organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-6-(2,2-di­eth­oxy­eth­oxy)-2-(methyl­sulfan­yl)pyrimidine

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland.
*Correspondence e-mail: che562@abdn.ac.uk

(Received 21 June 2006; accepted 26 June 2006; online 6 July 2006)

The supra­molecular structure of the title compound, C11H19N3O3S, consists of a ribbon of alternating centrosymmetric R22(8) and R22(18) rings.

Comment

The title compound, (I)[link], was prepared as an inter­mediate for the preparation of fused pyrimidine systems in our ongoing programme aimed at the development of novel syntheses of fused heterocyclic systems. The bond lengths and angles show no unusual features.

[Scheme 1]

Atom N4 in the mol­ecule at (x, y, z) acts via H4A as a hydrogen-bond donor to atom N3 in the mol­ecule at (1 − x, 1 − y, −z), so generating by inversion an R22(8) (Bernstein et al., 1995[Bernstein, J., Davis, R., Shimoni, L. & Chang, N.-L. (1995). Agnew. Chem. Int. Ed. Engl. 34, 1555-1573.]) ring centred at (½, ½, 0). Atom N4 at (x, y, z) acts as a hydrogen-bond donor via atom H4B to atom O62 in the mol­ecule at (−x, 1 − y, 1 − z), so generating by inversion an R22(18) ring centred at (0, ½, ½). Propagation by inversion of these two hydrogen bonds then generates a chain of alternating R22(8) and R22(18) rings running parallel to the [[\overline{1}]01] direction with the R22(8) rings centred at (½ − n, ½, n) (n = zero or an integer) and the R22(18) rings centred at (n, ½, ½ − n) (n = zero or an integer). There are no direction-specific inter­actions between adjacent chains.

[Figure 1]
Figure 1
A view of the mol­ecular structure of (I)[link] with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms as spheres of arbitrary radii.
[Figure 2]
Figure 2
A stereoscopic view of the ribbon formed by alternating R22(8) and R22(18) centrosymmetric dimers. H atoms bonded to C atoms have been omitted.

Experimental

To a solution of 4-amino-2-(methyl­sulfan­yl)pyrimidin-6(1H)-one (20 mmol) in dry dimethyl­formamide (40 ml) was added solid anhydrous sodium carbonate (30 mmol). The mixture was stirred at room temperature for 10 min, bromo­acetaldehyde diethyl acetal (60 mmol) was added and the final mixture heated at 363 K for 15 h. Water (20 ml) was added and the mixture was then poured on to crushed ice. The resultant solid was collected by filtration and washed with cold water to give the title compound in 85% yield. This solid was recrystallized from methanol to give light-yellow crystalline micaceous blocks. HRMS found 273.1161, calculated for C11H19N3O3S 273.1147.

Crystal data
  • C11H19N3O3S

  • Mr = 273.35

  • Triclinic, [P \overline 1]

  • a = 7.2278 (8) Å

  • b = 9.6358 (9) Å

  • c = 10.0852 (10) Å

  • α = 81.197 (9)°

  • β = 82.390 (7)°

  • γ = 78.818 (8)°

  • V = 677.12 (12) Å3

  • Z = 2

  • Dx = 1.341 Mg m−3

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.52 × 0.29 × 0.14 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Thick–slice φ and ω scans

  • Absorption correction: multi-scan (EVALCCD; Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]) Tmin = 0.884, Tmax = 0.967

  • 10168 measured reflections

  • 3000 independent reflections

  • 1200 reflections with I > 2σ(I)

  • Rint = 0.118

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.253

  • S = 1.02

  • 3000 reflections

  • 166 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.1062P)2 + 1.0232P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N3i 1.00 2.07 3.052 (6) 167
N4—H4B⋯O62ii 0.91 2.05 2.919 (6) 158
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z+1.

H atoms were treated as riding atoms, with aromatic C—H = 0.95 Å, aliphatic C—H = 1.00 Å and CH2 C—H = 0.99 Å, with Uiso(H) = 1.2Ueq(C), methyl C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(C), and N—H = 0.92 and 1.00 Å, with Uiso = 1.2Ueq(N). In the case of atom N4, atoms H4A and H4B were located in a difference map, refined and then treated as riding atoms in the latter stages of refinement. The difference map showed that the peak related to H4A was extended from N4 lying along the N4⋯N3i [symmetry code: (i) 1 − x, 1 − y, −z] vector. The methyl H atoms of the methyl­sulfanyl group were modelled as six equally spaced half-H atoms. The crystal quality was generally poor due to the micaceous habit of the crystals; this has resulted in a high Rint value and a low ratio of observed/unique reflections.

Data collection: COLLECT (Bruker–Nonius, 2004[Bruker-Nonius (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Bruker–Nonius, 2004); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

4-amino-6-(2,2-diethoxyethoxy)-2-(methylsulfanyl)pyrimidine top
Crystal data top
C11H19N3O3SZ = 2
Mr = 273.35F(000) = 292
Triclinic, P1Dx = 1.341 Mg m3
Hall symbol: -P 1Melting point: 438 K
a = 7.2280 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6360 (9) ÅCell parameters from 3000 reflections
c = 10.085 (1) Åθ = 5.1–27.5°
α = 81.197 (9)°µ = 0.24 mm1
β = 82.390 (7)°T = 120 K
γ = 78.817 (8)°Block, yellow
V = 677.12 (12) Å30.52 × 0.29 × 0.14 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1200 reflections with I > 2σ(I)
Thick–slice π and ω scansRint = 0.118
Absorption correction: multi-scan
(EvalCCD; Duisenberg et al., 2003)
θmax = 27.5°, θmin = 5.1°
Tmin = 0.884, Tmax = 0.967h = 89
10168 measured reflectionsk = 1212
3000 independent reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.253H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1062P)2 + 1.0232P]
where P = (Fo2 + 2Fc2)/3
3000 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.53 e Å3
Special details top

Experimental. The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.4599 (6)0.6665 (4)0.3719 (4)0.0270 (10)
C20.5473 (7)0.6411 (5)0.2507 (5)0.0281 (12)
S20.7579 (2)0.70417 (16)0.19170 (14)0.0373 (5)
C210.7992 (8)0.7871 (6)0.3302 (6)0.0401 (15)
N30.4967 (6)0.5670 (4)0.1636 (4)0.0246 (10)
C40.3395 (7)0.5080 (5)0.2048 (5)0.0266 (12)
N40.2892 (6)0.4329 (5)0.1184 (4)0.0317 (11)
C50.2369 (7)0.5264 (5)0.3319 (5)0.0278 (12)
C60.3043 (7)0.6092 (5)0.4078 (5)0.0252 (12)
O60.2063 (5)0.6314 (4)0.5289 (3)0.0318 (9)
C610.2784 (8)0.7194 (6)0.6052 (5)0.0317 (13)
C620.1616 (7)0.7193 (6)0.7414 (5)0.0307 (13)
O610.2315 (5)0.8144 (4)0.8062 (3)0.0325 (9)
C630.1706 (9)0.8063 (6)0.9472 (5)0.0377 (14)
C640.2834 (9)0.8905 (6)1.0088 (6)0.0455 (16)
O620.0357 (5)0.7540 (4)0.7356 (3)0.0307 (9)
C650.1042 (8)0.8906 (6)0.6607 (5)0.0359 (14)
C660.3171 (8)0.9162 (6)0.6835 (6)0.0428 (15)
H21A0.91620.82660.30720.060*0.50
H21B0.81150.71600.41060.060*0.50
H21C0.69240.86400.34840.060*0.50
H21D0.69720.77780.40360.060*0.50
H21E0.80190.88840.30020.060*0.50
H21F0.92100.74040.36240.060*0.50
H4A0.37130.41900.03230.038*
H4B0.18580.39250.15370.038*
H50.12800.48430.36320.033*
H61A0.26840.81790.55740.038*
H61B0.41350.68120.61680.038*
H620.19100.62180.79290.037*
H63A0.19140.70560.98960.045*
H63B0.03370.84600.96190.045*
H64A0.26310.98960.96540.068*
H64B0.41840.84910.99550.068*
H64C0.24210.88781.10560.068*
H65A0.06150.88980.56330.043*
H65B0.05470.96720.69250.043*
H66A0.35760.91370.78040.064*
H66B0.36470.84190.64860.064*
H66C0.36801.00980.63650.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.030 (3)0.031 (2)0.021 (2)0.011 (2)0.0009 (19)0.0021 (18)
C20.026 (3)0.033 (3)0.026 (3)0.006 (2)0.005 (2)0.003 (2)
S20.0361 (9)0.0440 (9)0.0357 (8)0.0165 (7)0.0007 (6)0.0091 (6)
C210.034 (4)0.041 (3)0.051 (3)0.016 (3)0.002 (3)0.017 (3)
N30.025 (3)0.028 (2)0.022 (2)0.007 (2)0.0029 (18)0.0031 (18)
C40.026 (3)0.027 (3)0.027 (3)0.003 (2)0.004 (2)0.005 (2)
N40.029 (3)0.047 (3)0.025 (2)0.019 (2)0.0042 (19)0.014 (2)
C50.026 (3)0.028 (3)0.029 (3)0.005 (2)0.000 (2)0.007 (2)
C60.021 (3)0.027 (3)0.025 (3)0.001 (2)0.002 (2)0.002 (2)
O60.030 (2)0.042 (2)0.0268 (18)0.0138 (18)0.0040 (16)0.0128 (16)
C610.032 (3)0.038 (3)0.028 (3)0.006 (3)0.003 (2)0.012 (2)
C620.027 (3)0.035 (3)0.033 (3)0.008 (3)0.004 (2)0.005 (2)
O610.032 (2)0.044 (2)0.0250 (17)0.0116 (18)0.0007 (15)0.0112 (16)
C630.045 (4)0.043 (3)0.024 (3)0.008 (3)0.002 (2)0.005 (2)
C640.057 (4)0.046 (4)0.036 (3)0.006 (3)0.013 (3)0.010 (3)
O620.027 (2)0.030 (2)0.0335 (19)0.0045 (17)0.0013 (16)0.0045 (16)
C650.036 (4)0.037 (3)0.037 (3)0.011 (3)0.005 (3)0.004 (3)
C660.028 (3)0.048 (4)0.048 (3)0.001 (3)0.003 (3)0.003 (3)
Geometric parameters (Å, º) top
N1—C61.331 (6)C61—C621.514 (7)
N1—C21.335 (6)C61—H61A0.99
C2—N31.339 (6)C61—H61B0.99
C2—S21.746 (5)C62—O611.404 (6)
S2—C211.796 (5)C62—O621.407 (6)
C21—H21A0.98C62—H621.00
C21—H21B0.98O61—C631.427 (6)
C21—H21C0.98C63—C641.501 (7)
C21—H21D0.98C63—H63A0.99
C21—H21E0.98C63—H63B0.99
C21—H21F0.98C64—H64A0.98
N3—C41.357 (6)C64—H64B0.98
C4—N41.340 (6)C64—H64C0.98
C4—C51.411 (7)O62—C651.446 (6)
N4—H4A0.9959C65—C661.503 (8)
N4—H4B0.9151C65—H65A0.99
C5—C61.377 (7)C65—H65B0.99
C5—H50.95C66—H66A0.98
C6—O61.354 (6)C66—H66B0.98
O6—C611.435 (6)C66—H66C0.98
C6—N1—C2114.3 (4)C6—O6—C61116.0 (4)
N1—C2—N3128.0 (5)O6—C61—C62107.8 (4)
N1—C2—S2119.7 (4)O6—C61—H61A110.1
N3—C2—S2112.3 (4)C62—C61—H61A110.1
C2—S2—C21102.8 (3)O6—C61—H61B110.1
S2—C21—H21A109.5C62—C61—H61B110.1
S2—C21—H21B109.5H61A—C61—H61B108.5
H21A—C21—H21B109.5O61—C62—O62113.1 (4)
S2—C21—H21C109.5O61—C62—C61104.5 (4)
H21A—C21—H21C109.5O62—C62—C61114.6 (4)
H21B—C21—H21C109.5O61—C62—H62108.1
S2—C21—H21D109.5O62—C62—H62108.1
H21A—C21—H21D141.1C61—C62—H62108.1
H21B—C21—H21D56.3C62—O61—C63113.5 (4)
H21C—C21—H21D56.3O61—C63—C64108.1 (5)
S2—C21—H21E109.5O61—C63—H63A110.1
H21A—C21—H21E56.3C64—C63—H63A110.1
H21B—C21—H21E141.1O61—C63—H63B110.1
H21C—C21—H21E56.3C64—C63—H63B110.1
H21D—C21—H21E109.5H63A—C63—H63B108.4
S2—C21—H21F109.5C63—C64—H64A109.5
H21A—C21—H21F56.3C63—C64—H64B109.5
H21B—C21—H21F56.3H64A—C64—H64B109.5
H21C—C21—H21F141.1C63—C64—H64C109.5
H21D—C21—H21F109.5H64A—C64—H64C109.5
H21E—C21—H21F109.5H64B—C64—H64C109.5
C2—N3—C4116.0 (4)C62—O62—C65115.9 (4)
N4—C4—N3116.2 (4)O62—C65—C66107.5 (4)
N4—C4—C5122.9 (5)O62—C65—H65A110.2
N3—C4—C5120.9 (4)C66—C65—H65A110.2
C4—N4—H4A119.3O62—C65—H65B110.2
C4—N4—H4B111.8C66—C65—H65B110.2
H4A—N4—H4B128.5H65A—C65—H65B108.5
C6—C5—C4115.9 (5)C65—C66—H66A109.5
C6—C5—H5122.1C65—C66—H66B109.5
C4—C5—H5122.1H66A—C66—H66B109.5
N1—C6—O6117.9 (4)C65—C66—H66C109.5
N1—C6—C5124.9 (4)H66A—C66—H66C109.5
O6—C6—C5117.2 (4)H66B—C66—H66C109.5
C6—N1—C2—N30.3 (7)C4—C5—C6—O6178.6 (4)
C6—N1—C2—S2177.9 (3)N1—C6—O6—C611.9 (6)
N1—C2—S2—C212.1 (5)C5—C6—O6—C61179.3 (4)
N3—C2—S2—C21176.3 (4)C6—O6—C61—C62174.7 (4)
N1—C2—N3—C41.5 (7)O6—C61—C62—O61176.2 (4)
S2—C2—N3—C4176.8 (3)O6—C61—C62—O6251.8 (6)
C2—N3—C4—N4179.6 (4)O62—C62—O61—C6368.0 (5)
C2—N3—C4—C50.6 (7)C61—C62—O61—C63166.7 (4)
N4—C4—C5—C6178.5 (5)C62—O61—C63—C64169.2 (4)
N3—C4—C5—C61.3 (7)O61—C62—O62—C6562.1 (5)
C2—N1—C6—O6179.3 (4)C61—C62—O62—C6557.5 (6)
C2—N1—C6—C52.0 (7)C62—O62—C65—C66171.9 (4)
C4—C5—C6—N12.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N3i1.002.073.052 (6)167
N4—H4B···O62ii0.912.052.919 (6)158
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1.
 

Acknowledgements

MLQ, MN and JC thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support.

References

First citationBernstein, J., Davis, R., Shimoni, L. & Chang, N.-L. (1995). Agnew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Google Scholar
First citationBruker–Nonius (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds