metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino­pyridinium) tetra­chloro­cobalt(II)11

CROSSMARK_Color_square_no_text.svg

aDepartment of Electronics, St Joseph's College, Tiruchirappalli 620002, India, bDepartment of Physics, National Institute of Technology, Tiruchirappalli 620015, India, and cSchool of Chemistry, University of Southampton, Highfield, SO17 1BJ, England
*Correspondence e-mail: bala@nitt.edu

(Received 1 July 2006; accepted 6 July 2006; online 14 July 2006)

In the crystal structure of the title compound, (C5H7N2)2[CoCl4], the CoII ion is coordinated by four chloride ions. The Co atom lies on a crystallographic twofold rotation axis. The structure is stabilized by an extensive network of N—H⋯Cl hydrogen bonds.

Comment

2-Amino­pyridine is used in the manufacture of pharmaceuticals, especially anti­histaminic drugs (Windholz, 1976[Windholz, M. (1976). The Merck Index. 9th Edition. Rahway, New Jersey, USA: Merck & Co., Inc.]). As part of our investigation of the reactions of 2-amino­pyridine with metals, we report here the crystal structure of the title compound, (I)[link].

[Scheme 1]

The asymmetric unit of (I)[link] contains a 2-amino­pyridinium cation and half of a [CoCl4]2− anion. The Co atom lies on a crystallographic twofold rotation axis. Protonation of atom N1 of the 2-amino­pyridine results in the widening of the C2—N1—C6 angle to 122.7 (2)°. This compares with 117.7 (1)° in neutral 2-amino­pyridine (Chao et al., 1975[Chao, M., Schempp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922-2924.]). The bond lengths and angles in (I)[link] are comparable to those in other 2-amino­pyridinium complexes (Bis & Zaworotko, 2005[Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.]; Smith et al., 2000[Smith, G., Bott, R. C. & Wermuth, U. D. (2000). Acta Cryst. C56, 1505-1506.]; Jebas & Balasubramanian, 2006[Jebas, S. R. & Balasubramanian, T. (2006). Acta Cryst. E62, o2209-o2211.]). The pyridinium ring deviates somewhat from planarity, with a maximum deviation from the mean plane of 0.026 (2) Å for atom C6.

The anion exhibits tetra­hedral geometry, with the CoII ion surrounded by four Cl atoms, with Cl—Co—Cl angles ranging from 109.85 (4) to 115.98 (3)°. The mean Co—Cl bond length, 2.27 (7) Å, is close to those observed in similar complexes (Zhang et al., 2005[Zhang, H., Fang, L. & Yuan, R. (2005). Acta Cryst. E61, m677-m678.]).

There are N—H⋯Cl hydrogen-bonding inter­actions between the cations and the anions (Table 2[link]).

[Figure 1]
Figure 1
The structure of (I)[link], showing the atom-numbering scheme, with 50% probability displacement ellipsoids. The suffix a indicates the symmetry position (−x, y, [3\over2]z).

Experimental

Solutions of 2-amino­pyridine and CoCl2·2H2O in water were mixed in a 1:1 molar ratio and heated at 363 K for 2 h. Blue crystals of (I)[link] were obtained by slow evaporation over a period of one week.

Crystal data
  • (C5H7N2)2[CoCl4]

  • Mr = 390.98

  • Monoclinic, C 2/c

  • a = 8.2152 (3) Å

  • b = 14.0713 (5) Å

  • c = 13.5731 (5) Å

  • β = 95.190 (2)°

  • V = 1562.52 (10) Å3

  • Z = 4

  • Dx = 1.662 Mg m−3

  • Mo Kα radiation

  • μ = 1.77 mm−1

  • T = 120 (2) K

  • Block, blue

  • 0.4 × 0.25 × 0.2 mm

Data collection
  • Bruker–Nonius FR591 rotating-anode diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan SADABS (Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.595, Tmax = 0.701

  • 8864 measured reflections

  • 1801 independent reflections

  • 1488 reflections with I > 2σ(I)

  • Rint = 0.032

  • θmax = 27.5°

  • 3 standard reflections every 60 reflections intensity decay: none

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.119

  • S = 1.26

  • 1801 reflections

  • 87 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0653P)2 + 0.2962P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co—Cl2 2.2724 (7)
Co—Cl1 2.2755 (7)
C2—N1—C6 122.7 (2)
Cl1—Co—Cl1i 109.37 (4)
Cl2—Co—Cl2i 109.85 (4)
Cl2—Co—Cl1 115.98 (3)
Symmetry code: (i) [-x, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H2A⋯Cl2ii 0.86 2.42 3.258 (2) 165
N7—H2B⋯Cl1iii 0.86 2.44 3.286 (2) 169
N1—H1⋯Cl1iv 0.86 2.58 3.275 (2) 139
Symmetry codes: (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x, -y, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

H atoms were placed in calculated positions, with C—H = 0.93 Å and N—H = 0.86 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N).

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) & COLLECT; data reduction: DENZO & COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

(I) top
Crystal data top
(C5H7N2)2[CoCl4]F(000) = 788
Mr = 390.98Dx = 1.662 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 8.2152 (3) Åθ = 2.9–27.5°
b = 14.0713 (5) ŵ = 1.77 mm1
c = 13.5731 (5) ÅT = 120 K
β = 95.190 (2)°Block, blue
V = 1562.52 (10) Å30.4 × 0.25 × 0.2 mm
Z = 4
Data collection top
Bruker–Nonius FR591 rotating anode
diffractometer
Rint = 0.032
φ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
SADABS (Sheldrick, 2003)
h = 1010
Tmin = 0.595, Tmax = 0.701k = 1817
8864 measured reflectionsl = 1717
1801 independent reflections3 standard reflections every 60 reflections
1488 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.2962P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max < 0.001
S = 1.26Δρmax = 0.57 e Å3
1801 reflectionsΔρmin = 0.67 e Å3
87 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.0862 (3)0.30455 (18)0.44634 (18)0.0176 (6)
H20.07010.31310.65680.028*
C30.0066 (3)0.27692 (19)0.5235 (2)0.0208 (6)
H30.06710.2210.51820.025*
C40.0082 (3)0.33173 (19)0.6060 (2)0.0236 (6)
C50.0835 (3)0.41657 (19)0.6152 (2)0.0240 (6)
C60.1703 (3)0.44272 (18)0.5399 (2)0.0226 (6)
H60.23050.49870.54440.027*
N10.1702 (3)0.38769 (15)0.45715 (17)0.0200 (5)
H10.22560.40630.40990.024*
N70.0986 (3)0.25322 (16)0.36481 (16)0.0227 (5)
H2A0.15880.27290.32040.027*
H2B0.04630.20040.35670.027*
H1A0.08410.45370.6720.029*
Co00.04217 (3)0.750.01744 (19)
Cl10.10210 (9)0.05131 (4)0.86658 (5)0.0261 (2)
Cl20.21666 (8)0.13498 (5)0.80332 (5)0.0234 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0140 (11)0.0201 (13)0.0182 (13)0.0030 (10)0.0014 (10)0.0034 (10)
C30.0179 (13)0.0225 (14)0.0217 (13)0.0022 (11)0.0005 (11)0.0038 (11)
C40.0199 (14)0.0295 (14)0.0219 (14)0.0007 (11)0.0051 (11)0.0037 (12)
C50.0240 (14)0.0233 (14)0.0245 (15)0.0017 (11)0.0018 (11)0.0027 (12)
C60.0194 (14)0.0202 (13)0.0280 (15)0.0007 (10)0.0008 (11)0.0000 (11)
N10.0183 (11)0.0204 (11)0.0219 (12)0.0006 (9)0.0048 (9)0.0062 (9)
N70.0229 (12)0.0240 (11)0.0215 (12)0.0012 (9)0.0043 (9)0.0016 (10)
Co0.0164 (3)0.0163 (3)0.0202 (3)00.0048 (2)0
Cl10.0254 (4)0.0240 (4)0.0306 (4)0.0031 (3)0.0120 (3)0.0083 (3)
Cl20.0218 (4)0.0214 (4)0.0270 (4)0.0053 (2)0.0022 (3)0.0001 (3)
Geometric parameters (Å, º) top
C3—C41.361 (4)N1—C21.360 (3)
C3—C21.405 (4)N1—H10.86
C3—H30.93N7—C21.333 (3)
C4—H20.93N7—H2A0.86
C5—C41.411 (4)N7—H2B0.86
C5—H1A0.93Co—Cl22.2724 (7)
C6—C51.350 (4)Co—Cl2i2.2724 (7)
C6—N11.364 (4)Co—Cl12.2755 (7)
C6—H60.93Co—Cl1i2.2755 (7)
C2—N7—H2A120C6—N1—H1118.7
C2—N7—H2B120C6—C5—C4118.5 (3)
H2A—N7—H2B120C6—C5—H1A120.7
C2—N1—C6122.7 (2)N1—C6—H6119.7
C2—N1—H1118.7N1—C2—C3117.5 (2)
C2—C3—H3119.9N7—C2—N1118.7 (2)
C3—C4—C5120.5 (3)N7—C2—C3123.8 (2)
C3—C4—H2119.8Cl1—Co—Cl1i109.37 (4)
C4—C3—C2120.2 (2)Cl2—Co—Cl2i109.85 (4)
C4—C3—H3119.9Cl2—Co—Cl1115.98 (3)
C4—C5—H1A120.7Cl2i—Co—Cl1103.08 (2)
C5—C4—H2119.8Cl2—Co—Cl1i103.08 (2)
C5—C6—N1120.6 (3)Cl2i—Co—Cl1i115.98 (3)
C5—C6—H6119.7
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H2A···Cl2ii0.862.423.258 (2)165
N7—H2B···Cl1iii0.862.443.286 (2)169
N1—H1···Cl1iv0.862.583.275 (2)139
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x, y, z1/2; (iv) x+1/2, y+1/2, z1/2.
 

Footnotes

1.

References

First citationBis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169–1179.  Web of Science CSD CrossRef CAS Google Scholar
First citationChao, M., Schempp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922–2924.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJebas, S. R. & Balasubramanian, T. (2006). Acta Cryst. E62, o2209–o2211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSmith, G., Bott, R. C. & Wermuth, U. D. (2000). Acta Cryst. C56, 1505–1506.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWindholz, M. (1976). The Merck Index. 9th Edition. Rahway, New Jersey, USA: Merck & Co., Inc.  Google Scholar
First citationZhang, H., Fang, L. & Yuan, R. (2005). Acta Cryst. E61, m677–m678.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds