organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A thio­phene-based aza­cryptand Mannich base: 15,35-di­propyl-2,5,8,22,25,28-hexa­oxa-12,18,32,38-tetra­thia-15,35-di­aza­penta­cyclo­[29.5.5.5.0.0]tetra­conta-1(37),9(13),10,17(21),19,29(33),30,39-octa­ene

aUniversity of Liverpool, Department of Chemistry, Crown Street, L69 7ZD, England, and bDepartment of Chemistry and Physics, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, England
*Correspondence e-mail: gael.labat@liv.ac.uk

(Received 7 June 2006; accepted 6 July 2006; online 12 July 2006)

The mol­ecule of the title compound, C34H46N2O6S4 is composed of four thio­phene rings bridged by two –O(CH2)2O– and two –CH2(NC2H5)CH2– chains. The macrocyclic mol­ecule possesses a center of symmetry. In the crystal structure, the mol­ecules are bridged by C—H⋯O inter­actions, forming chains along the a axis.

Comment

The preparation of cryptand-like structures, incorporating four thio­phene rings, was previously described by Chaffin et al. (2001[Chaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1398-1405.], 2002[Chaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 717-724.]). The title compound is the first of a range of four thio­phene-based aza­cryptand Mannich bases. The macrocycle incorporates six O and two N donor atoms. The coordination chemistry of aza and mixed oxa-aza macrocycles containing different pendant arms attached to the aza centers has attracted the attention of many researchers over the past twenty years (Tei et al., 2000[Tei, L., Blake, A. J., Bencini, A., Vatancoli, B., Wilson, C. & Schröder, M. (2000). J. Chem. Soc. Dalton Trans. pp. 4122-4129.]; Wainwright, 1997[Wainwright, K. P. (1997). Coord. Chem. Rev. 166, 35-90.]; Bernhardt & Lawrance, 1990[Bernhardt, P. V. & Lawrance, G. A. (1990). Coord. Chem. Rev. 104, 297-343.]; Gokel, 1992[Gokel, G. W. (1992). Chem. Soc. Rev. 21, 39-47.]; Hancock et al., 1996[Hancock, R. D., Maumela, H. & De Sousa, A. S. (1996). Coord. Chem. Rev. 148, 315-347.]; Hambley et al., 2001[Hambley, T. W., Lindoy, L. F., Reimers, J. R., Turner, P., Wei, G. & Widmer-Cooper, A. N. (2001). J. Chem. Soc. Dalton Trans. pp. 614-620.]; Buschmann & Schollmeyer, 2000[Buschmann, H.-J. & Schollmeyer, E. (2000). J. Inclus. Phenom. Macrocyclic Chem. 38, 85-97.]; Dietrich et al., 1969[Dietrich, B., Lehn, J.-M. & Sauvage, J. P. (1969). Tetrahedron Lett. pp. 2885-2892.]). These ligands can exhibit remarkable metal-ion selectivity and show specific complexation behavior, forming metal complexes with unusual structures (references as above, together with Laufer, 1987[Laufer, R. B. (1987). Chem. Rev. 87, 901-927.]; Parker & Williams, 1996[Parker, D. & Williams, J. A. G. (1996). J. Chem. Soc. Dalton Trans. pp. 3613-3628.]). Macrocyclic crown ethers and other ionophores can bind cations (Gokel & Durst, 1976[Gokel, G. W. & Durst, H. D. (1976). Synthesis, pp. 168-184.]), anions and small neutral organic mol­ecules (Kellogg, 1984[Kellogg, R. M. (1984). Angew. Chem. Int. Ed. Engl. 23, 782-794.]).

[Scheme 1]

The centrosymmetric mol­ecule is non-planar. Selected bond distances and angles are given in Table 1[link]. Each of the four thio­phene rings is planar, and opposite rings are parallel by symmetry. The S1 and S2 rings form a dihedral angle of 82.50 (3)°. The cross-mol­ecule distances between the thio­phene rings are S1⋯S1i = 11.323 (2) Å and S2⋯S2i = 14.735 (4) Å [symmetry code: (i) −x, −y, 1 − z.] The large separation of the S1 and S2 thio­phene rings [S1⋯S2 = 12.567 (3) Å], and the relative proximity of the S1 and S2i rings [S1⋯S2i = 3.8412 (12) Å], means that the O and N atoms do not lie in the same plane. The largest cross-cavity distances are N1⋯N1i = 10.223 (3) Å, and O3⋯O3i = 10.052 (4) Å. The macrocyclic cavity can be divided into three small cavities defined respectively by least-squares planes through the N1, O2, O3 and O1i donor atoms for the first, through N1i, O2i, O3i and O1 for the second, and through O1, O2, O1i and O2i for the third. The two NO3 planes are parallel and form a dihedral angle of 47.61 (5)° with the third plane. The largest cross-cavity distances for these three smaller cavities are N1⋯O2 = N1i⋯O2i = 5.422 (2) Å, O1⋯O3i = O1i⋯O3 = 5.656 (2) Å, O1⋯O1i = 4.806 (3) Å, and O2⋯O2i = 6.425 (3) Å. The N1⋯S1i and N1⋯S2 distances are 3.0851 (18) Å and 3.4439 (17) Å, respectively. The N1⋯S2 distance is equal to the sum of the van der Waals radii (3.45 Å), whereas the N1⋯S1i distance is much shorter, and also considerably shorter than the non-bonded N⋯S inter­action reported by Halfpenny & Sloman (2000[Halfpenny, J. & Sloman, Z. S. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1877-1879.]) and Koziol et al. (1988[Koziol, A. E., Palenik, R. C. & Palenik, G. J. (1988). J. Chem. Soc. Chem. Commun. pp. 226-227.]). Consistent with this are the smaller S1—C1—C17 and S2—C10—C13 angles, compared with C2—C1—C17 and C9—C10—C13, and the smaller torsion angle S2—C10—C13—N1, compared with C9—C10—C13—N1. Some distortion in the thio­phene ring bond lengths and angles is observed in many substituted thio­phene compounds, the most obvious effect being the asymmetric nature of the S—C bonds (Koziol et al., 1988[Koziol, A. E., Palenik, R. C. & Palenik, G. J. (1988). J. Chem. Soc. Chem. Commun. pp. 226-227.]). In the present compound the rings associated with the S⋯N inter­actions have nearly symmetrical bond lengths, but the bond angles are clearly asymmetric. This is possibly due to the movement of some electron density towards N1. In many examples (Koziol et al., 1988[Koziol, A. E., Palenik, R. C. & Palenik, G. J. (1988). J. Chem. Soc. Chem. Commun. pp. 226-227.]), the nitro­gen is sp2 hybridized rather than sp3 as in the present compound, and therefore the C—N distance is shorter, facilitating the S⋯N inter­action. As in the macrocycle described by Halfpenny & Sloman (2000[Halfpenny, J. & Sloman, Z. S. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1877-1879.]), the steric restrictions imposed by the C and N atoms being part of the large macrocyclic ring makes such short S⋯N contacts quite remarkable. They confirm that the electron pairs of the N atoms are directed outside the cavity, which is not favorable for complexation with a metal ion. However, this macrocycle, compared with one having two thio­phene groups (Halfpenny & Sloman, 2000[Halfpenny, J. & Sloman, Z. S. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1877-1879.]), shows greater flexibility in solution, allowing the cavity to accommodate small as well as large metal cations.

The mol­ecules are linked by hydrogen bonds (Table 2[link]). Fig. 2[link] shows the packing arrangement, giving a chain along the a axis.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (a) −x, −y, 1 − z.]
[Figure 2]
Figure 2
The mol­ecular packing of compound (I)[link], with hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Experimental

Compound (I)[link] was synthesized using method A described by Chaffin et al. (2001[Chaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1398-1405.]). It was dissolved with stirring in a minimum of a 1:1:1 mixture of methanol/diethyl ether/dichloro­methane. Slow evaporation at 277 K gave yellow blocks suitable for X-ray crystallographic analysis.

Crystal data
  • C34H46N2O6S4

  • Mr = 706.97

  • Triclinic, [P \overline 1]

  • a = 6.8178 (9) Å

  • b = 9.4311 (18) Å

  • c = 13.833 (2) Å

  • α = 105.69 (2)°

  • β = 92.453 (18)°

  • γ = 98.79 (2)°

  • V = 842.9 (2) Å3

  • Z = 1

  • Dx = 1.393 Mg m−3

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 153 (2) K

  • Block, yellow

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • STOE IPDS diffractometer

  • φ scans

  • Absorption correction: none

  • 6702 measured reflections

  • 3075 independent reflections

  • 2468 reflections with I > 2σ(I)

  • Rint = 0.026

  • θmax = 25.9°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.071

  • S = 0.97

  • 3075 reflections

  • 209 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0468P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—C2 1.374 (2)
C1—C17i 1.494 (2)
C1—S1 1.7245 (14)
C2—O1 1.3744 (18)
C2—C3 1.416 (2)
C3—C4 1.357 (2)
C4—S1 1.7147 (18)
C5—O1 1.4349 (18)
C5—C6 1.499 (2)
C6—O2 1.426 (2)
C7—O2 1.4231 (19)
C7—C8 1.506 (2)
C8—O3 1.4329 (17)
C9—C10 1.367 (2)
C9—O3 1.3727 (18)
C9—C12 1.424 (2)
C10—C13 1.494 (2)
C10—S2 1.7251 (15)
C11—C12 1.358 (2)
C11—S2 1.7065 (16)
C13—N1 1.4758 (18)
C14—N1 1.4710 (19)
C14—C15 1.521 (2)
C15—C16 1.518 (2)
C17—N1 1.4739 (18)
C17—C1i 1.494 (2)
C2—C1—C17i 128.46 (13)
C2—C1—S1 109.63 (12)
C17i—C1—S1 121.44 (10)
C1—C2—O1 119.10 (15)
C1—C2—C3 114.16 (13)
O1—C2—C3 126.72 (14)
C4—C3—C2 111.80 (14)
C3—C4—S1 112.00 (13)
O1—C5—C6 107.24 (14)
O2—C6—C5 111.60 (12)
O2—C7—C8 111.30 (13)
O3—C8—C7 107.47 (12)
C10—C9—O3 119.54 (13)
C10—C9—C12 114.17 (13)
O3—C9—C12 126.29 (13)
C9—C10—C13 127.96 (13)
C9—C10—S2 109.68 (11)
C13—C10—S2 122.34 (10)
C12—C11—S2 112.27 (12)
C11—C12—C9 111.38 (13)
N1—C13—C10 113.45 (13)
N1—C14—C15 114.07 (14)
C16—C15—C14 113.43 (13)
N1—C17—C1i 113.40 (12)
C14—N1—C17 111.82 (11)
C14—N1—C13 107.99 (12)
C17—N1—C13 110.93 (10)
C2—O1—C5 116.08 (13)
C7—O2—C6 115.95 (13)
C9—O3—C8 116.48 (12)
C4—S1—C1 92.39 (8)
C11—S2—C10 92.48 (7)
C9—C10—C13—N1 −108.44 (17)
S2—C10—C13—N1 73.47 (15)
C1—C2—O1—C5 168.99 (13)
C3—C2—O1—C5 −12.3 (2)
C10—C9—O3—C8 171.75 (13)
C12—C9—O3—C8 −8.3 (2)
Symmetry code: (i) -x, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2ii 0.95 2.50 3.142 (2) 125
C13—H13A⋯O3 0.99 2.58 2.9636 (18) 103
Symmetry code: (ii) x+1, y, z.

H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for methyl groups].

Data collection: EXPOSE (Stoe & Cie, 2000[Stoe & Cie (2000). IPDSI Manual. Stoe & Cie, Darmstadt, Germany.]); cell refinement: CELL (Stoe & Cie, 2000[Stoe & Cie (2000). IPDSI Manual. Stoe & Cie, Darmstadt, Germany.]); data reduction: INTEGRATE (Stoe & Cie, 2000[Stoe & Cie (2000). IPDSI Manual. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: EXPOSE (Stoe & Cie, 2000); cell refinement: CELL (Stoe & Cie, 2000); data reduction: INTEGRATE (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

(I) top
Crystal data top
C34H46N2O6S4Z = 1
Mr = 706.97F(000) = 376
Triclinic, P1Dx = 1.393 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8178 (9) ÅCell parameters from 8000 reflections
b = 9.4311 (18) Åθ = 1.7–26.1°
c = 13.833 (2) ŵ = 0.33 mm1
α = 105.69 (2)°T = 153 K
β = 92.453 (18)°Block, yellow
γ = 98.79 (2)°0.30 × 0.30 × 0.30 mm
V = 842.9 (2) Å3
Data collection top
STOE IPDS
diffractometer
2468 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.9°, θmin = 2.3°
φ scansh = 88
6702 measured reflectionsk = 1111
3075 independent reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0468P)2]
where P = (Fo2 + 2Fc2)/3
3075 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4451 (2)0.01853 (16)0.69307 (11)0.0144 (3)
C20.4154 (2)0.11678 (16)0.59807 (11)0.0157 (3)
C30.5838 (2)0.18181 (17)0.56586 (12)0.0200 (3)
H3A0.58700.25090.50190.024*
C40.7401 (2)0.13354 (18)0.63748 (12)0.0226 (4)
H4A0.86580.16490.62960.027*
C50.2208 (2)0.22591 (17)0.44070 (11)0.0196 (3)
H5B0.26880.32190.43320.024*
H5A0.30470.16710.40360.024*
C60.0068 (2)0.25369 (18)0.40002 (11)0.0222 (4)
H6A0.04470.15810.41710.027*
H6B0.00260.29250.32560.027*
C70.1501 (2)0.50898 (17)0.37889 (12)0.0203 (3)
H7B0.14240.57670.42200.024*
H7A0.04650.52450.33090.024*
C80.3525 (2)0.54710 (16)0.32111 (11)0.0182 (3)
H8A0.38750.65640.29000.022*
H8B0.45500.51500.36690.022*
C90.5217 (2)0.46729 (15)0.19600 (11)0.0154 (3)
C100.5267 (2)0.38039 (15)0.13156 (11)0.0143 (3)
C110.8579 (2)0.51720 (17)0.14872 (12)0.0202 (3)
H11A0.99460.55950.14550.024*
C120.7110 (2)0.54805 (17)0.20517 (11)0.0193 (3)
H12A0.73180.61500.24560.023*
C130.3552 (2)0.28857 (15)0.10070 (11)0.0148 (3)
H13A0.22980.31710.12180.018*
H13B0.36600.31170.02630.018*
C140.1845 (2)0.04886 (16)0.09950 (11)0.0183 (3)
H14B0.20620.08810.02520.022*
H14A0.05580.07250.12080.022*
C150.1706 (2)0.12006 (17)0.12842 (12)0.0219 (4)
H15B0.16130.15850.20280.026*
H15A0.04680.16450.10510.026*
C160.3466 (3)0.17036 (17)0.08441 (12)0.0241 (4)
H16A0.46890.13240.11070.036*
H16B0.35840.13140.01080.036*
H16C0.32620.27980.10340.036*
C170.3116 (2)0.08422 (16)0.25501 (11)0.0155 (3)
H17A0.17130.03520.27550.019*
H17B0.33300.17610.27750.019*
N10.34467 (18)0.12615 (13)0.14419 (9)0.0131 (3)
O10.23168 (16)0.14461 (12)0.54526 (8)0.0204 (3)
O20.11268 (17)0.35816 (13)0.44016 (8)0.0251 (3)
O30.34329 (16)0.47027 (11)0.24466 (8)0.0189 (2)
S10.68377 (6)0.00920 (4)0.74384 (3)0.02039 (11)
S20.76908 (6)0.39373 (4)0.08420 (3)0.01816 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0129 (7)0.0144 (7)0.0158 (7)0.0007 (6)0.0000 (6)0.0056 (6)
C20.0132 (7)0.0168 (7)0.0164 (7)0.0002 (6)0.0009 (6)0.0049 (6)
C30.0179 (8)0.0200 (8)0.0189 (7)0.0021 (6)0.0047 (7)0.0002 (6)
C40.0157 (8)0.0248 (8)0.0280 (8)0.0057 (7)0.0056 (7)0.0070 (7)
C50.0214 (9)0.0214 (8)0.0129 (7)0.0000 (6)0.0014 (6)0.0014 (6)
C60.0252 (9)0.0230 (8)0.0158 (7)0.0026 (7)0.0042 (7)0.0030 (6)
C70.0208 (8)0.0227 (8)0.0182 (7)0.0047 (6)0.0007 (7)0.0067 (6)
C80.0206 (8)0.0169 (7)0.0179 (7)0.0003 (6)0.0000 (6)0.0080 (6)
C90.0157 (8)0.0134 (7)0.0152 (7)0.0018 (6)0.0015 (6)0.0017 (6)
C100.0141 (8)0.0111 (7)0.0156 (7)0.0011 (6)0.0007 (6)0.0008 (5)
C110.0165 (8)0.0186 (8)0.0226 (8)0.0029 (6)0.0011 (7)0.0045 (6)
C120.0198 (8)0.0174 (7)0.0201 (7)0.0019 (6)0.0002 (7)0.0070 (6)
C130.0164 (8)0.0123 (7)0.0148 (7)0.0024 (6)0.0009 (6)0.0026 (6)
C140.0159 (8)0.0174 (7)0.0206 (7)0.0007 (6)0.0026 (7)0.0053 (6)
C150.0214 (9)0.0175 (8)0.0249 (8)0.0034 (6)0.0023 (7)0.0065 (6)
C160.0316 (10)0.0171 (7)0.0230 (8)0.0002 (7)0.0010 (7)0.0068 (6)
C170.0159 (8)0.0153 (7)0.0142 (7)0.0028 (6)0.0025 (6)0.0030 (6)
N10.0146 (6)0.0112 (6)0.0131 (6)0.0008 (5)0.0014 (5)0.0033 (5)
O10.0151 (6)0.0248 (6)0.0155 (5)0.0034 (5)0.0022 (5)0.0034 (4)
O20.0201 (6)0.0299 (6)0.0181 (5)0.0030 (5)0.0023 (5)0.0016 (5)
O30.0154 (5)0.0209 (5)0.0219 (5)0.0011 (4)0.0033 (5)0.0117 (4)
S10.0147 (2)0.0250 (2)0.0195 (2)0.00264 (15)0.00250 (16)0.00388 (15)
S20.0155 (2)0.01807 (19)0.02069 (19)0.00139 (14)0.00219 (16)0.00645 (15)
Geometric parameters (Å, º) top
C1—C21.374 (2)C9—C121.424 (2)
C1—C17i1.494 (2)C10—C131.494 (2)
C1—S11.7245 (14)C10—S21.7251 (15)
C2—O11.3744 (18)C11—C121.358 (2)
C2—C31.416 (2)C11—S21.7065 (16)
C3—C41.357 (2)C11—H11A0.950
C3—H3A0.950C12—H12A0.950
C4—S11.7147 (18)C13—N11.4758 (18)
C4—H4A0.950C13—H13A0.990
C5—O11.4349 (18)C13—H13B0.990
C5—C61.499 (2)C14—N11.4710 (19)
C5—H5B0.990C14—C151.521 (2)
C5—H5A0.990C14—H14B0.990
C6—O21.426 (2)C14—H14A0.990
C6—H6A0.990C15—C161.518 (2)
C6—H6B0.990C15—H15B0.990
C7—O21.4231 (19)C15—H15A0.990
C7—C81.506 (2)C16—H16A0.980
C7—H7B0.990C16—H16B0.980
C7—H7A0.990C16—H16C0.980
C8—O31.4329 (17)C17—N11.4739 (18)
C8—H8A0.990C17—C1i1.494 (2)
C8—H8B0.990C17—H17A0.990
C9—C101.367 (2)C17—H17B0.990
C9—O31.3727 (18)
C2—C1—C17i128.46 (13)C12—C11—H11A123.9
C2—C1—S1109.63 (12)S2—C11—H11A123.9
C17i—C1—S1121.44 (10)C11—C12—C9111.38 (13)
C1—C2—O1119.10 (15)C11—C12—H12A124.3
C1—C2—C3114.16 (13)C9—C12—H12A124.3
O1—C2—C3126.72 (14)N1—C13—C10113.45 (13)
C4—C3—C2111.80 (14)N1—C13—H13A108.9
C4—C3—H3A124.1C10—C13—H13A108.9
C2—C3—H3A124.1N1—C13—H13B108.9
C3—C4—S1112.00 (13)C10—C13—H13B108.9
C3—C4—H4A124.0H13A—C13—H13B107.7
S1—C4—H4A124.0N1—C14—C15114.07 (14)
O1—C5—C6107.24 (14)N1—C14—H14B108.7
O1—C5—H5B110.3C15—C14—H14B108.7
C6—C5—H5B110.3N1—C14—H14A108.7
O1—C5—H5A110.3C15—C14—H14A108.7
C6—C5—H5A110.3H14B—C14—H14A107.6
H5B—C5—H5A108.5C16—C15—C14113.43 (13)
O2—C6—C5111.60 (12)C16—C15—H15B108.9
O2—C6—H6A109.3C14—C15—H15B108.9
C5—C6—H6A109.3C16—C15—H15A108.9
O2—C6—H6B109.3C14—C15—H15A108.9
C5—C6—H6B109.3H15B—C15—H15A107.7
H6A—C6—H6B108.0C15—C16—H16A109.5
O2—C7—C8111.30 (13)C15—C16—H16B109.5
O2—C7—H7B109.4H16A—C16—H16B109.5
C8—C7—H7B109.4C15—C16—H16C109.5
O2—C7—H7A109.4H16A—C16—H16C109.5
C8—C7—H7A109.4H16B—C16—H16C109.5
H7B—C7—H7A108.0N1—C17—C1i113.40 (12)
O3—C8—C7107.47 (12)N1—C17—H17A108.9
O3—C8—H8A110.2C1i—C17—H17A108.9
C7—C8—H8A110.2N1—C17—H17B108.9
O3—C8—H8B110.2C1i—C17—H17B108.9
C7—C8—H8B110.2H17A—C17—H17B107.7
H8A—C8—H8B108.5C14—N1—C17111.82 (11)
C10—C9—O3119.54 (13)C14—N1—C13107.99 (12)
C10—C9—C12114.17 (13)C17—N1—C13110.93 (10)
O3—C9—C12126.29 (13)C2—O1—C5116.08 (13)
C9—C10—C13127.96 (13)C7—O2—C6115.95 (13)
C9—C10—S2109.68 (11)C9—O3—C8116.48 (12)
C13—C10—S2122.34 (10)C4—S1—C192.39 (8)
C12—C11—S2112.27 (12)C11—S2—C1092.48 (7)
C17i—C1—C2—O110.0 (2)C15—C14—N1—C13173.59 (11)
S1—C1—C2—O1177.86 (10)C1i—C17—N1—C14105.63 (14)
C17i—C1—C2—C3171.12 (14)C1i—C17—N1—C13133.75 (13)
S1—C1—C2—C31.02 (16)C10—C13—N1—C14173.83 (11)
C1—C2—C3—C40.73 (19)C10—C13—N1—C1763.30 (15)
O1—C2—C3—C4178.04 (14)C1—C2—O1—C5168.99 (13)
C2—C3—C4—S10.09 (17)C3—C2—O1—C512.3 (2)
O1—C5—C6—O269.51 (16)C6—C5—O1—C2175.84 (12)
O2—C7—C8—O371.31 (16)C8—C7—O2—C699.17 (16)
O3—C9—C10—C133.4 (2)C5—C6—O2—C796.95 (15)
C12—C9—C10—C13176.49 (15)C10—C9—O3—C8171.75 (13)
O3—C9—C10—S2178.27 (11)C12—C9—O3—C88.3 (2)
C12—C9—C10—S21.80 (17)C7—C8—O3—C9168.07 (13)
S2—C11—C12—C90.63 (18)C3—C4—S1—C10.42 (13)
C10—C9—C12—C111.6 (2)C2—C1—S1—C40.81 (12)
O3—C9—C12—C11178.48 (14)C17i—C1—S1—C4171.98 (12)
C9—C10—C13—N1108.44 (17)C12—C11—S2—C100.32 (13)
S2—C10—C13—N173.47 (15)C9—C10—S2—C111.20 (12)
N1—C14—C15—C1668.03 (17)C13—C10—S2—C11177.20 (13)
C15—C14—N1—C1764.09 (16)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2ii0.952.503.142 (2)125
C13—H13A···O30.992.582.9636 (18)103
Symmetry code: (ii) x+1, y, z.
 

Acknowledgements

We thank Professor Helen Stoeckli-Evans (Neuchâtel) for making available the Stoe IPDS diffractometer for data collection.

References

First citationBernhardt, P. V. & Lawrance, G. A. (1990). Coord. Chem. Rev. 104, 297–343.  CrossRef CAS Web of Science Google Scholar
First citationBuschmann, H.-J. & Schollmeyer, E. (2000). J. Inclus. Phenom. Macrocyclic Chem. 38, 85–97.  CrossRef CAS Google Scholar
First citationChaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1398–1405.  Web of Science CrossRef Google Scholar
First citationChaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 717–724.  Web of Science CrossRef Google Scholar
First citationDietrich, B., Lehn, J.-M. & Sauvage, J. P. (1969). Tetrahedron Lett. pp. 2885–2892.  CrossRef Google Scholar
First citationGokel, G. W. (1992). Chem. Soc. Rev. 21, 39–47.  CrossRef CAS Google Scholar
First citationGokel, G. W. & Durst, H. D. (1976). Synthesis, pp. 168–184.  CrossRef Google Scholar
First citationHalfpenny, J. & Sloman, Z. S. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1877–1879.  CSD CrossRef Google Scholar
First citationHambley, T. W., Lindoy, L. F., Reimers, J. R., Turner, P., Wei, G. & Widmer-Cooper, A. N. (2001). J. Chem. Soc. Dalton Trans. pp. 614–620.  CrossRef Google Scholar
First citationHancock, R. D., Maumela, H. & De Sousa, A. S. (1996). Coord. Chem. Rev. 148, 315–347.  CrossRef CAS Google Scholar
First citationKellogg, R. M. (1984). Angew. Chem. Int. Ed. Engl. 23, 782–794.  CrossRef Google Scholar
First citationKoziol, A. E., Palenik, R. C. & Palenik, G. J. (1988). J. Chem. Soc. Chem. Commun. pp. 226–227.  CrossRef Google Scholar
First citationLaufer, R. B. (1987). Chem. Rev. 87, 901–927.  Google Scholar
First citationParker, D. & Williams, J. A. G. (1996). J. Chem. Soc. Dalton Trans. pp. 3613–3628.  CrossRef Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2000). IPDSI Manual. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTei, L., Blake, A. J., Bencini, A., Vatancoli, B., Wilson, C. & Schröder, M. (2000). J. Chem. Soc. Dalton Trans. pp. 4122–4129.  CrossRef Google Scholar
First citationWainwright, K. P. (1997). Coord. Chem. Rev. 166, 35–90.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds