inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[Y(HSeO3)(SeO3)(H2O)]·H2O

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 13 June 2006; accepted 15 June 2006; online 21 June 2006)

The title compound, aqua­(hydrogen trioxoselenato)(trioxo­sel­enato)yttrium(III) monohydrate, which is isostructural with its samarium(III) and neodymium(III) analogues, contains YO8, SeO3 and HSeO3 coordination polyhedra, which fuse together by corner- and edge-sharing, resulting in a layered structure. A network of O—H⋯O hydrogen bonds helps to consolidate the crystal packing.

Comment

The title compound, (I) (Fig. 1[link]), is isostructural with its samarium (Koskenlinna et al., 1994[Koskenlinna, M., Mutikainen, I., Leskelä, M. & Niinistö, L. (1994). Acta Cryst. C50, 1384-1386.]) and neodymium (de Pedro et al., 1994[Pedro, M. de, Enjalbert, R., Castro, A., Trombe, C. & Galy, J. (1994). J. Solid State Chem. 108, 87-93.]) analogues.

Compound (I) contains both (SeO3)2− selenite and (HSeO3) hydrogen selenite anions. The unobserved lone pair of electrons of the SeIV species gives rise to the characteristic pyramidal shape of these oxo-anions. As seen previously (Koskenlinna et al., 1994[Koskenlinna, M., Mutikainen, I., Leskelä, M. & Niinistö, L. (1994). Acta Cryst. C50, 1384-1386.]), the Se–OH vertex [1.745 (4) Å] in (I) is longer than the Se—O bonds [mean = 1.690 (15) Å] (Table 1[link]). The Se atoms are displaced from the planes of their three attached oxygen atoms by 0.804 (2) and 0.814 (2) Å for Se1 and Se2, respectively. In terms of bond angles, the angle of the edge-sharing (to Y) O1–Se1–O2 grouping is significantly more acute [92.37 (16)°] than the other O–Se–O sets (mean = 100.4°).

The yttrium cation in (I) is surrounded by eight oxygen atoms, one of which (O7) is part of a water mol­ecule, with a fairly narrow spread of distances [2.258 (3)–2.419 (3) Å; mean = 2.36 (5) Å]. The next nearest O atom has a distance of Y—O4i = 3.872 (3) Å [symmetry code: (i) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z]. The YO8 grouping could be described as a highly distorted square anti­prism (Fig. 2[link]) or possibly as irregular. Atoms O1, O2, O4 and O7 conform well to a square [r.m.s. deviation from the mean plane = 0.041 Å; O1⋯O4 = 3.915 (5) Å and O2⋯O7 = 3.988 (5) Å], whereas the nominal O1iii, O2ii, O3i and O5ii (see Table 1[link] for symmetry codes) square is grossly distorted [r.m.s. deviation from the mean plane = 0.399 Å; O1iii⋯O2ii = 4.440 (5) Å and O3i⋯O5ii = 3.339 (5) Å]. The Y atom is displaced by 1.3249 (18) Å from the first plane, and 1.1900 (18) Å from the second. The interplanar dihedral angle is 1.8 (2)°. Atoms O3, O4 and O5 are bicoordinate to Y and Se (mean Y—O—Se = 124.2°), whilst O1 and O2 are tricoordinate to one Se and two Y atoms (bond angle sums = 343.5 and 349.0°, respectively). O6 is part of a terminal Se–OH vertex and O7 and O8 are parts of water mol­ecules.

The polyhedral connectivity in (I) (Fig. 3[link]) involves chains of YO8 groups sharing edges, via O1 + O2ii and O1iii + O2 pairs, to result in chains propagating along [010]. The relatively acute O1—Y—O2ii and O1iii—Y—O2 bond angles of 67.81 (12) and 68.02 (11)° respectively, correlate with this polyhedron-fusing role. The Y⋯Yii separation within the chain is 3.9668 (5) Å. The Y/O chains are cross-linked in the [100] direction by the Se1O3 groups, involving the edge-sharing motif noted above. Finally, the (HSe2O3) groups decorate and reinforce the [010] Y/O chains, resulting in a structure with layered character.

The hydrogen-bonding scheme in (I) involves all the H atoms participating in O—H⋯O links (Table 2[link]). The Y-bonded water mol­ecule (O7) makes a hydrogen bond to an adjacent YO8 group in the same sheet (via H2) and to the inter-sheet water mol­ecule (via H1). The hydrogen selenite anion makes the only direct inter-sheet hydrogen bond (Fig. 4[link]). As well as accepting an hydrogen bond, the non-coordinated water mol­ecule (O8) makes two hydrogen bonds to the same adjacent sheet.

The average metal–oxygen distances in these isostructural phases are Y—O = 2.36 (5) Å, Sm—O = 2.42 Å and Nd—O = 2.45 Å. This pattern is exactly consistent with the differences in the eight-coordinate atomic radii (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) of Y3+ (1.019 Å), Sm3+ (1.079 Å) and Nd3+ (1.109 Å).

[Figure 1]
Figure 1
The asymmetric unit of (I) expanded to show the Y atom coordination (70% displacement ellipsoids; spheres of arbitrary radius for the H atoms). Symmetry codes as in Table 1[link].
[Figure 2]
Figure 2
Detail of (I) showing the Y atom coordination with O⋯O contacts < 3.3 Å shown as lines (50% displacement ellipsoids). Symmetry codes as in Table 1[link].
[Figure 3]
Figure 3
View down [001] of a layer in (I) in polyhedral representation, showing the [010] chains of edge-sharing YO8 groups cross-linked by the Se1 atoms. Colour key: YO8 groups green, Se atoms blue, O atoms red, H atoms grey.
[Figure 4]
Figure 4
The packing in (I), viewed down [010]. Drawing convention as in Fig. 3[link], with the H⋯O portions of the hydrogen bonds highlighted in yellow.

Experimental

A mixture of YCl3·6H2O (0.83 g, 2.74 mmol), SeO2 (0.5 g, 4.5 mmol) and water (10 ml) was sealed in a 23 ml Teflon-lined autoclave and heated to 433 K for three days, followed by cooling to room temperature over a few hours. Product recovery by vacuum filtration and rinsing with water and acetone led to 0.173 g (16.6% based on Y) of tiny colourless bars and rods of (I).

Crystal data
  • [Y(HSeO3)(SeO3)(H2O)]·H2O

  • Mr = 379.87

  • Orthorhombic, P 21 21 21

  • a = 6.5485 (3) Å

  • b = 6.8987 (2) Å

  • c = 16.2022 (7) Å

  • V = 731.95 (5) Å3

  • Z = 4

  • Dx = 3.447 Mg m−3

  • Mo Kα radiation

  • μ = 17.92 mm−1

  • T = 120 (2) K

  • Rod, colourless

  • 0.14 × 0.03 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.188, Tmax = 0.716

  • 6897 measured reflections

  • 1667 independent reflections

  • 1523 reflections with I > 2σ(I)

  • Rint = 0.054

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.053

  • S = 1.05

  • 1667 reflections

  • 101 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + 0.7811P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.72 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 664 Friedel pairs

  • Flack parameter: 0.646 (11)

Table 1
Selected geometric parameters (Å, °)

Y—O3i 2.258 (3)
Y—O7 2.346 (3)
Y—O5ii 2.347 (3)
Y—O4 2.367 (3)
Y—O2ii 2.372 (3)
Y—O1iii 2.376 (4)
Y—O2 2.402 (4)
Y—O1 2.419 (3)
Se1—O3 1.680 (3)
Se1—O1 1.701 (3)
Se1—O2 1.710 (3)
Se2—O4 1.672 (3)
Se2—O5 1.689 (3)
Se2—O6 1.745 (4)
Se1—O1—Yii 130.66 (18)
Se1—O1—Y 101.19 (15)
Yii—O1—Y 111.66 (13)
Se1—O2—Yiii 135.03 (18)
Se1—O2—Y 101.58 (15)
Yiii—O2—Y 112.41 (13)
Se1—O3—Yiv 130.39 (19)
Se2—O4—Y 117.18 (17)
Se2—O5—Yiii 124.96 (17)
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H1⋯O4v 0.82 1.92 2.712 (5) 164
O7—H2⋯O5vi 0.92 1.93 2.806 (5) 159
O7—H3⋯O8 0.86 1.82 2.644 (5) 163
O8—H4⋯O3vii 0.94 1.93 2.874 (5) 179
O8—H5⋯O5viii 0.93 2.03 2.964 (5) 179
Symmetry codes: (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (vi) x, y+1, z; (vii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (viii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

The crystal studied was an inversion twin with volume fractions of 0.354 (11):0.646 (11) for the component reported in the tables and its enanti­omer, respectively. All the H atoms were located in difference maps and refined as riding in their as-found relative positions, with Uiso(H) = 1.2Ueq (carrier).

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and ATOMS (Shape Software, 2005[Shape Software (2005). ATOMS. Version 6.2. Shape Software, 525 Hidden Valley Road, Kingsport, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 2005); software used to prepare material for publication: SHELXL97.

aqua(hydrogen trioxoselenato)(trioxoselenato)yttrium(III) monohydrate top
Crystal data top
[Y(HSeO3)(SeO3)(H2O)]·H2OF(000) = 704
Mr = 379.87Dx = 3.447 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1002 reflections
a = 6.5485 (3) Åθ = 2.9–27.5°
b = 6.8987 (2) ŵ = 17.92 mm1
c = 16.2022 (7) ÅT = 120 K
V = 731.95 (5) Å3Rod, colourless
Z = 40.14 × 0.03 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
1667 independent reflections
Radiation source: fine-focus sealed tube1523 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω and φ scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 88
Tmin = 0.188, Tmax = 0.716k = 88
6897 measured reflectionsl = 2115
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + 0.7811P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1667 reflectionsΔρmax = 0.63 e Å3
101 parametersΔρmin = 0.72 e Å3
12 restraintsAbsolute structure: Flack (1983), 664 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.646 (11)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y0.37562 (8)0.61129 (7)0.28358 (3)0.00582 (13)
Se10.84646 (8)0.61632 (7)0.22729 (3)0.00611 (12)
Se20.63756 (8)0.31562 (7)0.42030 (3)0.00760 (13)
O10.6887 (5)0.7917 (5)0.2645 (2)0.0068 (8)
O20.6860 (5)0.4352 (5)0.2586 (2)0.0086 (8)
O31.0328 (5)0.6073 (6)0.2985 (2)0.0088 (8)
O40.4060 (5)0.4055 (5)0.3998 (2)0.0090 (8)
O50.6446 (6)0.1143 (5)0.3611 (2)0.0095 (7)
O60.5716 (5)0.2051 (6)0.5135 (2)0.0120 (9)
H10.67660.19510.54070.014*
O70.3831 (6)0.8068 (5)0.4020 (2)0.0130 (9)
H20.49180.89060.39640.016*
H30.37220.78990.45440.016*
O80.3927 (7)0.6896 (6)0.5574 (2)0.0251 (11)
H40.43940.75740.60410.030*
H50.31470.59410.58260.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y0.0050 (2)0.0058 (3)0.0067 (3)0.0001 (2)0.0004 (2)0.0005 (2)
Se10.0052 (2)0.0064 (3)0.0067 (3)0.0002 (2)0.0001 (2)0.0003 (2)
Se20.0089 (3)0.0070 (3)0.0069 (3)0.0004 (2)0.0007 (3)0.0000 (2)
O10.0053 (15)0.0052 (16)0.0099 (17)0.0006 (13)0.0047 (14)0.0030 (14)
O20.0063 (18)0.009 (2)0.011 (2)0.0021 (15)0.0018 (15)0.0033 (14)
O30.0070 (16)0.0138 (18)0.0055 (17)0.0006 (14)0.0019 (13)0.0008 (15)
O40.0093 (19)0.0096 (19)0.0080 (19)0.0058 (16)0.0002 (16)0.0036 (16)
O50.0153 (19)0.0048 (17)0.0083 (18)0.0042 (19)0.0025 (18)0.0017 (14)
O60.012 (2)0.016 (2)0.008 (2)0.0011 (18)0.0005 (17)0.0051 (17)
O70.018 (2)0.0153 (19)0.006 (2)0.0059 (19)0.0037 (18)0.0006 (16)
O80.036 (3)0.033 (2)0.007 (2)0.022 (2)0.004 (2)0.0003 (18)
Geometric parameters (Å, º) top
Y—O3i2.258 (3)Se2—O41.672 (3)
Y—O72.346 (3)Se2—O51.689 (3)
Y—O5ii2.347 (3)Se2—O61.745 (4)
Y—O42.367 (3)O1—Yii2.376 (4)
Y—O2ii2.372 (3)O2—Yiii2.372 (3)
Y—O1iii2.376 (4)O3—Yiv2.258 (3)
Y—O22.402 (4)O5—Yiii2.347 (3)
Y—O12.419 (3)O6—H10.8198
Y—Yii3.9668 (5)O7—H20.9222
Y—Yiii3.9668 (5)O7—H30.8604
Se1—O31.680 (3)O8—H40.9403
Se1—O11.701 (3)O8—H50.9289
Se1—O21.710 (3)
O3i—Y—O786.57 (13)O2ii—Y—O167.81 (12)
O3i—Y—O5ii92.92 (13)O1iii—Y—O1125.88 (8)
O7—Y—O5ii144.37 (11)O2—Y—O161.40 (11)
O3i—Y—O489.49 (12)Yii—Y—Yiii120.81 (3)
O7—Y—O472.08 (12)O3—Se1—O1102.95 (17)
O5ii—Y—O4143.55 (11)O3—Se1—O2102.44 (17)
O3i—Y—O2ii82.73 (13)O1—Se1—O292.37 (16)
O7—Y—O2ii72.40 (12)O4—Se2—O5102.52 (17)
O5ii—Y—O2ii72.20 (11)O4—Se2—O696.28 (17)
O4—Y—O2ii144.00 (12)O5—Se2—O697.98 (18)
O3i—Y—O1iii81.21 (13)Se1—O1—Yii130.66 (18)
O7—Y—O1iii143.63 (12)Se1—O1—Y101.19 (15)
O5ii—Y—O1iii70.78 (12)Yii—O1—Y111.66 (13)
O4—Y—O1iii73.68 (12)Se1—O2—Yiii135.03 (18)
O2ii—Y—O1iii138.57 (12)Se1—O2—Y101.58 (15)
O3i—Y—O2148.54 (13)Yiii—O2—Y112.41 (13)
O7—Y—O2114.26 (13)Se1—O3—Yiv130.39 (19)
O5ii—Y—O283.34 (12)Se2—O4—Y117.18 (17)
O4—Y—O276.08 (11)Se2—O5—Yiii124.96 (17)
O2ii—Y—O2124.88 (9)Se2—O6—H1107.1
O1iii—Y—O268.02 (11)Y—O7—H2107.2
O3i—Y—O1149.65 (13)Y—O7—H3136.7
O7—Y—O177.95 (12)H2—O7—H3104.3
O5ii—Y—O185.16 (12)H4—O8—H5100.2
O4—Y—O1109.83 (12)
O3—Se1—O1—Yii109.1 (2)O4—Y—O2—Se1134.90 (16)
O2—Se1—O1—Yii147.5 (2)O2ii—Y—O2—Se112.59 (12)
Y—Se1—O1—Yii131.7 (3)O1iii—Y—O2—Se1147.35 (18)
O3—Se1—O1—Y119.12 (16)O1—Y—O2—Se112.68 (13)
O2—Se1—O1—Y15.78 (16)Yii—Y—O2—Se10.83 (13)
O3i—Y—O1—Se1159.82 (18)Yiii—Y—O2—Se1150.0 (2)
O7—Y—O1—Se1139.23 (18)O3i—Y—O2—Yiii10.2 (3)
O5ii—Y—O1—Se172.32 (16)O7—Y—O2—Yiii137.81 (14)
O4—Y—O1—Se173.53 (17)O5ii—Y—O2—Yiii74.53 (14)
O2ii—Y—O1—Se1145.06 (19)O4—Y—O2—Yiii75.15 (14)
O1iii—Y—O1—Se110.28 (14)O2ii—Y—O2—Yiii137.36 (18)
O2—Y—O1—Se112.73 (13)O1iii—Y—O2—Yiii2.60 (13)
Yii—Y—O1—Se1142.5 (2)O1—Y—O2—Yiii162.63 (19)
Yiii—Y—O1—Se13.21 (15)Se1—Y—O2—Yiii150.0 (2)
O3i—Y—O1—Yii17.3 (3)Yii—Y—O2—Yiii149.12 (12)
O7—Y—O1—Yii78.28 (15)O1—Se1—O3—Yiv131.1 (3)
O5ii—Y—O1—Yii70.17 (14)O2—Se1—O3—Yiv133.5 (3)
O4—Y—O1—Yii143.99 (14)Y—Se1—O3—Yiv179.21 (17)
O2ii—Y—O1—Yii2.57 (12)O5—Se2—O4—Y86.34 (19)
O1iii—Y—O1—Yii132.20 (18)O6—Se2—O4—Y174.02 (19)
O2—Y—O1—Yii155.21 (19)O3i—Y—O4—Se2171.68 (19)
O3—Se1—O2—Yiii101.2 (3)O7—Y—O4—Se2101.8 (2)
O1—Se1—O2—Yiii155.0 (2)O5ii—Y—O4—Se277.5 (3)
Y—Se1—O2—Yiii139.1 (3)O2ii—Y—O4—Se2111.5 (2)
O3—Se1—O2—Y119.73 (15)O1iii—Y—O4—Se290.69 (19)
O1—Se1—O2—Y15.91 (16)O2—Y—O4—Se219.92 (18)
O3i—Y—O2—Se1160.10 (18)O1—Y—O4—Se232.2 (2)
O7—Y—O2—Se172.24 (17)O4—Se2—O5—Yiii62.4 (2)
O5ii—Y—O2—Se175.42 (15)O6—Se2—O5—Yiii160.7 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1···O4v0.821.922.712 (5)164
O7—H2···O5vi0.921.932.806 (5)159
O7—H3···O80.861.822.644 (5)163
O8—H4···O3vii0.941.932.874 (5)179
O8—H5···O5viii0.932.032.964 (5)179
Symmetry codes: (v) x+1/2, y+1/2, z+1; (vi) x, y+1, z; (vii) x1/2, y+3/2, z+1; (viii) x1/2, y+1/2, z+1.
 

Acknowledgements

We thank that EPSRC National Crystallography Service (University of Southampton) for the data collection.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKoskenlinna, M., Mutikainen, I., Leskelä, M. & Niinistö, L. (1994). Acta Cryst. C50, 1384–1386.  CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPedro, M. de, Enjalbert, R., Castro, A., Trombe, C. & Galy, J. (1994). J. Solid State Chem. 108, 87–93.  CrossRef Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationShape Software (2005). ATOMS. Version 6.2. Shape Software, 525 Hidden Valley Road, Kingsport, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds