metal-organic compounds
aDepartment of Electronics, St Joseph's College, Tiruchirappalli 620002, India, bDepartment of Physics, National Institute of Technology, Tiruchirappalli 620015, India, and cSchool of Chemistry, University of Southampton, Highfield, SO17 1BJ, England
*Correspondence e-mail: bala@nitt.edu
In the 5H7N2)2[CoCl4], the CoII ion is coordinated by four chloride ions. The Co atom lies on a crystallographic twofold rotation axis. The structure is stabilized by an extensive network of N—H⋯Cl hydrogen bonds.
of the title compound, (CComment
2-Aminopyridine is used in the manufacture of pharmaceuticals, especially antihistaminic drugs (Windholz, 1976). As part of our investigation of the reactions of 2-aminopyridine with metals, we report here the of the title compound, (I).
The contains a 2-aminopyridinium cation and half of a [CoCl4]2− anion. The Co atom lies on a crystallographic twofold rotation axis. Protonation of atom N1 of the 2-aminopyridine results in the widening of the C2—N1—C6 angle to 122.7 (2)°. This compares with 117.7 (1)° in neutral 2-aminopyridine (Chao et al., 1975). The bond lengths and angles in (I) are comparable to those in other 2-aminopyridinium complexes (Bis & Zaworotko, 2005; Smith et al., 2000; Jebas & Balasubramanian, 2006). The pyridinium ring deviates somewhat from planarity, with a maximum deviation from the mean plane of 0.026 (2) Å for atom C6.
of (I)The anion exhibits tetrahedral geometry, with the CoII ion surrounded by four Cl atoms, with Cl—Co—Cl angles ranging from 109.85 (4) to 115.98 (3)°. The mean Co—Cl bond length, 2.27 (7) Å, is close to those observed in similar complexes (Zhang et al., 2005).
There are N—H⋯Cl hydrogen-bonding interactions between the cations and the anions (Table 2).
Experimental
Solutions of 2-aminopyridine and CoCl2·2H2O in water were mixed in a 1:1 molar ratio and heated at 363 K for 2 h. Blue crystals of (I) were obtained by slow evaporation over a period of one week.
Crystal data
|
Data collection
Refinement
|
|
H atoms were placed in calculated positions, with C—H = 0.93 Å and N—H = 0.86 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N).
Data collection: COLLECT (Nonius, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).
Supporting information
https://doi.org/10.1107/S1600536806026213/ez2012sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806026213/ez2012Isup2.hkl
Data collection: COLLECT (Nonius, 1998); cell
DENZO (Otwinowski & Minor, 1997) & COLLECT; data reduction: DENZO & COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).(C5H7N2)2[CoCl4] | F(000) = 788 |
Mr = 390.98 | Dx = 1.662 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 25 reflections |
a = 8.2152 (3) Å | θ = 2.9–27.5° |
b = 14.0713 (5) Å | µ = 1.77 mm−1 |
c = 13.5731 (5) Å | T = 120 K |
β = 95.190 (2)° | Block, blue |
V = 1562.52 (10) Å3 | 0.4 × 0.25 × 0.2 mm |
Z = 4 |
Bruker–Nonius FR591 rotating anode diffractometer | Rint = 0.032 |
φ and ω scans | θmax = 27.5°, θmin = 2.9° |
Absorption correction: multi-scan SADABS (Sheldrick, 2003) | h = −10→10 |
Tmin = 0.595, Tmax = 0.701 | k = −18→17 |
8864 measured reflections | l = −17→17 |
1801 independent reflections | 3 standard reflections every 60 reflections |
1488 reflections with I > 2σ(I) | intensity decay: none |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0653P)2 + 0.2962P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.119 | (Δ/σ)max < 0.001 |
S = 1.26 | Δρmax = 0.57 e Å−3 |
1801 reflections | Δρmin = −0.67 e Å−3 |
87 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.0862 (3) | 0.30455 (18) | 0.44634 (18) | 0.0176 (6) | |
H2 | −0.0701 | 0.3131 | 0.6568 | 0.028* | |
C3 | −0.0066 (3) | 0.27692 (19) | 0.5235 (2) | 0.0208 (6) | |
H3 | −0.0671 | 0.221 | 0.5182 | 0.025* | |
C4 | −0.0082 (3) | 0.33173 (19) | 0.6060 (2) | 0.0236 (6) | |
C5 | 0.0835 (3) | 0.41657 (19) | 0.6152 (2) | 0.0240 (6) | |
C6 | 0.1703 (3) | 0.44272 (18) | 0.5399 (2) | 0.0226 (6) | |
H6 | 0.2305 | 0.4987 | 0.5444 | 0.027* | |
N1 | 0.1702 (3) | 0.38769 (15) | 0.45715 (17) | 0.0200 (5) | |
H1 | 0.2256 | 0.4063 | 0.4099 | 0.024* | |
N7 | 0.0986 (3) | 0.25322 (16) | 0.36481 (16) | 0.0227 (5) | |
H2A | 0.1588 | 0.2729 | 0.3204 | 0.027* | |
H2B | 0.0463 | 0.2004 | 0.3567 | 0.027* | |
H1A | 0.0841 | 0.4537 | 0.672 | 0.029* | |
Co | 0 | 0.04217 (3) | 0.75 | 0.01744 (19) | |
Cl1 | −0.10210 (9) | −0.05131 (4) | 0.86658 (5) | 0.0261 (2) | |
Cl2 | 0.21666 (8) | 0.13498 (5) | 0.80332 (5) | 0.0234 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0140 (11) | 0.0201 (13) | 0.0182 (13) | 0.0030 (10) | −0.0014 (10) | 0.0034 (10) |
C3 | 0.0179 (13) | 0.0225 (14) | 0.0217 (13) | −0.0022 (11) | 0.0005 (11) | 0.0038 (11) |
C4 | 0.0199 (14) | 0.0295 (14) | 0.0219 (14) | 0.0007 (11) | 0.0051 (11) | 0.0037 (12) |
C5 | 0.0240 (14) | 0.0233 (14) | 0.0245 (15) | 0.0017 (11) | 0.0018 (11) | −0.0027 (12) |
C6 | 0.0194 (14) | 0.0202 (13) | 0.0280 (15) | 0.0007 (10) | 0.0008 (11) | 0.0000 (11) |
N1 | 0.0183 (11) | 0.0204 (11) | 0.0219 (12) | 0.0006 (9) | 0.0048 (9) | 0.0062 (9) |
N7 | 0.0229 (12) | 0.0240 (11) | 0.0215 (12) | −0.0012 (9) | 0.0043 (9) | 0.0016 (10) |
Co | 0.0164 (3) | 0.0163 (3) | 0.0202 (3) | 0 | 0.0048 (2) | 0 |
Cl1 | 0.0254 (4) | 0.0240 (4) | 0.0306 (4) | 0.0031 (3) | 0.0120 (3) | 0.0083 (3) |
Cl2 | 0.0218 (4) | 0.0214 (4) | 0.0270 (4) | −0.0053 (2) | 0.0022 (3) | 0.0001 (3) |
C3—C4 | 1.361 (4) | N1—C2 | 1.360 (3) |
C3—C2 | 1.405 (4) | N1—H1 | 0.86 |
C3—H3 | 0.93 | N7—C2 | 1.333 (3) |
C4—H2 | 0.93 | N7—H2A | 0.86 |
C5—C4 | 1.411 (4) | N7—H2B | 0.86 |
C5—H1A | 0.93 | Co—Cl2 | 2.2724 (7) |
C6—C5 | 1.350 (4) | Co—Cl2i | 2.2724 (7) |
C6—N1 | 1.364 (4) | Co—Cl1 | 2.2755 (7) |
C6—H6 | 0.93 | Co—Cl1i | 2.2755 (7) |
C2—N7—H2A | 120 | C6—N1—H1 | 118.7 |
C2—N7—H2B | 120 | C6—C5—C4 | 118.5 (3) |
H2A—N7—H2B | 120 | C6—C5—H1A | 120.7 |
C2—N1—C6 | 122.7 (2) | N1—C6—H6 | 119.7 |
C2—N1—H1 | 118.7 | N1—C2—C3 | 117.5 (2) |
C2—C3—H3 | 119.9 | N7—C2—N1 | 118.7 (2) |
C3—C4—C5 | 120.5 (3) | N7—C2—C3 | 123.8 (2) |
C3—C4—H2 | 119.8 | Cl1—Co—Cl1i | 109.37 (4) |
C4—C3—C2 | 120.2 (2) | Cl2—Co—Cl2i | 109.85 (4) |
C4—C3—H3 | 119.9 | Cl2—Co—Cl1 | 115.98 (3) |
C4—C5—H1A | 120.7 | Cl2i—Co—Cl1 | 103.08 (2) |
C5—C4—H2 | 119.8 | Cl2—Co—Cl1i | 103.08 (2) |
C5—C6—N1 | 120.6 (3) | Cl2i—Co—Cl1i | 115.98 (3) |
C5—C6—H6 | 119.7 |
Symmetry code: (i) −x, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N7—H2A···Cl2ii | 0.86 | 2.42 | 3.258 (2) | 165 |
N7—H2B···Cl1iii | 0.86 | 2.44 | 3.286 (2) | 169 |
N1—H1···Cl1iv | 0.86 | 2.58 | 3.275 (2) | 139 |
Symmetry codes: (ii) −x+1/2, −y+1/2, −z+1; (iii) x, −y, z−1/2; (iv) x+1/2, −y+1/2, z−1/2. |
Footnotes
1.
References
Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169–1179. Web of Science CSD CrossRef CAS Google Scholar
Chao, M., Schempp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922–2924. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Jebas, S. R. & Balasubramanian, T. (2006). Acta Cryst. E62, o2209–o2211. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany. Google Scholar
Smith, G., Bott, R. C. & Wermuth, U. D. (2000). Acta Cryst. C56, 1505–1506. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Windholz, M. (1976). The Merck Index. 9th Edition. Rahway, New Jersey, USA: Merck & Co., Inc. Google Scholar
Zhang, H., Fang, L. & Yuan, R. (2005). Acta Cryst. E61, m677–m678. Web of Science CSD CrossRef IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.