organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Nicotinium nitrate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Electronics, St Joseph's College, Tiruchirappalli 620 002, India, bDepartment of Physics, National Institute of Technology, Tiruchirappalli 620 015, India, and cSchool of Chemistry, University of Southampton, Highfield SO17 1BJ, England
*Correspondence e-mail: bala@nitt.edu

(Received 4 July 2006; accepted 15 July 2006; online 26 July 2006)

In the title compound, C6H6NO2+·NO3·H2O, the nicotinium cation is essentially planar. N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the (10[\overline{1}]) plane.

Comment

Nicotinic acid (vitamin B3), known as niacin, is a lipid lowering agent widely used to treat hypertriglyceridemia by the inhibition of lipolysis in adipose tissue (Athimoolam & Rajaram, 2005[Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o2764-o2767.]). The nicotinic acid complex 5-methyl­pyrazine-2-carboxylic acid-4-oxide is a commonly used drug for the treatment of hypercholesterolemia (Lorenzen et al., 2001[Lorenzen, A., Stannek, C., Lang, H., Andrianov, V., Kalvinsh, I. & Schwabe, U. (2001). Mol. Pharmacol. 59, 349-357.]). Coordination complexes of nicotinic acid with metals such as Sn possess anti­tumour activity greater than the well known cis-platin or doxorubicin (Gielen et al., 1992[Gielen, M., Khloufi, A. E., Biesemans, M. & Willem, R. (1992). Polyhedron, 11, 1861-1868.]). The enzyme nicotinic acid mononucleotide adenyltransferase is essential for the synthesis of nicotinamide adenine dinucleotide in all living cells and is a potential target for anti­biotics (Kim et al., 2004[Kim, H.-L., Yoon, H.-J., Ha, J. Y., Lee, B. I., Lee, H. H., Mikami, B. & Suh, S. W. (2004). Acta Cryst. D60, 948-949.]). As a part of our investigation of inorganic salts of nicotinic acid, we report here the crystal structure of nicotinium nitrate monohydrate, (I)[link].

[Scheme 1]

The asymetric unit of (I)[link] contains a nicotinium cation, a nitrate anion and a water mol­ecule (Fig. 1[link]). Protonation of atom N1 of nicotine results in a widening of the C2—N1—C6 angle to 122.9 (3)°, compared with 118.9 (3)° in unprotonated nicotinic acid (Kutoglu & Scheringer, 1983[Kutoglu, A. & Scheringer, C. (1983). Acta Cryst. C39, 232-234.]). The nicotinium cation is essentially planar, with a maximum deviation from the mean plane of 0.048 (2) Å for atom O1.

The crystal packing is stabilized by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]), which link the mol­ecules into layers parallel to the (10[\overline{1}]) plane (Fig. 2[link]).

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], showing the atom-numbering scheme, with 50% probability displacement ellipsoids. Hydrogen bonds are drawn as dashed lines.
[Figure 2]
Figure 2
A packing diagram for (I)[link], viewed down the b axis. Hydrogen bonds are drawn as dashed lines.

Experimental

Nitric acid was added dropwise to an aqueous solution of nicotinic acid, in stoichiometric amounts. The solution was heated at 323 K for 2 h. Colourless block-shaped crystals of (I)[link] were obtained by slow evaporation over a period of one week.

Crystal data
  • C6H6NO2+·NO3·H2O

  • Mr = 204.14

  • Monoclinic, P 21 /n

  • a = 6.6539 (7) Å

  • b = 12.3682 (15) Å

  • c = 10.1814 (15) Å

  • β = 100.967 (7)°

  • V = 822.59 (18) Å3

  • Z = 4

  • Dx = 1.641 Mg m−3

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.2 × 0.2 × 0.07 mm

Data collection
  • Bruker Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Gottingen, Germany.]) Tmin = 0.970, Tmax = 0.990

  • 6153 measured reflections

  • 1604 independent reflections

  • 894 reflections with I > 2σ(I)

  • Rint = 0.109

  • θmax = 26.1°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.137

  • S = 0.98

  • 1604 reflections

  • 135 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0639P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 1.93 2.782 (3) 170
O1—H1A⋯O6 0.82 1.77 2.587 (3) 180
O6—H6A⋯O5 0.93 (5) 1.92 (5) 2.843 (3) 171 (4)
O6—H6B⋯O3ii 0.88 (5) 1.96 (5) 2.825 (3) 173 (5)
C2—H2⋯O2iii 0.93 2.43 3.173 (4) 137
C4—H4⋯O1iv 0.93 2.46 3.262 (4) 144
C6—H6⋯O5i 0.93 2.35 3.051 (4) 132
C6—H6⋯O4iv 0.93 2.32 3.013 (4) 131
Symmetry codes: (i) x, y-1, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Water H atoms were located in a difference map and refined freely [O—H = 0.88 (5) and 0.93 (5) Å]. All other H atoms were placed in calculated positions, with C—H = 0.93 Å, O—H = 0.82 Å and N—H = 0.86 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Gottingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Gottingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Nicotinium nitrate monohydrate top
Crystal data top
C6H6NO2+·NO3·H2OF(000) = 424
Mr = 204.14Dx = 1.641 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 6.6539 (7) Åθ = 1.0–26.0°
b = 12.3682 (15) ŵ = 0.15 mm1
c = 10.1814 (15) ÅT = 120 K
β = 100.967 (7)°Block, colourless
V = 822.59 (18) Å30.2 × 0.2 × 0.07 mm
Z = 4
Data collection top
Bruker–Nonius FR591 rotating anode
diffractometer
Rint = 0.109
φ and ω scansθmax = 26.1°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.970, Tmax = 0.990k = 1414
6153 measured reflectionsl = 129
1604 independent reflections3 standard reflections every 60 reflections
894 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0639P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.137(Δ/σ)max < 0.001
S = 0.98Δρmax = 0.26 e Å3
1604 reflectionsΔρmin = 0.30 e Å3
135 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0945 (3)0.36210 (16)0.3701 (2)0.0259 (6)
H1A0.08660.42790.36020.039*
O20.0994 (3)0.36163 (16)0.1648 (2)0.0258 (6)
N10.1318 (3)0.03157 (19)0.3733 (3)0.0205 (7)
H10.20440.0010.44060.025*
C20.1259 (4)0.1401 (2)0.3736 (3)0.0196 (7)
H20.19840.17860.44580.023*
C30.0112 (4)0.1940 (2)0.2659 (3)0.0167 (7)
C40.0953 (4)0.1334 (2)0.1597 (3)0.0211 (8)
H40.17320.1680.08610.025*
C50.0851 (4)0.0216 (2)0.1637 (3)0.0219 (8)
H50.15560.01910.09290.026*
C60.0292 (4)0.0283 (2)0.2724 (3)0.0209 (8)
H60.03610.10340.27640.025*
C70.0042 (4)0.3138 (2)0.2603 (3)0.0181 (7)
N20.3245 (4)0.8028 (2)0.5438 (3)0.0235 (7)
O30.3502 (3)0.90208 (16)0.5744 (2)0.0243 (6)
O40.4266 (3)0.73309 (17)0.6135 (2)0.0342 (7)
O50.1940 (3)0.77703 (17)0.4435 (2)0.0268 (6)
O60.0695 (4)0.56951 (18)0.3383 (3)0.0264 (6)
H6A0.124 (6)0.634 (4)0.377 (4)0.067 (14)*
H6B0.002 (6)0.584 (4)0.258 (5)0.082 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0344 (12)0.0150 (12)0.0236 (14)0.0002 (10)0.0062 (10)0.0002 (10)
O20.0352 (12)0.0176 (12)0.0210 (13)0.0032 (10)0.0040 (10)0.0015 (10)
N10.0219 (14)0.0155 (14)0.0227 (16)0.0005 (11)0.0003 (11)0.0030 (12)
C20.0169 (16)0.0196 (17)0.0207 (18)0.0013 (13)0.0002 (13)0.0022 (14)
C30.0182 (16)0.0153 (17)0.0163 (18)0.0003 (12)0.0023 (13)0.0026 (13)
C40.0198 (16)0.0225 (18)0.0204 (19)0.0011 (13)0.0021 (13)0.0017 (15)
C50.0252 (17)0.0186 (18)0.0200 (18)0.0050 (14)0.0008 (13)0.0035 (14)
C60.0237 (17)0.0125 (16)0.0265 (19)0.0012 (13)0.0048 (14)0.0011 (14)
C70.0187 (16)0.0168 (16)0.0179 (18)0.0021 (13)0.0015 (14)0.0003 (14)
N20.0266 (15)0.0199 (16)0.0235 (17)0.0015 (12)0.0037 (13)0.0010 (13)
O30.0339 (12)0.0131 (12)0.0227 (13)0.0011 (10)0.0027 (9)0.0000 (10)
O40.0420 (14)0.0201 (13)0.0351 (16)0.0088 (11)0.0065 (12)0.0080 (11)
O50.0318 (13)0.0226 (12)0.0225 (14)0.0040 (10)0.0039 (11)0.0027 (10)
O60.0303 (13)0.0179 (13)0.0276 (15)0.0025 (10)0.0027 (11)0.0000 (11)
Geometric parameters (Å, º) top
O1—C71.326 (3)C4—C51.384 (4)
O1—H1A0.82C4—H40.93
O2—C71.209 (3)C5—C61.365 (4)
N1—C21.342 (4)C5—H50.93
N1—C61.343 (4)C6—H60.93
N1—H10.86N2—O41.235 (3)
C2—C31.383 (4)N2—O51.249 (3)
C2—H20.93N2—O31.271 (3)
C3—C41.393 (4)O6—H6A0.93 (5)
C3—C71.486 (4)O6—H6B0.88 (5)
C7—O1—H1A109.5C6—C5—C4119.5 (3)
C2—N1—C6122.9 (3)C6—C5—H5120.2
C2—N1—H1118.6C4—C5—H5120.2
C6—N1—H1118.6N1—C6—C5119.6 (3)
N1—C2—C3119.4 (3)N1—C6—H6120.2
N1—C2—H2120.3C5—C6—H6120.2
C3—C2—H2120.3O2—C7—O1123.9 (3)
C2—C3—C4118.6 (3)O2—C7—C3122.7 (3)
C2—C3—C7122.3 (3)O1—C7—C3113.4 (2)
C4—C3—C7119.0 (3)O4—N2—O5120.8 (2)
C5—C4—C3119.9 (3)O4—N2—O3120.0 (2)
C5—C4—H4120O5—N2—O3119.2 (2)
C3—C4—H4120H6A—O6—H6B108 (4)
C6—N1—C2—C30.5 (5)C2—N1—C6—C50.8 (5)
N1—C2—C3—C40.0 (5)C4—C5—C6—N10.6 (5)
N1—C2—C3—C7179.3 (3)C2—C3—C7—O2177.8 (3)
C2—C3—C4—C50.1 (5)C4—C3—C7—O22.9 (5)
C7—C3—C4—C5179.2 (3)C2—C3—C7—O12.8 (4)
C3—C4—C5—C60.2 (5)C4—C3—C7—O1176.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.861.932.782 (3)170
O1—H1A···O60.821.772.587 (3)180
O6—H6A···O50.93 (5)1.92 (5)2.843 (3)171 (4)
O6—H6B···O3ii0.88 (5)1.96 (5)2.825 (3)173 (5)
C2—H2···O2iii0.932.433.173 (4)137
C4—H4···O1iv0.932.463.262 (4)144
C6—H6···O5i0.932.353.051 (4)132
C6—H6···O4iv0.932.323.013 (4)131
Symmetry codes: (i) x, y1, z; (ii) x1/2, y+3/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z1/2.
 

References

First citationAthimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o2764–o2767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGielen, M., Khloufi, A. E., Biesemans, M. & Willem, R. (1992). Polyhedron, 11, 1861–1868.  CSD CrossRef CAS Web of Science Google Scholar
First citationKim, H.-L., Yoon, H.-J., Ha, J. Y., Lee, B. I., Lee, H. H., Mikami, B. & Suh, S. W. (2004). Acta Cryst. D60, 948–949.  CrossRef CAS IUCr Journals Google Scholar
First citationKutoglu, A. & Scheringer, C. (1983). Acta Cryst. C39, 232–234.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLorenzen, A., Stannek, C., Lang, H., Andrianov, V., Kalvinsh, I. & Schwabe, U. (2001). Mol. Pharmacol. 59, 349–357.  Web of Science PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Gottingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds