organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Determination of the absolute configuration of (−)-abietic acid via its (4R,5R,9R,10R)-7,13-abietadien-18-yl p-bromo­benzoate derivative

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química Orgánica/Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain, and bSchool of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England
*Correspondence e-mail: a.j.blake@nottingham.ac.uk

(Received 10 July 2006; accepted 10 July 2006; online 14 July 2006)

The absolute configuration of the title bromo derivative of abietic acid, C27H35BrO2, has been determined. The structural analysis confirms the absolute stereochemistry for (−)-abietic acid proposed by Bose & Struck [(1959). Chem. Ind. (London), pp. 1628–1630] on the basis of optical rotatory dispersion measurements. The mol­ecule exhibits a trans anti 6/6/6 tricyclic hydro­carbon skeleton, with the cyclo­hexane ring in the expected chair form and the two cyclo­hexene rings, the double bonds of which are conjugated, in half-chair conformations.

Comment

Abietic acid (1) is a major acid component of pine rosins which are abundant natural chemicals having many industrial applications, including as paper sizings, polymerization emulsifiers, adhesive tackifiers, printing ink resins and waterproofing materials (McCoy, 2000[McCoy, M. (2000). Chem. Eng. News, March, 27, 13-15.]). Most of the acids in pine rosins have also shown inter­esting biological properties and are of inter­est as potential therapeutic agents (Alvarez-Manzaneda et al., 2006[Alvarez-Manzaneda, E. J., Chahboun, R., Guardia, J. J., Lachkar, M., Dahdouh, A., Lara, A. & Messouri, I. (2006). Tetrahedron Lett. 47, 2577-2580.]). Abietic acid has been widely used as a chiral synthon for the preparation of terpenoids and natural products, confirming their stereochemistry (Arnó et al., 2003[Arnó, M., González, M. A. & Zaragozá, R. J. (2003). J. Org. Chem. 68, 1242-1251.]). It has been used as a standard of known absolute configuration in circular dichroism experiments by Hartl & Humpf (2000[Hartl, M. & Humpf, H.-U. (2000). Tetrahedron Asymmetry, 11, 1741-1747.]) and Proni et al. (2003[Proni, G., Pescitelli, G., Huang, X., Nakanishi, K. & Berova, N. (2003). J. Am. Chem. Soc. 125, 12914-12927.]), but without crystallographic confirmation of the absolute configuration.

[Scheme 1]

Abietic acid is characterized by a steroid-like carbon skeleton, named `abietane' in accordance with the IUPAC recommendations, which was chosen as the fundamental parent structure with the numbering pattern as depicted in the scheme. The structure of the title compound (1) has been confirmed by X-ray analysis previously by Okada & Takekuma (1994[Okada, K. & Takekuma, S. (1994). Bull. Chem. Soc. Jpn, 67, 807-815.]) and Matsubara et al. (1993[Matsubara, Y., Zhou, Z., Takekuma, S., Koyama, H. & Huang, X. (1993). Chem. Express, 8, 237-240.]). However, the only insight into its absolute configuration has been by optical rotatory dispersion experiments (Bose & Struck, 1959[Bose, A. K. & Struck, W. A. (1959). Chem. Ind. (London), pp. 1628-1630.]). Following our determination of a crystal structure of a compound prepared from abietic acid (Blake et al., 2006[Blake, A. J., González, M. A. & Gil-Gimeno, M. J. (2006). Acta Cryst. C62, o208-o210.]), we found a lack of crystallographic evidence for the absolute configuration of abietic acid itself. We therefore decided to embark on such a study by preparing simple derivatives of abietic acid containing significant anomalous scatterers: these include the p-bromo ester derivative (3) of the abietanol (2) obtained by standard reduction of abietic acid (1). A single-crystal X-ray study established the connectivity and the absolute configuration of (3) (Fig. 1[link]), thereby confirming the absolute configuration of (−)-abietic acid as 4R,5R,9R,10R.

The mol­ecule exhibits a trans anti 6/6/6 tricyclic hydro­carbon skeleton in which the cyclo­hexane ring A has a typical chair form. Cyclo­hexene rings B and C, containing conjugated double bonds, have half-chair conformations. Thus, the relative stereochemistry is trans fusion for the A/B ring junction, anti between C9 hydrogen and C10 methyl (abietane numbering), and coplanar for the B/C ring junction. The ester linkage is located at C18 and the isopropyl group at C13. The structure is unsolvated. Bond lengths and angles lie in the ranges normally observed for such sterically non-strained mol­ecules (Cambridge Structural Database, Version 5.27, May 2006 update; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Figure 1]
Figure 1
A view of the structure of (3), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

Compound (3) was synthesized starting from commercially available (−)-abietic acid, so the relative stereochemistry of centres C4, C5, C9 and C10 was fixed from the outset. Reduction of abietic acid under standard conditions, followed by esterification with p-bromo­benzoyl chloride, afforded the bromo ester derivative (3). Diffraction-quality crystals were obtained by recrystallization from hexane.

Crystal data
  • C27H35BrO2

  • Mr = 471.46

  • Monoclinic, P 21

  • a = 9.4486 (13) Å

  • b = 6.0103 (9) Å

  • c = 20.616 (3) Å

  • β = 97.850 (2)°

  • V = 1159.8 (5) Å3

  • Z = 2

  • Dx = 1.350 Mg m−3

  • Mo Kα radiation

  • μ = 1.79 mm−1

  • T = 150 (2) K

  • Lath, colourless

  • 1.00 × 0.23 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS (Version 2.03), SAINT (Version 6.36a), SHELXTL (Version 6.12) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.719, Tmax = 1.000 (expected range = 0.657–0.914)

  • 10620 measured reflections

  • 5227 independent reflections

  • 4748 reflections with I > 2σ(I)

  • Rint = 0.014

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.083

  • S = 1.03

  • 5228 reflections

  • 272 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.06P)2 + 0.099P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2312 Friedel pairs

  • Flack parameter: 0.000 (6)

H atoms were positioned geometrically and allowed to ride on their parent C atoms at distances of 0.95, 0.95, 0.98, 0.99 and 1.00 Å for aromatic, alkene, methyl, methyl­ene and methine groups, respectively, and with Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for all others.

Data collection: SMART (Bruker, 2001[Bruker (2001). SADABS (Version 2.03), SAINT (Version 6.36a), SHELXTL (Version 6.12) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS (Version 2.03), SAINT (Version 6.36a), SHELXTL (Version 6.12) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SHELXTL (Bruker, 2001[Bruker (2001). SADABS (Version 2.03), SAINT (Version 6.36a), SHELXTL (Version 6.12) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: MERCURY (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT and SHELXTL (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).

(4R,5R,9R,10R)-7,13-abietadien-18-yl p-bromobenzoate top
Crystal data top
C27H35BrO2F(000) = 496
Mr = 471.46Dx = 1.350 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.4486 (13) ÅCell parameters from 5191 reflections
b = 6.0103 (9) Åθ = 2.3–27.5°
c = 20.616 (3) ŵ = 1.79 mm1
β = 97.850 (2)°T = 150 K
V = 1159.8 (5) Å3Lath, colourless
Z = 21.00 × 0.23 × 0.05 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5227 independent reflections
Radiation source: sealed tube4748 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.719, Tmax = 1.000k = 77
10620 measured reflectionsl = 2626
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.06P)2 + 0.099P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max = 0.002
S = 1.03Δρmax = 0.46 e Å3
5228 reflectionsΔρmin = 0.20 e Å3
272 parametersAbsolute structure: Flack (1983), 2312 Friedel pairs
1 restraintAbsolute structure parameter: 0.000 (6)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7758 (2)0.5986 (3)0.70803 (9)0.0230 (4)
H1A0.85770.70280.71180.028*
H1B0.80270.46400.68490.028*
C20.6475 (2)0.7078 (4)0.66753 (10)0.0268 (4)
H2A0.62250.84630.68940.032*
H2B0.67210.74760.62380.032*
C30.52050 (18)0.5509 (4)0.65982 (8)0.0250 (3)
H3A0.54550.41520.63670.030*
H3B0.43930.62360.63240.030*
C40.47333 (19)0.4835 (3)0.72596 (9)0.0205 (4)
C50.60545 (18)0.3952 (3)0.77285 (9)0.0177 (3)
H50.62840.24770.75440.021*
C60.5712 (2)0.3446 (3)0.84198 (10)0.0239 (4)
H6A0.53290.48060.86040.029*
H6B0.49610.22870.83930.029*
C70.6989 (2)0.2669 (3)0.88694 (9)0.0221 (4)
H70.68390.20690.92810.026*
C80.8331 (2)0.2761 (3)0.87305 (9)0.0196 (3)
C90.86650 (19)0.3725 (3)0.80855 (9)0.0199 (3)
H90.86790.24440.77770.024*
C100.74689 (17)0.5323 (3)0.77738 (8)0.0188 (3)
C111.0176 (2)0.4700 (4)0.81837 (11)0.0288 (4)
H11A1.04160.52550.77600.035*
H11B1.02170.59730.84910.035*
C121.1264 (2)0.2945 (4)0.84560 (10)0.0288 (4)
H12A1.13220.17840.81200.035*
H12B1.22170.36470.85530.035*
C131.0882 (2)0.1874 (3)0.90685 (9)0.0227 (4)
C140.9521 (2)0.1872 (3)0.91838 (9)0.0227 (4)
H140.93160.12540.95850.027*
C151.20597 (19)0.0799 (4)0.95372 (10)0.0259 (4)
H151.16050.00700.98930.031*
C161.2835 (2)0.1008 (4)0.92007 (13)0.0371 (5)
H16A1.21390.20930.89960.056*
H16B1.35270.17590.95260.056*
H16C1.33360.03290.88650.056*
C171.3143 (2)0.2489 (4)0.98595 (11)0.0337 (5)
H17A1.26440.36471.00750.051*
H17B1.36490.31690.95250.051*
H17C1.38320.17361.01850.051*
C180.3706 (2)0.2860 (3)0.71352 (10)0.0234 (4)
H18A0.41790.16150.69350.028*
H18B0.34200.23350.75530.028*
O180.24591 (14)0.3588 (2)0.66971 (7)0.0256 (3)
C190.3944 (2)0.6775 (3)0.75381 (11)0.0261 (4)
H19A0.31310.72250.72180.039*
H19B0.45980.80350.76310.039*
H19C0.35980.63010.79430.039*
C200.7460 (2)0.7436 (3)0.81934 (10)0.0259 (4)
H20A0.67040.84390.79950.039*
H20B0.83870.81850.82160.039*
H20C0.72840.70310.86360.039*
C210.1398 (2)0.2115 (3)0.65849 (10)0.0246 (4)
O210.14134 (15)0.0288 (3)0.68284 (8)0.0385 (4)
C220.0180 (2)0.2991 (3)0.61184 (9)0.0220 (4)
C230.0990 (2)0.1611 (3)0.59470 (10)0.0255 (4)
H230.10020.01660.61330.031*
C240.2142 (2)0.2321 (4)0.55064 (10)0.0276 (4)
H240.29410.13760.53860.033*
C250.2101 (2)0.4440 (4)0.52463 (10)0.0263 (4)
C260.0954 (2)0.5843 (3)0.54091 (9)0.0265 (4)
H260.09520.72860.52210.032*
C270.0201 (2)0.5127 (3)0.58516 (9)0.0248 (4)
H270.09950.60810.59710.030*
Br10.36707 (2)0.54783 (5)0.464907 (10)0.04009 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0211 (8)0.0269 (10)0.0211 (8)0.0013 (7)0.0028 (7)0.0052 (7)
C20.0262 (10)0.0283 (10)0.0253 (10)0.0014 (8)0.0018 (8)0.0073 (8)
C30.0241 (8)0.0279 (8)0.0217 (8)0.0010 (9)0.0009 (6)0.0039 (9)
C40.0176 (8)0.0192 (8)0.0240 (9)0.0012 (6)0.0004 (7)0.0011 (6)
C50.0168 (8)0.0152 (7)0.0209 (8)0.0004 (6)0.0013 (6)0.0014 (6)
C60.0185 (9)0.0307 (10)0.0233 (9)0.0006 (7)0.0050 (7)0.0038 (8)
C70.0231 (9)0.0238 (9)0.0195 (9)0.0002 (7)0.0036 (7)0.0019 (7)
C80.0212 (8)0.0170 (8)0.0199 (9)0.0020 (6)0.0008 (7)0.0004 (6)
C90.0181 (8)0.0201 (8)0.0213 (8)0.0020 (6)0.0017 (7)0.0008 (7)
C100.0184 (7)0.0174 (8)0.0204 (7)0.0018 (8)0.0017 (6)0.0022 (8)
C110.0207 (9)0.0342 (10)0.0306 (10)0.0057 (7)0.0006 (8)0.0091 (8)
C120.0190 (9)0.0403 (11)0.0270 (10)0.0013 (8)0.0026 (8)0.0066 (9)
C130.0223 (9)0.0230 (9)0.0221 (9)0.0004 (7)0.0005 (7)0.0006 (7)
C140.0236 (9)0.0236 (9)0.0200 (9)0.0021 (7)0.0001 (7)0.0016 (7)
C150.0198 (8)0.0285 (10)0.0281 (9)0.0002 (8)0.0012 (7)0.0031 (8)
C160.0307 (11)0.0303 (11)0.0476 (14)0.0036 (9)0.0038 (10)0.0044 (10)
C170.0292 (11)0.0371 (12)0.0319 (11)0.0008 (9)0.0065 (9)0.0057 (9)
C180.0174 (8)0.0216 (9)0.0298 (10)0.0001 (7)0.0017 (7)0.0020 (7)
O180.0196 (6)0.0230 (7)0.0322 (7)0.0001 (5)0.0034 (5)0.0047 (6)
C190.0250 (10)0.0192 (9)0.0340 (10)0.0054 (7)0.0038 (8)0.0005 (8)
C200.0288 (10)0.0188 (9)0.0289 (10)0.0020 (7)0.0003 (8)0.0026 (7)
C210.0195 (9)0.0245 (9)0.0294 (10)0.0020 (7)0.0017 (7)0.0010 (8)
O210.0291 (7)0.0274 (8)0.0551 (9)0.0025 (7)0.0089 (6)0.0129 (8)
C220.0192 (9)0.0232 (9)0.0235 (9)0.0014 (7)0.0027 (7)0.0015 (7)
C230.0225 (10)0.0235 (9)0.0301 (10)0.0000 (7)0.0021 (8)0.0004 (8)
C240.0211 (9)0.0297 (10)0.0314 (10)0.0022 (7)0.0015 (8)0.0035 (8)
C250.0215 (9)0.0341 (10)0.0221 (9)0.0066 (8)0.0014 (7)0.0011 (8)
C260.0305 (9)0.0239 (11)0.0249 (9)0.0009 (8)0.0033 (7)0.0015 (7)
C270.0228 (8)0.0246 (11)0.0267 (9)0.0015 (7)0.0029 (7)0.0010 (7)
Br10.02918 (11)0.05146 (14)0.03593 (12)0.00617 (11)0.00879 (8)0.00602 (11)
Geometric parameters (Å, º) top
C1—C21.524 (3)C13—C151.516 (3)
C1—C101.544 (2)C14—H140.9500
C1—H1A0.9900C15—C161.528 (3)
C1—H1B0.9900C15—C171.529 (3)
C2—C31.518 (3)C15—H151.0000
C2—H2A0.9900C16—H16A0.9800
C2—H2B0.9900C16—H16B0.9800
C3—C41.545 (3)C16—H16C0.9800
C3—H3A0.9900C17—H17A0.9800
C3—H3B0.9900C17—H17B0.9800
C4—C181.533 (2)C17—H17C0.9800
C4—C191.537 (3)C18—O181.451 (2)
C4—C51.564 (2)C18—H18A0.9900
C5—C61.535 (3)C18—H18B0.9900
C5—C101.562 (2)O18—C211.334 (2)
C5—H51.0000C19—H19A0.9800
C6—C71.492 (3)C19—H19B0.9800
C6—H6A0.9900C19—H19C0.9800
C6—H6B0.9900C20—H20A0.9800
C7—C81.339 (3)C20—H20B0.9800
C7—H70.9500C20—H20C0.9800
C8—C141.462 (3)C21—O211.207 (3)
C8—C91.522 (2)C21—C221.491 (3)
C9—C111.531 (3)C22—C231.389 (3)
C9—C101.554 (3)C22—C271.398 (3)
C9—H91.0000C23—C241.386 (3)
C10—C201.537 (3)C23—H230.9500
C11—C121.525 (3)C24—C251.385 (3)
C11—H11A0.9900C24—H240.9500
C11—H11B0.9900C25—C261.378 (3)
C12—C131.505 (3)C25—Br11.899 (2)
C12—H12A0.9900C26—C271.391 (3)
C12—H12B0.9900C26—H260.9500
C13—C141.339 (3)C27—H270.9500
C2—C1—C10112.97 (15)H12A—C12—H12B107.9
C2—C1—H1A109.0C14—C13—C12119.74 (17)
C10—C1—H1A109.0C14—C13—C15121.73 (17)
C2—C1—H1B109.0C12—C13—C15118.53 (16)
C10—C1—H1B109.0C13—C14—C8124.03 (17)
H1A—C1—H1B107.8C13—C14—H14118.0
C3—C2—C1110.38 (16)C8—C14—H14118.0
C3—C2—H2A109.6C13—C15—C16111.68 (17)
C1—C2—H2A109.6C13—C15—C17112.56 (18)
C3—C2—H2B109.6C16—C15—C17109.60 (17)
C1—C2—H2B109.6C13—C15—H15107.6
H2A—C2—H2B108.1C16—C15—H15107.6
C2—C3—C4112.95 (15)C17—C15—H15107.6
C2—C3—H3A109.0C15—C16—H16A109.5
C4—C3—H3A109.0C15—C16—H16B109.5
C2—C3—H3B109.0H16A—C16—H16B109.5
C4—C3—H3B109.0C15—C16—H16C109.5
H3A—C3—H3B107.8H16A—C16—H16C109.5
C18—C4—C19108.75 (15)H16B—C16—H16C109.5
C18—C4—C3107.93 (16)C15—C17—H17A109.5
C19—C4—C3110.11 (16)C15—C17—H17B109.5
C18—C4—C5105.93 (14)H17A—C17—H17B109.5
C19—C4—C5114.44 (16)C15—C17—H17C109.5
C3—C4—C5109.41 (14)H17A—C17—H17C109.5
C6—C5—C10109.65 (14)H17B—C17—H17C109.5
C6—C5—C4112.93 (14)O18—C18—C4108.20 (15)
C10—C5—C4117.53 (14)O18—C18—H18A110.1
C6—C5—H5105.2C4—C18—H18A110.1
C10—C5—H5105.2O18—C18—H18B110.1
C4—C5—H5105.2C4—C18—H18B110.1
C7—C6—C5112.56 (15)H18A—C18—H18B108.4
C7—C6—H6A109.1C21—O18—C18115.79 (14)
C5—C6—H6A109.1C4—C19—H19A109.5
C7—C6—H6B109.1C4—C19—H19B109.5
C5—C6—H6B109.1H19A—C19—H19B109.5
H6A—C6—H6B107.8C4—C19—H19C109.5
C8—C7—C6124.27 (17)H19A—C19—H19C109.5
C8—C7—H7117.9H19B—C19—H19C109.5
C6—C7—H7117.9C10—C20—H20A109.5
C7—C8—C14121.10 (17)C10—C20—H20B109.5
C7—C8—C9121.21 (16)H20A—C20—H20B109.5
C14—C8—C9117.66 (16)C10—C20—H20C109.5
C8—C9—C11109.33 (16)H20A—C20—H20C109.5
C8—C9—C10111.74 (14)H20B—C20—H20C109.5
C11—C9—C10115.50 (16)O21—C21—O18124.46 (18)
C8—C9—H9106.6O21—C21—C22123.63 (19)
C11—C9—H9106.6O18—C21—C22111.91 (16)
C10—C9—H9106.6C23—C22—C27120.12 (18)
C20—C10—C1108.86 (16)C23—C22—C21118.07 (17)
C20—C10—C9109.72 (14)C27—C22—C21121.81 (17)
C1—C10—C9109.36 (13)C24—C23—C22120.62 (19)
C20—C10—C5113.53 (14)C24—C23—H23119.7
C1—C10—C5109.82 (14)C22—C23—H23119.7
C9—C10—C5105.46 (15)C25—C24—C23118.41 (19)
C12—C11—C9110.69 (17)C25—C24—H24120.8
C12—C11—H11A109.5C23—C24—H24120.8
C9—C11—H11A109.5C26—C25—C24122.10 (19)
C12—C11—H11B109.5C26—C25—Br1118.39 (17)
C9—C11—H11B109.5C24—C25—Br1119.50 (16)
H11A—C11—H11B108.1C25—C26—C27119.39 (19)
C13—C12—C11112.18 (16)C25—C26—H26120.3
C13—C12—H12A109.2C27—C26—H26120.3
C11—C12—H12A109.2C26—C27—C22119.35 (18)
C13—C12—H12B109.2C26—C27—H27120.3
C11—C12—H12B109.2C22—C27—H27120.3
C10—C1—C2—C359.6 (2)C4—C5—C10—C9162.79 (15)
C1—C2—C3—C460.2 (2)C8—C9—C11—C1256.1 (2)
C2—C3—C4—C18166.66 (17)C10—C9—C11—C12176.82 (16)
C2—C3—C4—C1974.8 (2)C9—C11—C12—C1353.7 (2)
C2—C3—C4—C551.8 (2)C11—C12—C13—C1423.7 (3)
C18—C4—C5—C669.23 (19)C11—C12—C13—C15156.97 (18)
C19—C4—C5—C650.6 (2)C12—C13—C14—C83.2 (3)
C3—C4—C5—C6174.66 (16)C15—C13—C14—C8176.09 (17)
C18—C4—C5—C10161.55 (15)C7—C8—C14—C13178.65 (19)
C19—C4—C5—C1078.7 (2)C9—C8—C14—C130.7 (3)
C3—C4—C5—C1045.4 (2)C14—C13—C15—C16121.8 (2)
C10—C5—C6—C745.1 (2)C12—C13—C15—C1657.5 (2)
C4—C5—C6—C7178.29 (16)C14—C13—C15—C17114.4 (2)
C5—C6—C7—C811.0 (3)C12—C13—C15—C1766.3 (2)
C6—C7—C8—C14177.14 (18)C19—C4—C18—O1856.9 (2)
C6—C7—C8—C90.8 (3)C3—C4—C18—O1862.52 (19)
C7—C8—C9—C11151.55 (18)C5—C4—C18—O18179.63 (15)
C14—C8—C9—C1130.5 (2)C4—C18—O18—C21174.24 (16)
C7—C8—C9—C1022.4 (2)C18—O18—C21—O211.2 (3)
C14—C8—C9—C10159.59 (16)C18—O18—C21—C22178.70 (16)
C2—C1—C10—C2074.10 (19)O21—C21—C22—C231.1 (3)
C2—C1—C10—C9166.03 (15)O18—C21—C22—C23178.76 (17)
C2—C1—C10—C550.8 (2)O21—C21—C22—C27179.4 (2)
C8—C9—C10—C2068.53 (19)O18—C21—C22—C270.7 (3)
C11—C9—C10—C2057.3 (2)C27—C22—C23—C240.6 (3)
C8—C9—C10—C1172.14 (15)C21—C22—C23—C24178.84 (18)
C11—C9—C10—C162.1 (2)C22—C23—C24—C250.5 (3)
C8—C9—C10—C554.10 (18)C23—C24—C25—C260.4 (3)
C11—C9—C10—C5179.90 (16)C23—C24—C25—Br1179.28 (15)
C6—C5—C10—C2053.7 (2)C24—C25—C26—C270.4 (3)
C4—C5—C10—C2077.1 (2)Br1—C25—C26—C27179.25 (14)
C6—C5—C10—C1175.81 (15)C25—C26—C27—C220.5 (3)
C4—C5—C10—C145.1 (2)C23—C22—C27—C260.6 (3)
C6—C5—C10—C966.46 (17)C21—C22—C27—C26178.79 (17)
 

Acknowledgements

Financial support by the Spanish Ministry of Education and Science under a `Ramón y Cajal' research grant is gratefully acknowledged. We thank the EPSRC (UK) for the award of a diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAlvarez-Manzaneda, E. J., Chahboun, R., Guardia, J. J., Lachkar, M., Dahdouh, A., Lara, A. & Messouri, I. (2006). Tetrahedron Lett. 47, 2577–2580.  CAS Google Scholar
First citationArnó, M., González, M. A. & Zaragozá, R. J. (2003). J. Org. Chem. 68, 1242–1251.  PubMed Google Scholar
First citationBlake, A. J., González, M. A. & Gil-Gimeno, M. J. (2006). Acta Cryst. C62, o208–o210.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBose, A. K. & Struck, W. A. (1959). Chem. Ind. (London), pp. 1628–1630.  Google Scholar
First citationBruker (2001). SADABS (Version 2.03), SAINT (Version 6.36a), SHELXTL (Version 6.12) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHartl, M. & Humpf, H.-U. (2000). Tetrahedron Asymmetry, 11, 1741–1747.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatsubara, Y., Zhou, Z., Takekuma, S., Koyama, H. & Huang, X. (1993). Chem. Express, 8, 237–240.  CAS Google Scholar
First citationMcCoy, M. (2000). Chem. Eng. News, March, 27, 13–15.  Google Scholar
First citationOkada, K. & Takekuma, S. (1994). Bull. Chem. Soc. Jpn, 67, 807–815.  CrossRef CAS Web of Science Google Scholar
First citationProni, G., Pescitelli, G., Huang, X., Nakanishi, K. & Berova, N. (2003). J. Am. Chem. Soc. 125, 12914–12927.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds