organic compounds
A thiophene-based azacryptand Mannich base: 15,35-dipropyl-2,5,8,22,25,28-hexaoxa-12,18,32,38-tetrathia-15,35-diazapentacyclo[29.5.5.5.0.0]tetraconta-1(37),9(13),10,17(21),19,29(33),30,39-octaene
aUniversity of Liverpool, Department of Chemistry, Crown Street, L69 7ZD, England, and bDepartment of Chemistry and Physics, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, England
*Correspondence e-mail: gael.labat@liv.ac.uk
The molecule of the title compound, C34H46N2O6S4 is composed of four thiophene rings bridged by two –O(CH2)2O– and two –CH2(NC2H5)CH2– chains. The macrocyclic molecule possesses a center of symmetry. In the the molecules are bridged by C—H⋯O interactions, forming chains along the a axis.
Comment
The preparation of cryptand-like structures, incorporating four thiophene rings, was previously described by Chaffin et al. (2001, 2002). The title compound is the first of a range of four thiophene-based azacryptand Mannich bases. The macrocycle incorporates six O and two N donor atoms. The coordination chemistry of aza and mixed oxa-aza macrocycles containing different pendant arms attached to the aza centers has attracted the attention of many researchers over the past twenty years (Tei et al., 2000; Wainwright, 1997; Bernhardt & Lawrance, 1990; Gokel, 1992; Hancock et al., 1996; Hambley et al., 2001; Buschmann & Schollmeyer, 2000; Dietrich et al., 1969). These ligands can exhibit remarkable metal-ion selectivity and show specific complexation behavior, forming metal complexes with unusual structures (references as above, together with Laufer, 1987; Parker & Williams, 1996). Macrocyclic and other ionophores can bind cations (Gokel & Durst, 1976), anions and small neutral organic molecules (Kellogg, 1984).
The centrosymmetric molecule is non-planar. Selected bond distances and angles are given in Table 1. Each of the four thiophene rings is planar, and opposite rings are parallel by symmetry. The S1 and S2 rings form a dihedral angle of 82.50 (3)°. The cross-molecule distances between the thiophene rings are S1⋯S1i = 11.323 (2) Å and S2⋯S2i = 14.735 (4) Å [symmetry code: (i) −x, −y, 1 − z.] The large separation of the S1 and S2 thiophene rings [S1⋯S2 = 12.567 (3) Å], and the relative proximity of the S1 and S2i rings [S1⋯S2i = 3.8412 (12) Å], means that the O and N atoms do not lie in the same plane. The largest cross-cavity distances are N1⋯N1i = 10.223 (3) Å, and O3⋯O3i = 10.052 (4) Å. The macrocyclic cavity can be divided into three small cavities defined respectively by least-squares planes through the N1, O2, O3 and O1i donor atoms for the first, through N1i, O2i, O3i and O1 for the second, and through O1, O2, O1i and O2i for the third. The two NO3 planes are parallel and form a dihedral angle of 47.61 (5)° with the third plane. The largest cross-cavity distances for these three smaller cavities are N1⋯O2 = N1i⋯O2i = 5.422 (2) Å, O1⋯O3i = O1i⋯O3 = 5.656 (2) Å, O1⋯O1i = 4.806 (3) Å, and O2⋯O2i = 6.425 (3) Å. The N1⋯S1i and N1⋯S2 distances are 3.0851 (18) Å and 3.4439 (17) Å, respectively. The N1⋯S2 distance is equal to the sum of the van der Waals radii (3.45 Å), whereas the N1⋯S1i distance is much shorter, and also considerably shorter than the non-bonded N⋯S interaction reported by Halfpenny & Sloman (2000) and Koziol et al. (1988). Consistent with this are the smaller S1—C1—C17 and S2—C10—C13 angles, compared with C2—C1—C17 and C9—C10—C13, and the smaller torsion angle S2—C10—C13—N1, compared with C9—C10—C13—N1. Some distortion in the thiophene ring bond lengths and angles is observed in many substituted thiophene compounds, the most obvious effect being the asymmetric nature of the S—C bonds (Koziol et al., 1988). In the present compound the rings associated with the S⋯N interactions have nearly symmetrical bond lengths, but the bond angles are clearly asymmetric. This is possibly due to the movement of some electron density towards N1. In many examples (Koziol et al., 1988), the nitrogen is sp2 hybridized rather than sp3 as in the present compound, and therefore the C—N distance is shorter, facilitating the S⋯N interaction. As in the macrocycle described by Halfpenny & Sloman (2000), the steric restrictions imposed by the C and N atoms being part of the large macrocyclic ring makes such short S⋯N contacts quite remarkable. They confirm that the electron pairs of the N atoms are directed outside the cavity, which is not favorable for complexation with a metal ion. However, this macrocycle, compared with one having two thiophene groups (Halfpenny & Sloman, 2000), shows greater flexibility in solution, allowing the cavity to accommodate small as well as large metal cations.
The molecules are linked by hydrogen bonds (Table 2). Fig. 2 shows the packing arrangement, giving a chain along the a axis.
Experimental
Compound (I) was synthesized using method A described by Chaffin et al. (2001). It was dissolved with stirring in a minimum of a 1:1:1 mixture of methanol/diethyl ether/dichloromethane. Slow evaporation at 277 K gave yellow blocks suitable for X-ray crystallographic analysis.
Crystal data
|
Data collection
|
Refinement
|
H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for methyl groups].
Data collection: EXPOSE (Stoe & Cie, 2000); cell CELL (Stoe & Cie, 2000); data reduction: INTEGRATE (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536806026250/cf2037sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806026250/cf2037Isup2.hkl
Data collection: EXPOSE (Stoe & Cie, 2000); cell
CELL (Stoe & Cie, 2000); data reduction: INTEGRATE (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.C34H46N2O6S4 | Z = 1 |
Mr = 706.97 | F(000) = 376 |
Triclinic, P1 | Dx = 1.393 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8178 (9) Å | Cell parameters from 8000 reflections |
b = 9.4311 (18) Å | θ = 1.7–26.1° |
c = 13.833 (2) Å | µ = 0.33 mm−1 |
α = 105.69 (2)° | T = 153 K |
β = 92.453 (18)° | Block, yellow |
γ = 98.79 (2)° | 0.30 × 0.30 × 0.30 mm |
V = 842.9 (2) Å3 |
STOE IPDS diffractometer | 2468 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.026 |
Graphite monochromator | θmax = 25.9°, θmin = 2.3° |
φ scans | h = −8→8 |
6702 measured reflections | k = −11→11 |
3075 independent reflections | l = −17→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0468P)2] where P = (Fo2 + 2Fc2)/3 |
3075 reflections | (Δ/σ)max < 0.001 |
209 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4451 (2) | −0.01853 (16) | 0.69307 (11) | 0.0144 (3) | |
C2 | 0.4154 (2) | −0.11678 (16) | 0.59807 (11) | 0.0157 (3) | |
C3 | 0.5838 (2) | −0.18181 (17) | 0.56586 (12) | 0.0200 (3) | |
H3A | 0.5870 | −0.2509 | 0.5019 | 0.024* | |
C4 | 0.7401 (2) | −0.13354 (18) | 0.63748 (12) | 0.0226 (4) | |
H4A | 0.8658 | −0.1649 | 0.6296 | 0.027* | |
C5 | 0.2208 (2) | −0.22591 (17) | 0.44070 (11) | 0.0196 (3) | |
H5B | 0.2688 | −0.3219 | 0.4332 | 0.024* | |
H5A | 0.3047 | −0.1671 | 0.4036 | 0.024* | |
C6 | 0.0068 (2) | −0.25369 (18) | 0.40002 (11) | 0.0222 (4) | |
H6A | −0.0447 | −0.1581 | 0.4171 | 0.027* | |
H6B | −0.0026 | −0.2925 | 0.3256 | 0.027* | |
C7 | −0.1501 (2) | −0.50898 (17) | 0.37889 (12) | 0.0203 (3) | |
H7B | −0.1424 | −0.5767 | 0.4220 | 0.024* | |
H7A | −0.0465 | −0.5245 | 0.3309 | 0.024* | |
C8 | −0.3525 (2) | −0.54710 (16) | 0.32111 (11) | 0.0182 (3) | |
H8A | −0.3875 | −0.6564 | 0.2900 | 0.022* | |
H8B | −0.4550 | −0.5150 | 0.3669 | 0.022* | |
C9 | −0.5217 (2) | −0.46729 (15) | 0.19600 (11) | 0.0154 (3) | |
C10 | −0.5267 (2) | −0.38039 (15) | 0.13156 (11) | 0.0143 (3) | |
C11 | −0.8579 (2) | −0.51720 (17) | 0.14872 (12) | 0.0202 (3) | |
H11A | −0.9946 | −0.5595 | 0.1455 | 0.024* | |
C12 | −0.7110 (2) | −0.54805 (17) | 0.20517 (11) | 0.0193 (3) | |
H12A | −0.7318 | −0.6150 | 0.2456 | 0.023* | |
C13 | −0.3552 (2) | −0.28857 (15) | 0.10070 (11) | 0.0148 (3) | |
H13A | −0.2298 | −0.3171 | 0.1218 | 0.018* | |
H13B | −0.3660 | −0.3117 | 0.0263 | 0.018* | |
C14 | −0.1845 (2) | −0.04886 (16) | 0.09950 (11) | 0.0183 (3) | |
H14B | −0.2062 | −0.0881 | 0.0252 | 0.022* | |
H14A | −0.0558 | −0.0725 | 0.1208 | 0.022* | |
C15 | −0.1706 (2) | 0.12006 (17) | 0.12842 (12) | 0.0219 (4) | |
H15B | −0.1613 | 0.1585 | 0.2028 | 0.026* | |
H15A | −0.0468 | 0.1645 | 0.1051 | 0.026* | |
C16 | −0.3466 (3) | 0.17036 (17) | 0.08441 (12) | 0.0241 (4) | |
H16A | −0.4689 | 0.1324 | 0.1107 | 0.036* | |
H16B | −0.3584 | 0.1314 | 0.0108 | 0.036* | |
H16C | −0.3262 | 0.2798 | 0.1034 | 0.036* | |
C17 | −0.3116 (2) | −0.08422 (16) | 0.25501 (11) | 0.0155 (3) | |
H17A | −0.1713 | −0.0352 | 0.2755 | 0.019* | |
H17B | −0.3330 | −0.1761 | 0.2775 | 0.019* | |
N1 | −0.34467 (18) | −0.12615 (13) | 0.14419 (9) | 0.0131 (3) | |
O1 | 0.23168 (16) | −0.14461 (12) | 0.54526 (8) | 0.0204 (3) | |
O2 | −0.11268 (17) | −0.35816 (13) | 0.44016 (8) | 0.0251 (3) | |
O3 | −0.34329 (16) | −0.47027 (11) | 0.24466 (8) | 0.0189 (2) | |
S1 | 0.68377 (6) | −0.00920 (4) | 0.74384 (3) | 0.02039 (11) | |
S2 | −0.76908 (6) | −0.39373 (4) | 0.08420 (3) | 0.01816 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0129 (7) | 0.0144 (7) | 0.0158 (7) | −0.0007 (6) | 0.0000 (6) | 0.0056 (6) |
C2 | 0.0132 (7) | 0.0168 (7) | 0.0164 (7) | 0.0002 (6) | 0.0009 (6) | 0.0049 (6) |
C3 | 0.0179 (8) | 0.0200 (8) | 0.0189 (7) | 0.0021 (6) | 0.0047 (7) | 0.0002 (6) |
C4 | 0.0157 (8) | 0.0248 (8) | 0.0280 (8) | 0.0057 (7) | 0.0056 (7) | 0.0070 (7) |
C5 | 0.0214 (9) | 0.0214 (8) | 0.0129 (7) | 0.0000 (6) | 0.0014 (6) | 0.0014 (6) |
C6 | 0.0252 (9) | 0.0230 (8) | 0.0158 (7) | 0.0026 (7) | −0.0042 (7) | 0.0030 (6) |
C7 | 0.0208 (8) | 0.0227 (8) | 0.0182 (7) | 0.0047 (6) | −0.0007 (7) | 0.0067 (6) |
C8 | 0.0206 (8) | 0.0169 (7) | 0.0179 (7) | 0.0003 (6) | 0.0000 (6) | 0.0080 (6) |
C9 | 0.0157 (8) | 0.0134 (7) | 0.0152 (7) | 0.0018 (6) | −0.0015 (6) | 0.0017 (6) |
C10 | 0.0141 (8) | 0.0111 (7) | 0.0156 (7) | 0.0011 (6) | −0.0007 (6) | 0.0008 (5) |
C11 | 0.0165 (8) | 0.0186 (8) | 0.0226 (8) | −0.0029 (6) | 0.0011 (7) | 0.0045 (6) |
C12 | 0.0198 (8) | 0.0174 (7) | 0.0201 (7) | −0.0019 (6) | −0.0002 (7) | 0.0070 (6) |
C13 | 0.0164 (8) | 0.0123 (7) | 0.0148 (7) | 0.0024 (6) | 0.0009 (6) | 0.0026 (6) |
C14 | 0.0159 (8) | 0.0174 (7) | 0.0206 (7) | −0.0007 (6) | 0.0026 (7) | 0.0053 (6) |
C15 | 0.0214 (9) | 0.0175 (8) | 0.0249 (8) | −0.0034 (6) | 0.0023 (7) | 0.0065 (6) |
C16 | 0.0316 (10) | 0.0171 (7) | 0.0230 (8) | 0.0002 (7) | 0.0010 (7) | 0.0068 (6) |
C17 | 0.0159 (8) | 0.0153 (7) | 0.0142 (7) | 0.0028 (6) | −0.0025 (6) | 0.0030 (6) |
N1 | 0.0146 (6) | 0.0112 (6) | 0.0131 (6) | 0.0008 (5) | 0.0014 (5) | 0.0033 (5) |
O1 | 0.0151 (6) | 0.0248 (6) | 0.0155 (5) | 0.0034 (5) | −0.0022 (5) | −0.0034 (4) |
O2 | 0.0201 (6) | 0.0299 (6) | 0.0181 (5) | −0.0030 (5) | 0.0023 (5) | −0.0016 (5) |
O3 | 0.0154 (5) | 0.0209 (5) | 0.0219 (5) | −0.0011 (4) | −0.0033 (5) | 0.0117 (4) |
S1 | 0.0147 (2) | 0.0250 (2) | 0.0195 (2) | 0.00264 (15) | −0.00250 (16) | 0.00388 (15) |
S2 | 0.0155 (2) | 0.01807 (19) | 0.02069 (19) | 0.00139 (14) | −0.00219 (16) | 0.00645 (15) |
C1—C2 | 1.374 (2) | C9—C12 | 1.424 (2) |
C1—C17i | 1.494 (2) | C10—C13 | 1.494 (2) |
C1—S1 | 1.7245 (14) | C10—S2 | 1.7251 (15) |
C2—O1 | 1.3744 (18) | C11—C12 | 1.358 (2) |
C2—C3 | 1.416 (2) | C11—S2 | 1.7065 (16) |
C3—C4 | 1.357 (2) | C11—H11A | 0.950 |
C3—H3A | 0.950 | C12—H12A | 0.950 |
C4—S1 | 1.7147 (18) | C13—N1 | 1.4758 (18) |
C4—H4A | 0.950 | C13—H13A | 0.990 |
C5—O1 | 1.4349 (18) | C13—H13B | 0.990 |
C5—C6 | 1.499 (2) | C14—N1 | 1.4710 (19) |
C5—H5B | 0.990 | C14—C15 | 1.521 (2) |
C5—H5A | 0.990 | C14—H14B | 0.990 |
C6—O2 | 1.426 (2) | C14—H14A | 0.990 |
C6—H6A | 0.990 | C15—C16 | 1.518 (2) |
C6—H6B | 0.990 | C15—H15B | 0.990 |
C7—O2 | 1.4231 (19) | C15—H15A | 0.990 |
C7—C8 | 1.506 (2) | C16—H16A | 0.980 |
C7—H7B | 0.990 | C16—H16B | 0.980 |
C7—H7A | 0.990 | C16—H16C | 0.980 |
C8—O3 | 1.4329 (17) | C17—N1 | 1.4739 (18) |
C8—H8A | 0.990 | C17—C1i | 1.494 (2) |
C8—H8B | 0.990 | C17—H17A | 0.990 |
C9—C10 | 1.367 (2) | C17—H17B | 0.990 |
C9—O3 | 1.3727 (18) | ||
C2—C1—C17i | 128.46 (13) | C12—C11—H11A | 123.9 |
C2—C1—S1 | 109.63 (12) | S2—C11—H11A | 123.9 |
C17i—C1—S1 | 121.44 (10) | C11—C12—C9 | 111.38 (13) |
C1—C2—O1 | 119.10 (15) | C11—C12—H12A | 124.3 |
C1—C2—C3 | 114.16 (13) | C9—C12—H12A | 124.3 |
O1—C2—C3 | 126.72 (14) | N1—C13—C10 | 113.45 (13) |
C4—C3—C2 | 111.80 (14) | N1—C13—H13A | 108.9 |
C4—C3—H3A | 124.1 | C10—C13—H13A | 108.9 |
C2—C3—H3A | 124.1 | N1—C13—H13B | 108.9 |
C3—C4—S1 | 112.00 (13) | C10—C13—H13B | 108.9 |
C3—C4—H4A | 124.0 | H13A—C13—H13B | 107.7 |
S1—C4—H4A | 124.0 | N1—C14—C15 | 114.07 (14) |
O1—C5—C6 | 107.24 (14) | N1—C14—H14B | 108.7 |
O1—C5—H5B | 110.3 | C15—C14—H14B | 108.7 |
C6—C5—H5B | 110.3 | N1—C14—H14A | 108.7 |
O1—C5—H5A | 110.3 | C15—C14—H14A | 108.7 |
C6—C5—H5A | 110.3 | H14B—C14—H14A | 107.6 |
H5B—C5—H5A | 108.5 | C16—C15—C14 | 113.43 (13) |
O2—C6—C5 | 111.60 (12) | C16—C15—H15B | 108.9 |
O2—C6—H6A | 109.3 | C14—C15—H15B | 108.9 |
C5—C6—H6A | 109.3 | C16—C15—H15A | 108.9 |
O2—C6—H6B | 109.3 | C14—C15—H15A | 108.9 |
C5—C6—H6B | 109.3 | H15B—C15—H15A | 107.7 |
H6A—C6—H6B | 108.0 | C15—C16—H16A | 109.5 |
O2—C7—C8 | 111.30 (13) | C15—C16—H16B | 109.5 |
O2—C7—H7B | 109.4 | H16A—C16—H16B | 109.5 |
C8—C7—H7B | 109.4 | C15—C16—H16C | 109.5 |
O2—C7—H7A | 109.4 | H16A—C16—H16C | 109.5 |
C8—C7—H7A | 109.4 | H16B—C16—H16C | 109.5 |
H7B—C7—H7A | 108.0 | N1—C17—C1i | 113.40 (12) |
O3—C8—C7 | 107.47 (12) | N1—C17—H17A | 108.9 |
O3—C8—H8A | 110.2 | C1i—C17—H17A | 108.9 |
C7—C8—H8A | 110.2 | N1—C17—H17B | 108.9 |
O3—C8—H8B | 110.2 | C1i—C17—H17B | 108.9 |
C7—C8—H8B | 110.2 | H17A—C17—H17B | 107.7 |
H8A—C8—H8B | 108.5 | C14—N1—C17 | 111.82 (11) |
C10—C9—O3 | 119.54 (13) | C14—N1—C13 | 107.99 (12) |
C10—C9—C12 | 114.17 (13) | C17—N1—C13 | 110.93 (10) |
O3—C9—C12 | 126.29 (13) | C2—O1—C5 | 116.08 (13) |
C9—C10—C13 | 127.96 (13) | C7—O2—C6 | 115.95 (13) |
C9—C10—S2 | 109.68 (11) | C9—O3—C8 | 116.48 (12) |
C13—C10—S2 | 122.34 (10) | C4—S1—C1 | 92.39 (8) |
C12—C11—S2 | 112.27 (12) | C11—S2—C10 | 92.48 (7) |
C17i—C1—C2—O1 | −10.0 (2) | C15—C14—N1—C13 | 173.59 (11) |
S1—C1—C2—O1 | 177.86 (10) | C1i—C17—N1—C14 | 105.63 (14) |
C17i—C1—C2—C3 | 171.12 (14) | C1i—C17—N1—C13 | −133.75 (13) |
S1—C1—C2—C3 | −1.02 (16) | C10—C13—N1—C14 | −173.83 (11) |
C1—C2—C3—C4 | 0.73 (19) | C10—C13—N1—C17 | 63.30 (15) |
O1—C2—C3—C4 | −178.04 (14) | C1—C2—O1—C5 | 168.99 (13) |
C2—C3—C4—S1 | −0.09 (17) | C3—C2—O1—C5 | −12.3 (2) |
O1—C5—C6—O2 | −69.51 (16) | C6—C5—O1—C2 | 175.84 (12) |
O2—C7—C8—O3 | 71.31 (16) | C8—C7—O2—C6 | −99.17 (16) |
O3—C9—C10—C13 | 3.4 (2) | C5—C6—O2—C7 | −96.95 (15) |
C12—C9—C10—C13 | −176.49 (15) | C10—C9—O3—C8 | 171.75 (13) |
O3—C9—C10—S2 | −178.27 (11) | C12—C9—O3—C8 | −8.3 (2) |
C12—C9—C10—S2 | 1.80 (17) | C7—C8—O3—C9 | −168.07 (13) |
S2—C11—C12—C9 | 0.63 (18) | C3—C4—S1—C1 | −0.42 (13) |
C10—C9—C12—C11 | −1.6 (2) | C2—C1—S1—C4 | 0.81 (12) |
O3—C9—C12—C11 | 178.48 (14) | C17i—C1—S1—C4 | −171.98 (12) |
C9—C10—C13—N1 | −108.44 (17) | C12—C11—S2—C10 | 0.32 (13) |
S2—C10—C13—N1 | 73.47 (15) | C9—C10—S2—C11 | −1.20 (12) |
N1—C14—C15—C16 | −68.03 (17) | C13—C10—S2—C11 | 177.20 (13) |
C15—C14—N1—C17 | −64.09 (16) |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···O2ii | 0.95 | 2.50 | 3.142 (2) | 125 |
C13—H13A···O3 | 0.99 | 2.58 | 2.9636 (18) | 103 |
Symmetry code: (ii) x+1, y, z. |
Acknowledgements
We thank Professor Helen Stoeckli-Evans (Neuchâtel) for making available the Stoe IPDS diffractometer for data collection.
References
Bernhardt, P. V. & Lawrance, G. A. (1990). Coord. Chem. Rev. 104, 297–343. CrossRef CAS Web of Science Google Scholar
Buschmann, H.-J. & Schollmeyer, E. (2000). J. Inclus. Phenom. Macrocyclic Chem. 38, 85–97. CrossRef CAS Google Scholar
Chaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1398–1405. Web of Science CrossRef Google Scholar
Chaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 717–724. Web of Science CrossRef Google Scholar
Dietrich, B., Lehn, J.-M. & Sauvage, J. P. (1969). Tetrahedron Lett. pp. 2885–2892. CrossRef Google Scholar
Gokel, G. W. (1992). Chem. Soc. Rev. 21, 39–47. CrossRef CAS Google Scholar
Gokel, G. W. & Durst, H. D. (1976). Synthesis, pp. 168–184. CrossRef Google Scholar
Halfpenny, J. & Sloman, Z. S. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1877–1879. CSD CrossRef Google Scholar
Hambley, T. W., Lindoy, L. F., Reimers, J. R., Turner, P., Wei, G. & Widmer-Cooper, A. N. (2001). J. Chem. Soc. Dalton Trans. pp. 614–620. CrossRef Google Scholar
Hancock, R. D., Maumela, H. & De Sousa, A. S. (1996). Coord. Chem. Rev. 148, 315–347. CrossRef CAS Google Scholar
Kellogg, R. M. (1984). Angew. Chem. Int. Ed. Engl. 23, 782–794. CrossRef Google Scholar
Koziol, A. E., Palenik, R. C. & Palenik, G. J. (1988). J. Chem. Soc. Chem. Commun. pp. 226–227. CrossRef Google Scholar
Laufer, R. B. (1987). Chem. Rev. 87, 901–927. Google Scholar
Parker, D. & Williams, J. A. G. (1996). J. Chem. Soc. Dalton Trans. pp. 3613–3628. CrossRef Google Scholar
Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2000). IPDSI Manual. Stoe & Cie, Darmstadt, Germany. Google Scholar
Tei, L., Blake, A. J., Bencini, A., Vatancoli, B., Wilson, C. & Schröder, M. (2000). J. Chem. Soc. Dalton Trans. pp. 4122–4129. CrossRef Google Scholar
Wainwright, K. P. (1997). Coord. Chem. Rev. 166, 35–90. Web of Science CrossRef CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.