.7 (3)C14—C16—H16A109.5
C9—C8—N1120.7 (3)C14—C16—H16B109.5
C13—C8—N1118.5 (3)H16A—C16—H16B109.5
C10—C9—C8120.4 (3)C14—C16—H16C109.5
C10—C9—H9119.8H16A—C16—H16C109.5
C8—C9—H9119.8H16B—C16—H16C109.5
C11—C10—C9119.6 (3)
C6—C1—C2—C30.6 (4)C13—C8—C9—C102.5 (4)
Hg1—C1—C2—C3178.1 (2)N1—C8—C9—C10178.5 (3)
C1—C2—C3—C40.6 (5)C8—C9—C10—C110.4 (5)
C2—C3—C4—C50.5 (4)C9—C10—C11—C120.8 (5)
C3—C4—C5—C60.7 (4)C10—C11—C12—C130.0 (5)
C4—C5—C6—C11.8 (4)C11—C12—C13—C82.0 (4)
C4—C5—C6—C7179.2 (3)C11—C12—C13—C14177.5 (3)
C2—C1—C6—C51.8 (4)C9—C8—C13—C123.3 (4)
Hg1—C1—C6—C5176.9 (2)N1—C8—C13—C12179.4 (3)
C2—C1—C6—C7179.3 (3)C9—C8—C13—C14178.8 (3)
Hg1—C1—C6—C72.0 (4)N1—C8—C13—C145.1 (4)
C8—N1—C7—C6175.5 (2)C12—C13—C14—C1533.3 (4)
C5—C6—C7—N1169.2 (3)C8—C13—C14—C15151.4 (3)
C1—C6—C7—N111.8 (4)C12—C13—C14—C1691.5 (3)
C7—N1—C8—C951.0 (4)C8—C13—C14—C1683.8 (3)
C7—N1—C8—C13132.9 (3)
Symmetry code: (i) x+2, y, z+2.
 

Acknowledgements

We thank the EPSRC Crystallographic Service, University of Southampton, for collecting the data.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–888.  CrossRef CAS IUCr Journals Google Scholar
First citationFlower, K. R. & Pritchard, R. G. (2006). Acta Cryst. E62, m1467–m1468.  CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds