inorganic compounds
[Y(HSeO3)(SeO3)(H2O)]·H2O
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
The title compound, aqua(hydrogen trioxoselenato)(trioxoselenato)yttrium(III) monohydrate, which is isostructural with its samarium(III) and neodymium(III) analogues, contains YO8, SeO3 and HSeO3 coordination polyhedra, which fuse together by corner- and edge-sharing, resulting in a layered structure. A network of O—H⋯O hydrogen bonds helps to consolidate the crystal packing.
Comment
The title compound, (I) (Fig. 1), is isostructural with its samarium (Koskenlinna et al., 1994) and neodymium (de Pedro et al., 1994) analogues.
Compound (I) contains both (SeO3)2− selenite and (HSeO3)− hydrogen selenite anions. The unobserved lone pair of electrons of the SeIV species gives rise to the characteristic pyramidal shape of these oxo-anions. As seen previously (Koskenlinna et al., 1994), the Se–OH vertex [1.745 (4) Å] in (I) is longer than the Se—O bonds [mean = 1.690 (15) Å] (Table 1). The Se atoms are displaced from the planes of their three attached oxygen atoms by 0.804 (2) and 0.814 (2) Å for Se1 and Se2, respectively. In terms of bond angles, the angle of the edge-sharing (to Y) O1–Se1–O2 grouping is significantly more acute [92.37 (16)°] than the other O–Se–O sets (mean = 100.4°).
The yttrium cation in (I) is surrounded by eight oxygen atoms, one of which (O7) is part of a water molecule, with a fairly narrow spread of distances [2.258 (3)–2.419 (3) Å; mean = 2.36 (5) Å]. The next nearest O atom has a distance of Y—O4i = 3.872 (3) Å [symmetry code: (i) 1 − x, + y, − z]. The YO8 grouping could be described as a highly distorted square antiprism (Fig. 2) or possibly as irregular. Atoms O1, O2, O4 and O7 conform well to a square [r.m.s. deviation from the mean plane = 0.041 Å; O1⋯O4 = 3.915 (5) Å and O2⋯O7 = 3.988 (5) Å], whereas the nominal O1iii, O2ii, O3i and O5ii (see Table 1 for symmetry codes) square is grossly distorted [r.m.s. deviation from the mean plane = 0.399 Å; O1iii⋯O2ii = 4.440 (5) Å and O3i⋯O5ii = 3.339 (5) Å]. The Y atom is displaced by 1.3249 (18) Å from the first plane, and 1.1900 (18) Å from the second. The interplanar dihedral angle is 1.8 (2)°. Atoms O3, O4 and O5 are bicoordinate to Y and Se (mean Y—O—Se = 124.2°), whilst O1 and O2 are tricoordinate to one Se and two Y atoms (bond angle sums = 343.5 and 349.0°, respectively). O6 is part of a terminal Se–OH vertex and O7 and O8 are parts of water molecules.
The polyhedral connectivity in (I) (Fig. 3) involves chains of YO8 groups sharing edges, via O1 + O2ii and O1iii + O2 pairs, to result in chains propagating along [010]. The relatively acute O1—Y—O2ii and O1iii—Y—O2 bond angles of 67.81 (12) and 68.02 (11)° respectively, correlate with this polyhedron-fusing role. The Y⋯Yii separation within the chain is 3.9668 (5) Å. The Y/O chains are cross-linked in the [100] direction by the Se1O3 groups, involving the edge-sharing motif noted above. Finally, the (HSe2O3)− groups decorate and reinforce the [010] Y/O chains, resulting in a structure with layered character.
The hydrogen-bonding scheme in (I) involves all the H atoms participating in O—H⋯O links (Table 2). The Y-bonded water molecule (O7) makes a hydrogen bond to an adjacent YO8 group in the same sheet (via H2) and to the inter-sheet water molecule (via H1). The hydrogen selenite anion makes the only direct inter-sheet hydrogen bond (Fig. 4). As well as accepting an hydrogen bond, the non-coordinated water molecule (O8) makes two hydrogen bonds to the same adjacent sheet.
The average metal–oxygen distances in these isostructural phases are Y—O = 2.36 (5) Å, Sm—O = 2.42 Å and Nd—O = 2.45 Å. This pattern is exactly consistent with the differences in the eight-coordinate atomic radii (Shannon, 1976) of Y3+ (1.019 Å), Sm3+ (1.079 Å) and Nd3+ (1.109 Å).
Experimental
A mixture of YCl3·6H2O (0.83 g, 2.74 mmol), SeO2 (0.5 g, 4.5 mmol) and water (10 ml) was sealed in a 23 ml Teflon-lined autoclave and heated to 433 K for three days, followed by cooling to room temperature over a few hours. Product recovery by vacuum filtration and rinsing with water and acetone led to 0.173 g (16.6% based on Y) of tiny colourless bars and rods of (I).
Crystal data
|
The crystal studied was an Uiso(H) = 1.2Ueq (carrier).
with volume fractions of 0.354 (11):0.646 (11) for the component reported in the tables and its enantiomer, respectively. All the H atoms were located in difference maps and refined as riding in their as-found relative positions, withData collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536806023051/wm2020sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806023051/wm2020Isup2.hkl
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 2005); software used to prepare material for publication: SHELXL97.[Y(HSeO3)(SeO3)(H2O)]·H2O | F(000) = 704 |
Mr = 379.87 | Dx = 3.447 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1002 reflections |
a = 6.5485 (3) Å | θ = 2.9–27.5° |
b = 6.8987 (2) Å | µ = 17.92 mm−1 |
c = 16.2022 (7) Å | T = 120 K |
V = 731.95 (5) Å3 | Rod, colourless |
Z = 4 | 0.14 × 0.03 × 0.02 mm |
Nonius KappaCCD diffractometer | 1667 independent reflections |
Radiation source: fine-focus sealed tube | 1523 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
ω and φ scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −8→8 |
Tmin = 0.188, Tmax = 0.716 | k = −8→8 |
6897 measured reflections | l = −21→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.053 | w = 1/[σ2(Fo2) + 0.7811P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1667 reflections | Δρmax = 0.63 e Å−3 |
101 parameters | Δρmin = −0.72 e Å−3 |
12 restraints | Absolute structure: Flack (1983), 664 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.646 (11) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Y | 0.37562 (8) | 0.61129 (7) | 0.28358 (3) | 0.00582 (13) | |
Se1 | 0.84646 (8) | 0.61632 (7) | 0.22729 (3) | 0.00611 (12) | |
Se2 | 0.63756 (8) | 0.31562 (7) | 0.42030 (3) | 0.00760 (13) | |
O1 | 0.6887 (5) | 0.7917 (5) | 0.2645 (2) | 0.0068 (8) | |
O2 | 0.6860 (5) | 0.4352 (5) | 0.2586 (2) | 0.0086 (8) | |
O3 | 1.0328 (5) | 0.6073 (6) | 0.2985 (2) | 0.0088 (8) | |
O4 | 0.4060 (5) | 0.4055 (5) | 0.3998 (2) | 0.0090 (8) | |
O5 | 0.6446 (6) | 0.1143 (5) | 0.3611 (2) | 0.0095 (7) | |
O6 | 0.5716 (5) | 0.2051 (6) | 0.5135 (2) | 0.0120 (9) | |
H1 | 0.6766 | 0.1951 | 0.5407 | 0.014* | |
O7 | 0.3831 (6) | 0.8068 (5) | 0.4020 (2) | 0.0130 (9) | |
H2 | 0.4918 | 0.8906 | 0.3964 | 0.016* | |
H3 | 0.3722 | 0.7899 | 0.4544 | 0.016* | |
O8 | 0.3927 (7) | 0.6896 (6) | 0.5574 (2) | 0.0251 (11) | |
H4 | 0.4394 | 0.7574 | 0.6041 | 0.030* | |
H5 | 0.3147 | 0.5941 | 0.5826 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Y | 0.0050 (2) | 0.0058 (3) | 0.0067 (3) | 0.0001 (2) | −0.0004 (2) | 0.0005 (2) |
Se1 | 0.0052 (2) | 0.0064 (3) | 0.0067 (3) | −0.0002 (2) | −0.0001 (2) | −0.0003 (2) |
Se2 | 0.0089 (3) | 0.0070 (3) | 0.0069 (3) | 0.0004 (2) | −0.0007 (3) | 0.0000 (2) |
O1 | 0.0053 (15) | 0.0052 (16) | 0.0099 (17) | −0.0006 (13) | 0.0047 (14) | −0.0030 (14) |
O2 | 0.0063 (18) | 0.009 (2) | 0.011 (2) | −0.0021 (15) | −0.0018 (15) | 0.0033 (14) |
O3 | 0.0070 (16) | 0.0138 (18) | 0.0055 (17) | −0.0006 (14) | −0.0019 (13) | −0.0008 (15) |
O4 | 0.0093 (19) | 0.0096 (19) | 0.0080 (19) | 0.0058 (16) | −0.0002 (16) | 0.0036 (16) |
O5 | 0.0153 (19) | 0.0048 (17) | 0.0083 (18) | 0.0042 (19) | −0.0025 (18) | −0.0017 (14) |
O6 | 0.012 (2) | 0.016 (2) | 0.008 (2) | 0.0011 (18) | 0.0005 (17) | 0.0051 (17) |
O7 | 0.018 (2) | 0.0153 (19) | 0.006 (2) | −0.0059 (19) | 0.0037 (18) | −0.0006 (16) |
O8 | 0.036 (3) | 0.033 (2) | 0.007 (2) | −0.022 (2) | −0.004 (2) | −0.0003 (18) |
Y—O3i | 2.258 (3) | Se2—O4 | 1.672 (3) |
Y—O7 | 2.346 (3) | Se2—O5 | 1.689 (3) |
Y—O5ii | 2.347 (3) | Se2—O6 | 1.745 (4) |
Y—O4 | 2.367 (3) | O1—Yii | 2.376 (4) |
Y—O2ii | 2.372 (3) | O2—Yiii | 2.372 (3) |
Y—O1iii | 2.376 (4) | O3—Yiv | 2.258 (3) |
Y—O2 | 2.402 (4) | O5—Yiii | 2.347 (3) |
Y—O1 | 2.419 (3) | O6—H1 | 0.8198 |
Y—Yii | 3.9668 (5) | O7—H2 | 0.9222 |
Y—Yiii | 3.9668 (5) | O7—H3 | 0.8604 |
Se1—O3 | 1.680 (3) | O8—H4 | 0.9403 |
Se1—O1 | 1.701 (3) | O8—H5 | 0.9289 |
Se1—O2 | 1.710 (3) | ||
O3i—Y—O7 | 86.57 (13) | O2ii—Y—O1 | 67.81 (12) |
O3i—Y—O5ii | 92.92 (13) | O1iii—Y—O1 | 125.88 (8) |
O7—Y—O5ii | 144.37 (11) | O2—Y—O1 | 61.40 (11) |
O3i—Y—O4 | 89.49 (12) | Yii—Y—Yiii | 120.81 (3) |
O7—Y—O4 | 72.08 (12) | O3—Se1—O1 | 102.95 (17) |
O5ii—Y—O4 | 143.55 (11) | O3—Se1—O2 | 102.44 (17) |
O3i—Y—O2ii | 82.73 (13) | O1—Se1—O2 | 92.37 (16) |
O7—Y—O2ii | 72.40 (12) | O4—Se2—O5 | 102.52 (17) |
O5ii—Y—O2ii | 72.20 (11) | O4—Se2—O6 | 96.28 (17) |
O4—Y—O2ii | 144.00 (12) | O5—Se2—O6 | 97.98 (18) |
O3i—Y—O1iii | 81.21 (13) | Se1—O1—Yii | 130.66 (18) |
O7—Y—O1iii | 143.63 (12) | Se1—O1—Y | 101.19 (15) |
O5ii—Y—O1iii | 70.78 (12) | Yii—O1—Y | 111.66 (13) |
O4—Y—O1iii | 73.68 (12) | Se1—O2—Yiii | 135.03 (18) |
O2ii—Y—O1iii | 138.57 (12) | Se1—O2—Y | 101.58 (15) |
O3i—Y—O2 | 148.54 (13) | Yiii—O2—Y | 112.41 (13) |
O7—Y—O2 | 114.26 (13) | Se1—O3—Yiv | 130.39 (19) |
O5ii—Y—O2 | 83.34 (12) | Se2—O4—Y | 117.18 (17) |
O4—Y—O2 | 76.08 (11) | Se2—O5—Yiii | 124.96 (17) |
O2ii—Y—O2 | 124.88 (9) | Se2—O6—H1 | 107.1 |
O1iii—Y—O2 | 68.02 (11) | Y—O7—H2 | 107.2 |
O3i—Y—O1 | 149.65 (13) | Y—O7—H3 | 136.7 |
O7—Y—O1 | 77.95 (12) | H2—O7—H3 | 104.3 |
O5ii—Y—O1 | 85.16 (12) | H4—O8—H5 | 100.2 |
O4—Y—O1 | 109.83 (12) | ||
O3—Se1—O1—Yii | 109.1 (2) | O4—Y—O2—Se1 | −134.90 (16) |
O2—Se1—O1—Yii | −147.5 (2) | O2ii—Y—O2—Se1 | 12.59 (12) |
Y—Se1—O1—Yii | −131.7 (3) | O1iii—Y—O2—Se1 | 147.35 (18) |
O3—Se1—O1—Y | −119.12 (16) | O1—Y—O2—Se1 | −12.68 (13) |
O2—Se1—O1—Y | −15.78 (16) | Yii—Y—O2—Se1 | 0.83 (13) |
O3i—Y—O1—Se1 | −159.82 (18) | Yiii—Y—O2—Se1 | 150.0 (2) |
O7—Y—O1—Se1 | 139.23 (18) | O3i—Y—O2—Yiii | 10.2 (3) |
O5ii—Y—O1—Se1 | −72.32 (16) | O7—Y—O2—Yiii | 137.81 (14) |
O4—Y—O1—Se1 | 73.53 (17) | O5ii—Y—O2—Yiii | −74.53 (14) |
O2ii—Y—O1—Se1 | −145.06 (19) | O4—Y—O2—Yiii | 75.15 (14) |
O1iii—Y—O1—Se1 | −10.28 (14) | O2ii—Y—O2—Yiii | −137.36 (18) |
O2—Y—O1—Se1 | 12.73 (13) | O1iii—Y—O2—Yiii | −2.60 (13) |
Yii—Y—O1—Se1 | −142.5 (2) | O1—Y—O2—Yiii | −162.63 (19) |
Yiii—Y—O1—Se1 | 3.21 (15) | Se1—Y—O2—Yiii | −150.0 (2) |
O3i—Y—O1—Yii | −17.3 (3) | Yii—Y—O2—Yiii | −149.12 (12) |
O7—Y—O1—Yii | −78.28 (15) | O1—Se1—O3—Yiv | −131.1 (3) |
O5ii—Y—O1—Yii | 70.17 (14) | O2—Se1—O3—Yiv | 133.5 (3) |
O4—Y—O1—Yii | −143.99 (14) | Y—Se1—O3—Yiv | −179.21 (17) |
O2ii—Y—O1—Yii | −2.57 (12) | O5—Se2—O4—Y | −86.34 (19) |
O1iii—Y—O1—Yii | 132.20 (18) | O6—Se2—O4—Y | 174.02 (19) |
O2—Y—O1—Yii | 155.21 (19) | O3i—Y—O4—Se2 | 171.68 (19) |
O3—Se1—O2—Yiii | −101.2 (3) | O7—Y—O4—Se2 | −101.8 (2) |
O1—Se1—O2—Yiii | 155.0 (2) | O5ii—Y—O4—Se2 | 77.5 (3) |
Y—Se1—O2—Yiii | 139.1 (3) | O2ii—Y—O4—Se2 | −111.5 (2) |
O3—Se1—O2—Y | 119.73 (15) | O1iii—Y—O4—Se2 | 90.69 (19) |
O1—Se1—O2—Y | 15.91 (16) | O2—Y—O4—Se2 | 19.92 (18) |
O3i—Y—O2—Se1 | 160.10 (18) | O1—Y—O4—Se2 | −32.2 (2) |
O7—Y—O2—Se1 | −72.24 (17) | O4—Se2—O5—Yiii | 62.4 (2) |
O5ii—Y—O2—Se1 | 75.42 (15) | O6—Se2—O5—Yiii | 160.7 (2) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H1···O4v | 0.82 | 1.92 | 2.712 (5) | 164 |
O7—H2···O5vi | 0.92 | 1.93 | 2.806 (5) | 159 |
O7—H3···O8 | 0.86 | 1.82 | 2.644 (5) | 163 |
O8—H4···O3vii | 0.94 | 1.93 | 2.874 (5) | 179 |
O8—H5···O5viii | 0.93 | 2.03 | 2.964 (5) | 179 |
Symmetry codes: (v) x+1/2, −y+1/2, −z+1; (vi) x, y+1, z; (vii) x−1/2, −y+3/2, −z+1; (viii) x−1/2, −y+1/2, −z+1. |
Acknowledgements
We thank that EPSRC National Crystallography Service (University of Southampton) for the data collection.
References
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (1999). SADABS. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Koskenlinna, M., Mutikainen, I., Leskelä, M. & Niinistö, L. (1994). Acta Cryst. C50, 1384–1386. CrossRef CAS IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pedro, M. de, Enjalbert, R., Castro, A., Trombe, C. & Galy, J. (1994). J. Solid State Chem. 108, 87–93. CrossRef Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Shape Software (2005). ATOMS. Version 6.2. Shape Software, 525 Hidden Valley Road, Kingsport, Tennessee, USA. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.