organic compounds
An orthorhombic polymorph of dichlorotris(pentafluorophenyl)phosphorane
aSchool of Chemistry, The University of Manchester (North Campus), Manchester M60 1QD, England
*Correspondence e-mail: stephen.m.godfrey@manchester.ac.uk
An orthorhombic form of dichlorotris(pentafluorophenyl)phosphorane, C18Cl2F15P, has been obtained as the product of the reaction between PhSeCl and (C6F5)3P, and is a polymorph of the previously reported monoclinic form obtained from the reaction of (C6F5)3P with Cl2. The molecule displays nearly perfect trigonal–bipyramidal geometry, and features a number of intermolecular F⋯F contacts, which lead to fluorous domains in the crystal packing.
Comment
Compounds of formula R3PCl2 are usually ionic in the solid state (Dillon et al., 1976; Godfrey et al., 1996, 1997; Ruthe et al., 1997) and solution (Beveridge et al., 1966; Wiley & Stine, 1967; Harris & Ali, 1968; Godfrey et al., 1997); however, molecular five-coordinate trigonal–bipyramidal structures have been observed for R3 = Ph3, (C6F5)Ph2 and (C6F5)3 (Godfrey et al., 1997; Godfrey, McAuliffe, Pritchard & Sheffield, 1998). Whilst the trigonal–bipyramidal form of Ph3PCl2 ionizes in solution, the analogous compounds containing highly electron withdrawing C6F5 groups retain their trigonal–bipyramidal geometry in solution. We have previously described the structure of the monoclinic form of (C6F5)3PCl2 (space group P21/c), prepared from (C6F5)3P and dichlorine (Godfrey et al., 1997). We now report that the same compound is also formed when phenylselenenyl chloride is reacted with (C6F5)3P; however the crystals obtained were an orthorhombic polymorph of (C6F5)3PCl2, (I) (see Fig. 1 and Table 1).
Compound (I) displays nearly perfect trigonal–bipyramidal geometry, although neither of the two polymorphs of (C6F5)3PCl2 display crystallographically imposed D3 symmetry, unlike the analogous trigonal–bipyramidal (C6F5)3PBr2, Rc (Godfrey, McAuliffe, Mushtaq et al., 1998). The P—Cl bonds in (I) are nearly equivalent and slightly shorter than observed in the monoclinic polymorph [P—Cl = 2.211 (2) Å; Godfrey et al., 1997]. However, the P—Cl bonds are rather shorter than observed for (C6F5)Ph2PCl2 [P—Cl = 2.244 (2) and 2.241 (3) Å; Godfrey et al., 1997] and Ph3PCl2 [P—Cl = 2.225 (1)–2.280 (2) Å; Godfrey, McAuliffe, Pritchard & Sheffield, 1998), reflecting the increased net electron-withdrawing capability of three C6F5 groups. The Cl—P—Cl angle is essentially linear, and the remaining angles around the P atom are close to ideal trigonal–bipyramidal geometry. The C—F bonds in the molecule vary in distance between 1.329 (3) and 1.349 (3) Å, with the C—F bonds to the para-F atoms being the shortest in each C6F5 group. A number of intermolecular F⋯F interactions, shorter than the sum of the van der Waals radii of two F atoms, (2.94 Å), are observed, which vary in length between 2.700 (2) Å and 2.900 (2) Å. The extended structure thus features extensive aggregation of the fluorous domains.
Experimental
The title compound was prepared by addition of (C6F5)3P (Aldrich) (0.273 g, 5.0 × 10 −4 mol) to a freshly distilled diethyl ether solution (50 ml) containing PhSeCl (Aldrich) (0.196 g, 1.0 × 10−3 mol). The colour of the solution gradually changed from orange to yellow over several days. The solvent was reduced in volume to 10 ml, and colourless crystals of (I) formed at 273 K over several weeks. The spectroscopic data of (I) match the literature values (Godfrey et al., 1997).
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536806021751/sg2035sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806021751/sg2035Isup2.hkl
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C18Cl2F15P | F(000) = 2336 |
Mr = 603.05 | Dx = 2.113 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 10582 reflections |
a = 16.7367 (5) Å | θ = 1.0–25.4° |
b = 11.3713 (2) Å | µ = 0.58 mm−1 |
c = 19.9214 (5) Å | T = 150 K |
V = 3791.40 (16) Å3 | Prism, colourless |
Z = 8 | 0.2 × 0.15 × 0.1 mm |
Nonius KappaCCD diffractometer | 3458 independent reflections |
Radiation source: Enraf Nonius FR590 | 2634 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
Detector resolution: 9 pixels mm-1 | θmax = 25.3°, θmin = 3.0° |
φ or ω scans? | h = −20→16 |
Absorption correction: multi-scan (Blessing, 1995) | k = −13→13 |
Tmin = 0.893, Tmax = 0.944 | l = −23→23 |
19042 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.039 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0439P)2 + 3.0443P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3458 reflections | Δρmax = 0.38 e Å−3 |
325 parameters | Δρmin = −0.54 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.49075 (17) | 0.6096 (2) | 0.37260 (13) | 0.0238 (6) | |
C2 | 0.55870 (17) | 0.5387 (2) | 0.37278 (14) | 0.0260 (6) | |
C3 | 0.55340 (19) | 0.4188 (3) | 0.37960 (14) | 0.0299 (7) | |
C4 | 0.48042 (19) | 0.3638 (2) | 0.38180 (13) | 0.0292 (7) | |
C5 | 0.41183 (18) | 0.4310 (2) | 0.37903 (14) | 0.0286 (7) | |
C6 | 0.41747 (17) | 0.5513 (2) | 0.37650 (14) | 0.0258 (6) | |
C7 | 0.41500 (17) | 0.8501 (2) | 0.33031 (14) | 0.0247 (6) | |
C8 | 0.37070 (17) | 0.7999 (2) | 0.27868 (13) | 0.0258 (6) | |
C9 | 0.30550 (17) | 0.8560 (2) | 0.25108 (13) | 0.0270 (6) | |
C10 | 0.28672 (18) | 0.9685 (3) | 0.27131 (15) | 0.0303 (7) | |
C11 | 0.33072 (18) | 1.0219 (2) | 0.32053 (15) | 0.0290 (7) | |
C12 | 0.39230 (18) | 0.9622 (2) | 0.35101 (14) | 0.0277 (6) | |
C13 | 0.58145 (17) | 0.8449 (2) | 0.40678 (14) | 0.0262 (6) | |
C14 | 0.62486 (17) | 0.7936 (2) | 0.45900 (13) | 0.0254 (6) | |
C15 | 0.69123 (19) | 0.8466 (3) | 0.48534 (14) | 0.0308 (7) | |
C16 | 0.71409 (18) | 0.9565 (3) | 0.46304 (15) | 0.0333 (7) | |
C17 | 0.67161 (19) | 1.0105 (2) | 0.41272 (15) | 0.0307 (7) | |
C18 | 0.60700 (18) | 0.9538 (2) | 0.38398 (14) | 0.0280 (6) | |
F2 | 0.63189 (10) | 0.58597 (14) | 0.36801 (8) | 0.0314 (4) | |
F3 | 0.62094 (11) | 0.35433 (14) | 0.38288 (8) | 0.0384 (4) | |
F4 | 0.47576 (12) | 0.24731 (14) | 0.38598 (8) | 0.0389 (5) | |
F5 | 0.33989 (11) | 0.37926 (14) | 0.37902 (9) | 0.0381 (4) | |
F6 | 0.34878 (10) | 0.61209 (14) | 0.37595 (8) | 0.0310 (4) | |
F8 | 0.38919 (10) | 0.69310 (13) | 0.25486 (8) | 0.0298 (4) | |
F9 | 0.26056 (10) | 0.80222 (16) | 0.20460 (8) | 0.0367 (4) | |
F10 | 0.22484 (11) | 1.02353 (16) | 0.24344 (9) | 0.0443 (5) | |
F11 | 0.31355 (11) | 1.13189 (13) | 0.33964 (9) | 0.0398 (4) | |
F12 | 0.43149 (10) | 1.01566 (14) | 0.40148 (8) | 0.0327 (4) | |
F14 | 0.60279 (10) | 0.68909 (13) | 0.48410 (8) | 0.0296 (4) | |
F15 | 0.73410 (11) | 0.79176 (17) | 0.53271 (8) | 0.0426 (5) | |
F16 | 0.77747 (12) | 1.00955 (17) | 0.49033 (9) | 0.0480 (5) | |
F17 | 0.69268 (12) | 1.11803 (14) | 0.39190 (9) | 0.0415 (5) | |
F18 | 0.56887 (10) | 1.00802 (14) | 0.33355 (9) | 0.0342 (4) | |
P1 | 0.49612 (4) | 0.76936 (6) | 0.36995 (3) | 0.02308 (18) | |
Cl1 | 0.43366 (4) | 0.77888 (6) | 0.46700 (3) | 0.02886 (19) | |
Cl2 | 0.55989 (4) | 0.76107 (6) | 0.27353 (3) | 0.02870 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0251 (16) | 0.0259 (14) | 0.0204 (13) | −0.0007 (11) | 0.0001 (11) | 0.0002 (11) |
C2 | 0.0227 (16) | 0.0316 (15) | 0.0238 (14) | −0.0006 (12) | 0.0013 (11) | 0.0023 (12) |
C3 | 0.0336 (18) | 0.0323 (15) | 0.0237 (14) | 0.0099 (13) | 0.0007 (12) | 0.0003 (12) |
C4 | 0.046 (2) | 0.0198 (13) | 0.0220 (14) | −0.0004 (13) | −0.0044 (13) | 0.0037 (11) |
C5 | 0.0314 (17) | 0.0295 (14) | 0.0250 (14) | −0.0077 (13) | −0.0021 (12) | 0.0039 (12) |
C6 | 0.0247 (16) | 0.0280 (14) | 0.0246 (14) | 0.0011 (12) | −0.0009 (11) | 0.0001 (12) |
C7 | 0.0231 (15) | 0.0249 (13) | 0.0261 (14) | 0.0012 (11) | −0.0001 (12) | 0.0030 (12) |
C8 | 0.0263 (16) | 0.0266 (14) | 0.0245 (14) | 0.0003 (12) | 0.0035 (12) | 0.0013 (12) |
C9 | 0.0208 (15) | 0.0369 (15) | 0.0234 (14) | −0.0012 (12) | 0.0003 (12) | 0.0021 (12) |
C10 | 0.0218 (16) | 0.0377 (16) | 0.0314 (16) | 0.0071 (13) | 0.0010 (13) | 0.0069 (13) |
C11 | 0.0257 (16) | 0.0245 (14) | 0.0367 (17) | 0.0046 (12) | 0.0086 (13) | 0.0016 (12) |
C12 | 0.0279 (16) | 0.0296 (14) | 0.0255 (14) | −0.0026 (12) | 0.0018 (12) | −0.0009 (12) |
C13 | 0.0274 (16) | 0.0257 (14) | 0.0256 (14) | −0.0014 (12) | 0.0030 (12) | −0.0020 (12) |
C14 | 0.0246 (16) | 0.0282 (14) | 0.0232 (14) | −0.0010 (12) | 0.0027 (11) | 0.0029 (12) |
C15 | 0.0295 (17) | 0.0419 (17) | 0.0211 (14) | −0.0017 (14) | −0.0034 (12) | 0.0017 (13) |
C16 | 0.0295 (18) | 0.0401 (17) | 0.0302 (16) | −0.0113 (14) | 0.0029 (13) | −0.0053 (14) |
C17 | 0.0333 (18) | 0.0278 (14) | 0.0311 (15) | −0.0078 (13) | 0.0085 (13) | −0.0013 (13) |
C18 | 0.0273 (16) | 0.0284 (14) | 0.0284 (15) | 0.0007 (12) | 0.0020 (13) | 0.0029 (12) |
F2 | 0.0227 (9) | 0.0351 (9) | 0.0363 (9) | 0.0026 (7) | 0.0013 (7) | 0.0007 (7) |
F3 | 0.0419 (11) | 0.0343 (9) | 0.0388 (10) | 0.0170 (8) | 0.0028 (8) | 0.0027 (8) |
F4 | 0.0597 (13) | 0.0233 (8) | 0.0337 (9) | −0.0009 (8) | −0.0043 (8) | 0.0011 (7) |
F5 | 0.0383 (11) | 0.0357 (9) | 0.0401 (10) | −0.0148 (8) | −0.0026 (8) | 0.0054 (8) |
F6 | 0.0230 (9) | 0.0333 (9) | 0.0366 (9) | −0.0008 (7) | −0.0003 (7) | 0.0028 (7) |
F8 | 0.0306 (9) | 0.0268 (8) | 0.0320 (9) | 0.0021 (7) | −0.0031 (7) | −0.0046 (7) |
F9 | 0.0268 (10) | 0.0485 (10) | 0.0349 (9) | −0.0004 (8) | −0.0066 (8) | −0.0040 (8) |
F10 | 0.0348 (11) | 0.0503 (11) | 0.0479 (11) | 0.0174 (9) | −0.0072 (9) | 0.0041 (9) |
F11 | 0.0371 (11) | 0.0273 (8) | 0.0551 (11) | 0.0096 (8) | 0.0035 (9) | −0.0028 (8) |
F12 | 0.0322 (10) | 0.0288 (8) | 0.0370 (10) | −0.0019 (7) | −0.0023 (8) | −0.0069 (7) |
F14 | 0.0314 (10) | 0.0284 (8) | 0.0290 (8) | −0.0020 (7) | −0.0035 (7) | 0.0061 (7) |
F15 | 0.0368 (11) | 0.0582 (12) | 0.0329 (9) | −0.0098 (9) | −0.0121 (8) | 0.0083 (9) |
F16 | 0.0436 (12) | 0.0586 (12) | 0.0417 (10) | −0.0262 (10) | −0.0081 (9) | −0.0027 (9) |
F17 | 0.0451 (12) | 0.0301 (9) | 0.0494 (11) | −0.0130 (8) | 0.0052 (9) | 0.0013 (8) |
F18 | 0.0318 (10) | 0.0307 (9) | 0.0402 (10) | −0.0011 (7) | −0.0017 (8) | 0.0103 (8) |
P1 | 0.0218 (4) | 0.0236 (4) | 0.0238 (4) | −0.0005 (3) | −0.0001 (3) | 0.0009 (3) |
Cl1 | 0.0278 (4) | 0.0336 (4) | 0.0251 (4) | −0.0002 (3) | 0.0038 (3) | −0.0011 (3) |
Cl2 | 0.0264 (4) | 0.0358 (4) | 0.0239 (3) | 0.0008 (3) | 0.0031 (3) | 0.0018 (3) |
C1—C2 | 1.394 (4) | C10—F10 | 1.332 (3) |
C1—C6 | 1.396 (4) | C10—C11 | 1.368 (4) |
C1—P1 | 1.820 (3) | C11—F11 | 1.339 (3) |
C2—F2 | 1.341 (3) | C11—C12 | 1.375 (4) |
C2—C3 | 1.373 (4) | C12—F12 | 1.346 (3) |
C3—F3 | 1.349 (3) | C13—C18 | 1.387 (4) |
C3—C4 | 1.373 (4) | C13—C14 | 1.396 (4) |
C4—F4 | 1.329 (3) | C13—P1 | 1.821 (3) |
C4—C5 | 1.381 (4) | C14—F14 | 1.342 (3) |
C5—F5 | 1.340 (3) | C14—C15 | 1.368 (4) |
C5—C6 | 1.372 (4) | C15—F15 | 1.340 (3) |
C6—F6 | 1.341 (3) | C15—C16 | 1.381 (4) |
C7—C8 | 1.390 (4) | C16—F16 | 1.336 (3) |
C7—C12 | 1.393 (4) | C16—C17 | 1.374 (4) |
C7—P1 | 1.819 (3) | C17—F17 | 1.339 (3) |
C8—F8 | 1.340 (3) | C17—C18 | 1.383 (4) |
C8—C9 | 1.379 (4) | C18—F18 | 1.340 (3) |
C9—F9 | 1.341 (3) | P1—Cl2 | 2.1995 (10) |
C9—C10 | 1.377 (4) | P1—Cl1 | 2.2005 (10) |
C2—C1—C6 | 116.3 (3) | C10—C11—C12 | 120.0 (2) |
C2—C1—P1 | 122.5 (2) | F12—C12—C11 | 118.2 (2) |
C6—C1—P1 | 121.2 (2) | F12—C12—C7 | 120.1 (3) |
F2—C2—C3 | 117.6 (3) | C11—C12—C7 | 121.7 (3) |
F2—C2—C1 | 120.9 (2) | C18—C13—C14 | 117.1 (3) |
C3—C2—C1 | 121.4 (3) | C18—C13—P1 | 122.1 (2) |
F3—C3—C2 | 119.4 (3) | C14—C13—P1 | 120.8 (2) |
F3—C3—C4 | 119.7 (3) | F14—C14—C15 | 118.1 (2) |
C2—C3—C4 | 120.9 (3) | F14—C14—C13 | 120.3 (2) |
F4—C4—C3 | 120.6 (3) | C15—C14—C13 | 121.6 (3) |
F4—C4—C5 | 120.4 (3) | F15—C15—C14 | 120.0 (3) |
C3—C4—C5 | 119.1 (3) | F15—C15—C16 | 120.0 (3) |
F5—C5—C6 | 120.0 (3) | C14—C15—C16 | 120.0 (3) |
F5—C5—C4 | 120.2 (2) | F16—C16—C17 | 120.4 (3) |
C6—C5—C4 | 119.8 (3) | F16—C16—C15 | 119.9 (3) |
F6—C6—C5 | 117.1 (3) | C17—C16—C15 | 119.7 (3) |
F6—C6—C1 | 120.5 (2) | F17—C17—C16 | 119.8 (3) |
C5—C6—C1 | 122.4 (3) | F17—C17—C18 | 120.2 (3) |
C8—C7—C12 | 116.7 (3) | C16—C17—C18 | 119.9 (3) |
C8—C7—P1 | 120.8 (2) | F18—C18—C17 | 117.9 (2) |
C12—C7—P1 | 122.5 (2) | F18—C18—C13 | 120.6 (3) |
F8—C8—C9 | 117.5 (2) | C17—C18—C13 | 121.4 (3) |
F8—C8—C7 | 120.7 (3) | C7—P1—C1 | 118.64 (13) |
C9—C8—C7 | 121.8 (3) | C7—P1—C13 | 121.49 (13) |
F9—C9—C10 | 119.9 (3) | C1—P1—C13 | 119.86 (13) |
F9—C9—C8 | 120.6 (2) | C7—P1—Cl2 | 90.26 (9) |
C10—C9—C8 | 119.6 (3) | C1—P1—Cl2 | 90.37 (9) |
F10—C10—C11 | 120.6 (3) | C13—P1—Cl2 | 89.51 (9) |
F10—C10—C9 | 119.5 (3) | C7—P1—Cl1 | 90.12 (9) |
C11—C10—C9 | 119.9 (3) | C1—P1—Cl1 | 90.01 (9) |
F11—C11—C10 | 120.2 (3) | C13—P1—Cl1 | 89.74 (9) |
F11—C11—C12 | 119.8 (3) | Cl2—P1—Cl1 | 179.25 (5) |
C6—C1—C2—F2 | 178.8 (2) | C18—C13—C14—F14 | 179.1 (2) |
P1—C1—C2—F2 | −2.9 (4) | P1—C13—C14—F14 | −1.9 (4) |
C6—C1—C2—C3 | −2.9 (4) | C18—C13—C14—C15 | −1.9 (4) |
P1—C1—C2—C3 | 175.3 (2) | P1—C13—C14—C15 | 177.1 (2) |
F2—C2—C3—F3 | 1.6 (4) | F14—C14—C15—F15 | 2.9 (4) |
C1—C2—C3—F3 | −176.7 (2) | C13—C14—C15—F15 | −176.1 (3) |
F2—C2—C3—C4 | −177.1 (3) | F14—C14—C15—C16 | −177.2 (3) |
C1—C2—C3—C4 | 4.6 (4) | C13—C14—C15—C16 | 3.8 (4) |
F3—C3—C4—F4 | −1.2 (4) | F15—C15—C16—F16 | −2.2 (4) |
C2—C3—C4—F4 | 177.6 (2) | C14—C15—C16—F16 | 177.9 (3) |
F3—C3—C4—C5 | 179.4 (2) | F15—C15—C16—C17 | 177.6 (3) |
C2—C3—C4—C5 | −1.9 (4) | C14—C15—C16—C17 | −2.3 (4) |
F4—C4—C5—F5 | −1.5 (4) | F16—C16—C17—F17 | −1.5 (4) |
C3—C4—C5—F5 | 178.0 (3) | C15—C16—C17—F17 | 178.7 (3) |
F4—C4—C5—C6 | 178.3 (2) | F16—C16—C17—C18 | 178.8 (3) |
C3—C4—C5—C6 | −2.3 (4) | C15—C16—C17—C18 | −1.0 (4) |
F5—C5—C6—F6 | 1.8 (4) | F17—C17—C18—F18 | 2.5 (4) |
C4—C5—C6—F6 | −178.0 (2) | C16—C17—C18—F18 | −177.9 (3) |
F5—C5—C6—C1 | −176.3 (3) | F17—C17—C18—C13 | −176.8 (3) |
C4—C5—C6—C1 | 3.9 (4) | C16—C17—C18—C13 | 2.9 (4) |
C2—C1—C6—F6 | −179.3 (2) | C14—C13—C18—F18 | 179.3 (2) |
P1—C1—C6—F6 | 2.4 (4) | P1—C13—C18—F18 | 0.3 (4) |
C2—C1—C6—C5 | −1.3 (4) | C14—C13—C18—C17 | −1.4 (4) |
P1—C1—C6—C5 | −179.5 (2) | P1—C13—C18—C17 | 179.6 (2) |
C12—C7—C8—F8 | 178.9 (2) | C8—C7—P1—C1 | −28.9 (3) |
P1—C7—C8—F8 | −3.1 (4) | C12—C7—P1—C1 | 149.0 (2) |
C12—C7—C8—C9 | −2.6 (4) | C8—C7—P1—C13 | 151.3 (2) |
P1—C7—C8—C9 | 175.4 (2) | C12—C7—P1—C13 | −30.9 (3) |
F8—C8—C9—F9 | 3.2 (4) | C8—C7—P1—Cl2 | 61.7 (2) |
C7—C8—C9—F9 | −175.4 (2) | C12—C7—P1—Cl2 | −120.5 (2) |
F8—C8—C9—C10 | −176.5 (2) | C8—C7—P1—Cl1 | −118.9 (2) |
C7—C8—C9—C10 | 4.9 (4) | C12—C7—P1—Cl1 | 58.9 (2) |
F9—C9—C10—F10 | −1.3 (4) | C2—C1—P1—C7 | 150.5 (2) |
C8—C9—C10—F10 | 178.4 (2) | C6—C1—P1—C7 | −31.3 (3) |
F9—C9—C10—C11 | 177.6 (3) | C2—C1—P1—C13 | −29.7 (3) |
C8—C9—C10—C11 | −2.7 (4) | C6—C1—P1—C13 | 148.5 (2) |
F10—C10—C11—F11 | −2.2 (4) | C2—C1—P1—Cl2 | 60.0 (2) |
C9—C10—C11—F11 | 178.9 (2) | C6—C1—P1—Cl2 | −121.9 (2) |
F10—C10—C11—C12 | 177.1 (3) | C2—C1—P1—Cl1 | −119.4 (2) |
C9—C10—C11—C12 | −1.7 (4) | C6—C1—P1—Cl1 | 58.8 (2) |
F11—C11—C12—F12 | 2.7 (4) | C18—C13—P1—C7 | −27.6 (3) |
C10—C11—C12—F12 | −176.7 (3) | C14—C13—P1—C7 | 153.4 (2) |
F11—C11—C12—C7 | −176.5 (3) | C18—C13—P1—C1 | 152.5 (2) |
C10—C11—C12—C7 | 4.1 (4) | C14—C13—P1—C1 | −26.4 (3) |
C8—C7—C12—F12 | 178.9 (2) | C18—C13—P1—Cl2 | 62.4 (2) |
P1—C7—C12—F12 | 1.0 (4) | C14—C13—P1—Cl2 | −116.6 (2) |
C8—C7—C12—C11 | −2.0 (4) | C18—C13—P1—Cl1 | −117.6 (2) |
P1—C7—C12—C11 | −179.9 (2) | C14—C13—P1—Cl1 | 63.4 (2) |
Acknowledgements
We are grateful to the Engineering and Physical Sciences Research Council (EPSRC) for a research studentship to RTAH, and also for support of the UMIST X-ray facility (Research Initiative Grant).
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Beveridge, A. D., Harris, G. S. & Inglis, F. (1966). J. Chem. Soc. A, pp. 520–528. CrossRef Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dillon, K. B., Lynch, R. J., Reeve, R. N. & Waddington, T. C. (1976). J. Chem. Soc. Dalton Trans. pp. 1243–1248. CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Godfrey, S. M., McAuliffe, C. A., Mushtaq, I., Pritchard, R. G. & Sheffield, J. M. (1998). J. Chem. Soc. Dalton Trans. pp. 3815–3818. CSD CrossRef Google Scholar
Godfrey, S. M., McAuliffe, C. A., Pritchard, R. G. & Sheffield, J. M. (1996). Chem. Commun. pp. 2521–2522. CSD CrossRef Google Scholar
Godfrey, S. M., McAuliffe, C. A., Pritchard, R. G. & Sheffield, J. M. (1998). Chem. Commun. pp. 921–922. CSD CrossRef Google Scholar
Godfrey, S. M., McAuliffe, C. A., Pritchard, R. G., Sheffield, J. M. & Thompson, G. M. (1997). J. Chem. Soc. Dalton Trans. pp. 4823–4827. CSD CrossRef Google Scholar
Harris, G. S. & Ali, M. F. (1968). Tetrahedron Lett. 9, 37–38. CrossRef Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York, Academic Press. Google Scholar
Ruthe, F., du Mont, W.-W. & Jones, P. G. (1997). Chem. Commun. pp. 1947–1948. CSD CrossRef Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Wiley, G. A. & Stine, W. R. (1967). Tetrahedron Lett. 8, 2321–2324. CrossRef Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.