organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-2,4,6-tri­phenyl­pyrylium tetra­fluoro­borate

CROSSMARK_Color_square_no_text.svg

aFacultad de Quimica y Biologia, Universidad de Santiago, Casilla 40, Correo 33, Santiago, Chile, bDepartment of Chemistry, The University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, Texas 78249-0698, USA, cDepartment of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, Scotland, and, Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, and dComplexo Tecnológico de Medicamentos Farmanguinhos, Av. Comandante Guaranys 447, Jacarepaguá – Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@utsa.edu

(Received 12 July 2006; accepted 20 July 2006; online 26 July 2006)

The central OC5 ring in the cation of the title compound, C30H23O+·BF4, has considerable aromatic character but the pendant aromatic rings are not coplanar. The crystal structure comprises undulating layers of cations separated by BF4 anions with significant inter­molecular inter­actions between them.

Comment

The structure of the title compound, (I)[link] (Fig. 1[link] and Table 1[link]), shows significant twisting of the pendant aromatic rings out of the central plane. The dihedral angles between the O1/C1–C5 ring and the C6–C11, C12–C17 and C25–C30 rings are 28.14 (10), 56.70 (11) and 83.44 (10)°, respectively. Within the central ring, which formally carries a positive charge, the two O—C distances are equal within experimental error and the C—C distances lie in the relatively narrow range 1.361 (3)–1.414 (3) Å. These observations strongly suggest substantial delocalization of π-electron density over this ring.

[Scheme 1]

In the crystal structure there are a number of inter­molecular inter­actions linking the ions. The primary inter­actions operating in the crystal structure are illustrated in Fig. 2[link]. Here, B—F⋯H contacts are highlighted as golden dashed lines. The first contact occurs between the two components of the asymmetric unit so that C20—H20⋯F4 is 2.49 Å, C20⋯F4 is 3.355 (3) Å and the angle at H20 is 152°. The second F⋯H contact involves the C8i and F3 atoms so that C8i—H8i⋯F3 is 2.55 Å, C8i⋯F3 is 3.321 (3) Å and the angle at H8 is 139 Å [symmetry code: (i) 1 − x, 1 − y, −z]. The remaining two F atoms serve to link two central O1/C1–C5 rings. The parameters associated with these inter­actions are B1—F1⋯ring centroid(O1/C1–C5) = 3.091 (2) Å and angle at F1 = 114.52 (15)°, and B1—F2⋯ring centroid(O1/C1–C5)ii = 3.080 (2) Å and angle at F2 = 118.59 (17)° [symmetry code: (ii) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z]. Formally, these might be considered as F⋯ring centroid(O1/C1–C5) inter­actions, but as seen in the B—F⋯ring centroid(O1/C1–C5) angles there is significant bending in the angles so that F1 approaches atoms O1 and C1 at 2.9508 (24) and 2.9766 (28) Å, respectively, with the other F1⋯C distances being greater than 3.3 Å. A similar situation pertains for the inter­actions involving atom F2. Thus, the F2⋯O1ii, F2⋯C1ii and F2⋯C5ii distances are 2.9270 (22), 3.1280 (28) and 3.1845 (26) Å, respectively, the remaining F2⋯Cii distances being greater than 3.5 Å. The only other significant inter­molecular contact in the structure of (I)[link] is also illustrated in Fig. 2[link], i.e. a C18iii—H18Aiii⋯ring centroid(C6–C11) contact with an H18Aiii⋯ring centroid distance of 2.98 Å and an angle of 152° at the H18Aiii atom. The global crystal structure may be described as comprising undulating layers of cations inter­spersed with anions (see Fig. 3[link]).

[Figure 1]
Figure 1
The asymmetric unit of (I)[link] showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2]
Figure 2
Environment about the BF4 anion in (I)[link] (Crystal Impact, 2006[Crystal Impact (2006). DIAMOND. Version 3.1. Crystal Impact GbR, Bonn, Germany.]). Color code: O (red), C (grey), B (brown) and H (green).
[Figure 3]
Figure 3
Packing diagram for (I)[link], viewed approximately down the a axis (Crystal Impact, 2006[Crystal Impact (2006). DIAMOND. Version 3.1. Crystal Impact GbR, Bonn, Germany.]). Color code as for Fig. 2[link].

Experimental

The title compound was isolated as a by-product in the preparation of 2-(4-hyroxyphen­yl)-4,6-diphenyl­pyrylium tetra­fluoro­borate from 1,3-diphenyl­propenone and 4-hydroxy­phenyl­ethanone in the presence of boron trifluoride etherate (Aliaga et al., 1997[Aliaga, C., Galdames, J. S. & Rezende, M. C. (1997). J. Chem. Soc. Perkin Trans 2, pp. 1055-1058. ]). The two products were separated by fractional crystallization from acetic acid. The title compound, recrystallized from AcOH, had melting point and spectroscopic properties in agreement with literature values (Marton et al., 1999[Marton, A. L., Marton, G. I., Feaghici, C. & Balaban, A. T. (1999). Rev. Roum. Chim. 44, 677-682.]).

Crystal data
  • C30H23O+·BF4−

  • Mr = 486.29

  • Monoclinic, P 21 /c

  • a = 10.6170 (3) Å

  • b = 13.2065 (3) Å

  • c = 17.1985 (5) Å

  • β = 102.784 (1)°

  • V = 2351.68 (11) Å3

  • Z = 4

  • Dx = 1.374 Mg m−3

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Block, pale yellow

  • 0.24 × 0.10 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.834, Tmax = 1

  • 25644 measured reflections

  • 4136 independent reflections

  • 3347 reflections with I > 2σ(I)

  • Rint = 0.042

  • θmax = 25.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.142

  • S = 1.05

  • 4136 reflections

  • 325 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0667P)2 + 2.1496P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—C1 1.341 (3)
O1—C5 1.350 (3)
C1—C2 1.361 (3)
C2—C3 1.397 (3)
C3—C4 1.414 (3)
C4—C5 1.381 (3)
C1—O1—C5 122.38 (17)

All H atoms were allowed to ride on their parent atoms in the riding-model approximation at C—H distances of 0.95–0.99 Å, and with Uiso(H) = 1.2Ueq(C). Evidence of some disorder in the position of the BF4 anion can be noted from Fig. 1[link]. However, multiple positions could not be resolved.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Crystal Impact, 2006[Crystal Impact (2006). DIAMOND. Version 3.1. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Crystal Impact, 2006); software used to prepare material for publication: SHELXL97.

3-Benzyl-2,4,6-triphenylpyrylium tetrafluoroborate top
Crystal data top
C30H23O+·BF4F(000) = 1008
Mr = 486.29Dx = 1.374 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 5538 reflections
a = 10.6170 (3) Åθ = 2.9–27.5°
b = 13.2065 (3) ŵ = 0.10 mm1
c = 17.1985 (5) ÅT = 120 K
β = 102.784 (1)°Block, pale yellow
V = 2351.68 (11) Å30.24 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
4136 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3347 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.0°
φ and ω scansh = 1212
Absorption correction: multi scan
(SADABS; Sheldrick, 2003)
k = 1515
Tmin = 0.834, Tmax = 1l = 2020
25644 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0667P)2 + 2.1496P]
where P = (Fo2 + 2Fc2)/3
4136 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.40 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.57576 (17)0.50732 (15)0.27361 (13)0.0707 (7)
F20.71621 (18)0.63183 (12)0.25861 (12)0.0559 (5)
F30.70332 (18)0.48944 (15)0.18351 (10)0.0588 (5)
F40.78734 (18)0.48523 (15)0.31391 (11)0.0636 (5)
O10.40466 (14)0.33118 (11)0.27331 (9)0.0202 (3)
C10.4465 (2)0.31678 (16)0.20605 (13)0.0190 (5)
C20.5580 (2)0.26442 (16)0.20922 (13)0.0201 (5)
H20.58890.25500.16200.024*
C30.6273 (2)0.22436 (16)0.28119 (13)0.0200 (5)
C40.5820 (2)0.24083 (16)0.35153 (13)0.0193 (5)
C50.4691 (2)0.29537 (16)0.34461 (13)0.0195 (5)
C60.3624 (2)0.36022 (16)0.13507 (13)0.0187 (5)
C70.4156 (2)0.38924 (16)0.07108 (13)0.0216 (5)
H70.50570.38180.07440.026*
C80.3370 (2)0.42882 (17)0.00296 (13)0.0245 (5)
H80.37270.44820.04080.029*
C90.2061 (2)0.44013 (17)0.00133 (14)0.0260 (5)
H90.15230.46810.04790.031*
C100.1527 (2)0.41098 (18)0.06188 (15)0.0281 (6)
H100.06270.41880.05840.034*
C110.2304 (2)0.37063 (17)0.12982 (14)0.0242 (5)
H110.19380.35000.17290.029*
C120.7417 (2)0.16057 (17)0.27859 (13)0.0207 (5)
C130.7277 (2)0.07825 (18)0.22708 (15)0.0268 (5)
H130.64500.06210.19540.032*
C140.8336 (2)0.01974 (19)0.22177 (16)0.0324 (6)
H140.82290.03660.18660.039*
C150.9547 (2)0.04247 (18)0.26704 (15)0.0305 (6)
H151.02700.00190.26330.037*
C160.9694 (2)0.12461 (19)0.31768 (15)0.0298 (6)
H161.05280.14120.34830.036*
C170.8643 (2)0.18334 (19)0.32446 (14)0.0271 (5)
H170.87550.23910.36030.033*
C180.6405 (2)0.18787 (17)0.42883 (13)0.0213 (5)
H18A0.67710.12280.41560.026*
H18B0.56980.17150.45580.026*
C190.7452 (2)0.24305 (17)0.48847 (13)0.0213 (5)
C200.7977 (2)0.33477 (18)0.47235 (15)0.0278 (5)
H200.76410.36880.42350.033*
C210.8997 (2)0.3768 (2)0.52801 (17)0.0366 (6)
H210.93540.43950.51660.044*
C220.9499 (2)0.3289 (2)0.59937 (16)0.0376 (7)
H221.02170.35710.63590.045*
C230.8946 (2)0.2396 (2)0.61708 (15)0.0344 (6)
H230.92630.20730.66690.041*
C240.7929 (2)0.19681 (18)0.56234 (13)0.0249 (5)
H240.75520.13550.57510.030*
C250.3994 (2)0.31854 (16)0.40788 (13)0.0207 (5)
C260.4613 (2)0.36439 (17)0.47898 (14)0.0247 (5)
H260.55090.37960.48840.030*
C270.3916 (2)0.38770 (18)0.53592 (14)0.0284 (5)
H270.43330.42010.58410.034*
C280.2617 (2)0.36415 (18)0.52307 (14)0.0277 (6)
H280.21470.37970.56260.033*
C290.2000 (2)0.31797 (18)0.45261 (15)0.0278 (5)
H290.11090.30170.44400.033*
C300.2680 (2)0.29533 (17)0.39466 (14)0.0239 (5)
H300.22530.26420.34620.029*
B10.6920 (3)0.5292 (2)0.25495 (17)0.0271 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0457 (10)0.0742 (13)0.1045 (17)0.0265 (9)0.0432 (11)0.0448 (12)
F20.0666 (12)0.0319 (9)0.0727 (13)0.0064 (8)0.0231 (10)0.0016 (8)
F30.0723 (12)0.0718 (13)0.0360 (10)0.0067 (10)0.0199 (9)0.0175 (9)
F40.0644 (12)0.0754 (13)0.0489 (11)0.0126 (10)0.0083 (9)0.0235 (10)
O10.0210 (8)0.0222 (8)0.0177 (8)0.0011 (6)0.0051 (6)0.0023 (6)
C10.0221 (11)0.0188 (11)0.0171 (11)0.0036 (9)0.0061 (9)0.0006 (9)
C20.0204 (11)0.0231 (11)0.0180 (11)0.0003 (9)0.0065 (9)0.0015 (9)
C30.0183 (11)0.0196 (11)0.0224 (12)0.0035 (9)0.0048 (9)0.0017 (9)
C40.0196 (11)0.0191 (11)0.0186 (11)0.0028 (9)0.0030 (9)0.0028 (9)
C50.0229 (11)0.0174 (11)0.0178 (11)0.0026 (9)0.0035 (9)0.0038 (9)
C60.0210 (11)0.0173 (11)0.0168 (11)0.0012 (9)0.0021 (9)0.0022 (9)
C70.0223 (11)0.0205 (11)0.0217 (12)0.0008 (9)0.0042 (10)0.0008 (9)
C80.0332 (13)0.0218 (12)0.0180 (12)0.0020 (10)0.0046 (10)0.0011 (9)
C90.0310 (13)0.0194 (11)0.0217 (12)0.0014 (10)0.0071 (10)0.0012 (9)
C100.0199 (11)0.0271 (13)0.0349 (14)0.0039 (10)0.0012 (11)0.0013 (11)
C110.0217 (11)0.0269 (12)0.0242 (13)0.0025 (10)0.0055 (10)0.0008 (10)
C120.0207 (11)0.0239 (12)0.0186 (11)0.0003 (9)0.0066 (9)0.0058 (9)
C130.0216 (11)0.0277 (13)0.0314 (13)0.0040 (10)0.0064 (10)0.0005 (10)
C140.0325 (14)0.0236 (12)0.0440 (16)0.0005 (10)0.0150 (12)0.0025 (11)
C150.0262 (13)0.0280 (13)0.0415 (15)0.0067 (10)0.0167 (11)0.0132 (11)
C160.0207 (12)0.0403 (15)0.0281 (13)0.0013 (11)0.0046 (10)0.0096 (11)
C170.0250 (12)0.0340 (13)0.0220 (12)0.0013 (10)0.0044 (10)0.0009 (10)
C180.0211 (11)0.0238 (11)0.0195 (12)0.0002 (9)0.0055 (9)0.0038 (9)
C190.0197 (11)0.0253 (12)0.0200 (12)0.0033 (9)0.0066 (9)0.0013 (9)
C200.0268 (12)0.0302 (13)0.0285 (13)0.0028 (10)0.0104 (11)0.0017 (11)
C210.0319 (14)0.0358 (15)0.0476 (17)0.0100 (11)0.0205 (13)0.0147 (13)
C220.0247 (13)0.0554 (18)0.0333 (15)0.0026 (12)0.0080 (11)0.0216 (13)
C230.0291 (13)0.0493 (16)0.0233 (13)0.0099 (12)0.0024 (11)0.0080 (12)
C240.0264 (12)0.0281 (12)0.0207 (12)0.0063 (10)0.0065 (10)0.0008 (10)
C250.0241 (11)0.0189 (11)0.0204 (12)0.0032 (9)0.0077 (9)0.0043 (9)
C260.0250 (12)0.0252 (12)0.0239 (13)0.0013 (10)0.0052 (10)0.0016 (10)
C270.0354 (14)0.0281 (13)0.0214 (12)0.0036 (11)0.0055 (11)0.0022 (10)
C280.0337 (13)0.0281 (13)0.0257 (13)0.0072 (10)0.0158 (11)0.0035 (10)
C290.0248 (12)0.0268 (13)0.0342 (14)0.0019 (10)0.0115 (11)0.0035 (11)
C300.0253 (12)0.0234 (12)0.0234 (12)0.0012 (9)0.0061 (10)0.0009 (10)
B10.0270 (14)0.0263 (14)0.0298 (15)0.0001 (11)0.0099 (12)0.0016 (12)
Geometric parameters (Å, º) top
F1—B11.373 (3)C14—H140.9500
F2—B11.378 (3)C15—C161.378 (4)
F3—B11.366 (3)C15—H150.9500
F4—B11.392 (3)C16—C171.385 (3)
O1—C11.341 (3)C16—H160.9500
O1—C51.350 (3)C17—H170.9500
C1—C21.361 (3)C18—C191.521 (3)
C1—C61.461 (3)C18—H18A0.9900
C2—C31.397 (3)C18—H18B0.9900
C2—H20.9500C19—C241.400 (3)
C3—C41.414 (3)C19—C201.386 (3)
C3—C121.488 (3)C20—C211.392 (4)
C4—C51.381 (3)C20—H200.9500
C4—C181.509 (3)C21—C221.378 (4)
C5—C251.476 (3)C21—H210.9500
C6—C111.391 (3)C22—C231.382 (4)
C6—C71.397 (3)C22—H220.9500
C7—C81.382 (3)C23—C241.386 (3)
C7—H70.9500C23—H230.9500
C8—C91.384 (3)C24—H240.9500
C8—H80.9500C25—C301.398 (3)
C9—C101.387 (3)C25—C261.392 (3)
C9—H90.9500C26—C271.387 (3)
C10—C111.380 (3)C26—H260.9500
C10—H100.9500C27—C281.383 (3)
C11—H110.9500C27—H270.9500
C12—C131.389 (3)C28—C291.385 (3)
C12—C171.397 (3)C28—H280.9500
C13—C141.384 (3)C29—C301.386 (3)
C13—H130.9500C29—H290.9500
C14—C151.381 (4)C30—H300.9500
C1—O1—C5122.38 (17)C16—C17—H17120.0
O1—C1—C2119.2 (2)C12—C17—H17120.0
O1—C1—C6114.02 (18)C4—C18—C19117.97 (18)
C2—C1—C6126.7 (2)C4—C18—H18A107.8
C1—C2—C3120.7 (2)C19—C18—H18A107.8
C1—C2—H2119.6C4—C18—H18B107.8
C3—C2—H2119.6C19—C18—H18B107.8
C2—C3—C4119.20 (19)H18A—C18—H18B107.2
C2—C3—C12117.49 (19)C24—C19—C20118.8 (2)
C4—C3—C12123.20 (19)C24—C19—C18117.8 (2)
C5—C4—C3117.36 (19)C20—C19—C18123.3 (2)
C5—C4—C18119.88 (19)C19—C20—C21119.8 (2)
C3—C4—C18122.05 (19)C19—C20—H20120.1
O1—C5—C4121.08 (19)C21—C20—H20120.1
O1—C5—C25111.18 (18)C22—C21—C20121.2 (2)
C4—C5—C25127.68 (19)C22—C21—H21119.4
C11—C6—C7119.9 (2)C20—C21—H21119.4
C11—C6—C1120.9 (2)C21—C22—C23119.2 (2)
C7—C6—C1119.14 (19)C21—C22—H22120.4
C8—C7—C6119.8 (2)C23—C22—H22120.4
C8—C7—H7120.1C22—C23—C24120.2 (2)
C6—C7—H7120.1C22—C23—H23119.9
C9—C8—C7119.8 (2)C24—C23—H23119.9
C9—C8—H8120.1C19—C24—C23120.6 (2)
C7—C8—H8120.1C19—C24—H24119.7
C8—C9—C10120.6 (2)C23—C24—H24119.7
C8—C9—H9119.7C30—C25—C26119.9 (2)
C10—C9—H9119.7C30—C25—C5118.7 (2)
C11—C10—C9120.0 (2)C26—C25—C5121.4 (2)
C11—C10—H10120.0C27—C26—C25119.7 (2)
C9—C10—H10120.0C27—C26—H26120.2
C6—C11—C10119.9 (2)C25—C26—H26120.2
C6—C11—H11120.1C26—C27—C28120.4 (2)
C10—C11—H11120.1C26—C27—H27119.8
C13—C12—C17118.9 (2)C28—C27—H27119.8
C13—C12—C3119.3 (2)C29—C28—C27120.0 (2)
C17—C12—C3121.7 (2)C29—C28—H28120.0
C12—C13—C14120.3 (2)C27—C28—H28120.0
C12—C13—H13119.8C28—C29—C30120.3 (2)
C14—C13—H13119.8C28—C29—H29119.9
C15—C14—C13120.7 (2)C30—C29—H29119.9
C15—C14—H14119.7C25—C30—C29119.7 (2)
C13—C14—H14119.7C25—C30—H30120.1
C14—C15—C16119.3 (2)C29—C30—H30120.1
C14—C15—H15120.4F1—B1—F3113.1 (2)
C16—C15—H15120.4F1—B1—F2111.4 (2)
C17—C16—C15120.9 (2)F3—B1—F2111.5 (2)
C17—C16—H16119.6F1—B1—F4106.8 (2)
C15—C16—H16119.6F3—B1—F4107.5 (2)
C16—C17—C12119.9 (2)F2—B1—F4106.2 (2)
 

Footnotes

Additional correspondence e-mail: solangewardell@yahoo.co.uk

Acknowledgements

The authors thank the EPSRC X-ray Crystallographic Service, University of Southampton, for the data collection.

References

First citationAliaga, C., Galdames, J. S. & Rezende, M. C. (1997). J. Chem. Soc. Perkin Trans 2, pp. 1055–1058.  CrossRef Google Scholar
First citationAltomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCrystal Impact (2006). DIAMOND. Version 3.1. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMarton, A. L., Marton, G. I., Feaghici, C. & Balaban, A. T. (1999). Rev. Roum. Chim. 44, 677–682.  CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds