organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(2-Hy­droxy­benzo­yl)-2-(4-methyl­phen­yl)-5-methyl-7-phenyl­pyrazolo[1,5-a]pyrimidine: complex sheets built from C—H⋯N and C—H⋯O hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 29 June 2006; accepted 29 June 2006; online 6 July 2006)

The mol­ecules of the title compound, C27H21N3O2, contain an intra­molecular O—H⋯O hydrogen bond, and they are linked into complex sheets by a combination of two C—H⋯N hydrogen bonds and two C—H⋯O hydrogen bonds.

Comment

We report here the structure of the title new pyrazolo[1,5-a]pyrimidine, (I)[link] (Fig. 1[link]), prepared under solvent-free conditions from the reaction between a 5-amino­pyrazole and a 2-benzoyl­chromone.

[Scheme 1]

The bond distances in the pyrazolo[1,5-a]pyrimidine fragment (Table 1[link]) are typical of this ring system (Portilla et al., 2005[Portilla, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o452-o456.], 2006[Portilla, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o186-o189.]) and they are consistent with 10-π electron delocalization reminiscent of the naphthalene type. The aryl ring at C2 is almost coplanar with the heterocyclic system, but the substituents at C6 and C7 are considerably twisted out of this plane, probably to avoid mutually repulsive inter­actions between their aryl rings (Table 1[link]).

There is a fairly short intra­molecular O—H⋯O hydrogen bond, but the supra­molecular aggregation of (I)[link] depends solely on rather long, and thus fairly weak, C—H⋯N and C—H⋯O hydrogen bonds (Table 2[link]), which link the mol­ecules into complex sheets. The formation of the sheet can be readily analysed in terms of its simple sub-structures.

Aryl atom C74 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to hydroxyl atom O62 in the mol­ecule at (1 − x, −y, 1 − z), so generating by inversion a centrosymmetric R22(22) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) dimer centred at ([{1\over 2}], 0, [{1\over 2}]) (Fig. 2[link]), and these dimers are linked by the C—H⋯N hydrogen bonds. Atoms C3 and C22 in the mol­ecule at (x, y, z) and (1 − x, −y, 1 − z) both act as hydrogen-bond donors to the atoms N4 in the mol­ecules at ([{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z) and (−[{1\over 2}] + x, −[{1\over 2}] − y, −[{1\over 2}] + z), which themselves lie in the R22(22) dimers centred at (1, [{1\over 2}], 1) and (0, −[{1\over 2}], 0), respectively. Propagation of these hydrogen bonds then generates a chain of rings along [111], in which R22(22) rings alternate with R21(7) rings (Fig. 3[link]).

Finally, aryl atom C76 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to carbonyl atom O67 in the mol­ecule at (x, 1 + y, z), so generating by translation a C(7) chain running parallel to the [010] direction. The combination of [010] and [111] chains generates a sheet parallel to (10[\overline{1}]), but there are no direction-specific inter­actions between adjacent sheets.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-labelling scheme and the intra­molecular O—H⋯O hydrogen bond (dashed line). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link], showing the formation of an R22(22) dimer. For the sake of clarity, H atoms bonded to C atoms but not involved in the motifs shown have been omitted. Similarly, the unit-cell outline has been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, −y, 1 − z).
[Figure 3]
Figure 3
A stereoscopic view of part of the crystal structure of compound (I)[link], showing the formation of a chain of rings along [111]. For the sake of clarity, H atoms bonded to C atoms but not involved in the motifs shown have been omitted.

Experimental

Equimolar quanti­ties (1.0 mmol of each component) of 3-(4-methyl­phen­yl)-5-amino-1H-pyrazole and 3-benzoyl-2-methyl­benzo-4-pyrone were placed in an open Pyrex glass vessel and heated in an oil-bath at 373 K for 2 min. The reaction mixture was then cooled and extracted with ethanol. After removal of the solvent, the product, (I)[link], was recrystallized from dimethyl­formamide to give yellow crystals suitable for single-crystal X-ray diffraction (m.p. 471—473 K, yield 60%).

Crystal data
  • C27H21N3O2

  • Mr = 419.47

  • Monoclinic, C 2/c

  • a = 38.7649 (11) Å

  • b = 6.7864 (2) Å

  • c = 16.7002 (5) Å

  • β = 108.599 (2)°

  • V = 4163.9 (2) Å3

  • Z = 8

  • Dx = 1.338 Mg m−3

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • Lath, yellow

  • 0.80 × 0.50 × 0.20 mm

Data collection
  • Bruker Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.964, Tmax = 0.983

  • 30599 measured reflections

  • 4751 independent reflections

  • 3797 reflections with I > 2σ(I)

  • Rint = 0.036

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.121

  • S = 1.02

  • 4751 reflections

  • 291 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0575P)2 + 3.7732P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—C2 1.3505 (18)
C2—C3 1.4013 (19)
C3—C3A 1.377 (2)
C3A—N4 1.3525 (18)
N4—C5 1.3141 (18)
C5—C6 1.4342 (19)
C6—C7 1.376 (2)
C7—N7A 1.3675 (18)
N7A—N1 1.3603 (16)
C3A—N7A 1.4011 (17)
N1—C2—C21—C22 179.38 (13)
C5—C6—C67—C61 −110.80 (15)
C6—C67—C61—C62 −176.77 (13)
C6—C7—C71—C72 43.8 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O62—H62⋯O67 0.96 1.68 2.554 (2) 150
C3—H3⋯N4i 0.95 2.61 3.543 (2) 168
C22—H22⋯N4i 0.95 2.57 3.513 (2) 174
C74—H74⋯O62ii 0.95 2.55 3.422 (2) 154
C76—H76⋯O67iii 0.95 2.56 3.444 (2) 155
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+1; (iii) x, y+1, z.

All H atoms were located in a difference map and then treated as riding, with C—H distances of 0.95 (aromatic) or 0.98 Å (meth­yl) and an O—H distance of 0.96 Å, and with Uiso(H) = xUeq(C,O), where x = 1.5 for the methyl groups and 1.2 for all other H.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

6-(2-Hydroxybenzoyl)-2-(4-methylphenyl)-5-methyl-7- phenylpyrazolo[1,5-a]pyrimidine top
Crystal data top
C27H21N3O2F(000) = 1760
Mr = 419.47Dx = 1.338 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4751 reflections
a = 38.7649 (11) Åθ = 2.5–27.5°
b = 6.7864 (2) ŵ = 0.09 mm1
c = 16.7002 (5) ÅT = 120 K
β = 108.599 (2)°Lath, yellow
V = 4163.9 (2) Å30.80 × 0.50 × 0.20 mm
Z = 8
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4751 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode3797 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.5°
φ and ω scansh = 5050
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 88
Tmin = 0.964, Tmax = 0.983l = 2021
30599 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0575P)2 + 3.7732P]
where P = (Fo2 + 2Fc2)/3
4751 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Experimental. MS (70 eV) m/z (%): 420 (29), 419 (89, M+), 418 (40), 404 (19), 298 (42), 299 (100), 300 (23), 77 (19), 39 (29).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.64536 (3)0.64378 (18)0.73713 (7)0.0241 (3)
C20.67725 (4)0.7409 (2)0.76857 (8)0.0225 (3)
C210.67888 (4)0.9261 (2)0.81559 (8)0.0228 (3)
C220.71209 (4)1.0247 (2)0.84866 (9)0.0277 (3)
C230.71402 (4)1.2014 (2)0.89185 (9)0.0289 (3)
C240.68331 (4)1.2854 (2)0.90335 (9)0.0282 (3)
C2410.68582 (5)1.4727 (2)0.95313 (11)0.0382 (4)
C250.65025 (4)1.1876 (2)0.86945 (10)0.0299 (3)
C260.64783 (4)1.0101 (2)0.82675 (9)0.0268 (3)
C30.70596 (4)0.6500 (2)0.74876 (9)0.0238 (3)
C3A0.69070 (4)0.4875 (2)0.70129 (8)0.0226 (3)
N40.70502 (3)0.34454 (17)0.66512 (7)0.0234 (3)
C50.68290 (4)0.2098 (2)0.62001 (9)0.0240 (3)
C510.69940 (4)0.0567 (2)0.57839 (10)0.0310 (3)
C60.64457 (4)0.2128 (2)0.60786 (9)0.0240 (3)
C670.62121 (4)0.0628 (2)0.54968 (9)0.0267 (3)
O670.62591 (3)0.11379 (16)0.56964 (7)0.0373 (3)
C610.59523 (4)0.1220 (2)0.46813 (9)0.0257 (3)
C620.57220 (4)0.0213 (2)0.41643 (10)0.0304 (3)
O620.57228 (3)0.21027 (18)0.44091 (8)0.0421 (3)
C630.54909 (4)0.0291 (3)0.33721 (10)0.0380 (4)
C640.54886 (4)0.2187 (3)0.30835 (10)0.0404 (4)
C650.57112 (5)0.3631 (3)0.35764 (10)0.0365 (4)
C660.59382 (4)0.3147 (2)0.43721 (10)0.0299 (3)
C70.63000 (4)0.3528 (2)0.64733 (8)0.0235 (3)
C710.59079 (4)0.3629 (2)0.63969 (9)0.0262 (3)
C720.57238 (4)0.1894 (3)0.64525 (9)0.0323 (4)
C730.53492 (4)0.1940 (3)0.62985 (11)0.0398 (4)
C740.51589 (4)0.3687 (3)0.60952 (11)0.0413 (4)
C750.53420 (4)0.5409 (3)0.60536 (10)0.0378 (4)
C760.57165 (4)0.5397 (2)0.62136 (9)0.0308 (3)
N7A0.65374 (3)0.48960 (18)0.69467 (7)0.0226 (3)
H220.73350.97040.84150.033*
H230.73681.26610.91400.035*
H24A0.68301.44241.00810.057*
H24B0.66651.56330.92200.057*
H24C0.70961.53420.96180.057*
H250.62881.24390.87570.036*
H260.62500.94560.80500.032*
H30.73060.69160.76470.029*
H51A0.72480.09110.58600.046*
H51B0.68570.05120.51790.046*
H51C0.69840.07220.60400.046*
H620.59160.21880.49370.051*
H630.53340.06710.30290.046*
H640.53320.25180.25360.049*
H650.57070.49370.33680.044*
H660.60870.41350.47160.036*
H720.58530.06880.65950.039*
H730.52230.07580.63340.048*
H740.49030.37050.59840.050*
H750.52110.66110.59140.045*
H760.58420.65930.61980.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0206 (6)0.0306 (7)0.0204 (6)0.0027 (5)0.0057 (5)0.0040 (5)
C20.0190 (6)0.0288 (8)0.0174 (6)0.0027 (5)0.0025 (5)0.0012 (5)
C210.0218 (7)0.0275 (7)0.0181 (6)0.0007 (5)0.0050 (5)0.0022 (5)
C220.0221 (7)0.0317 (8)0.0291 (8)0.0020 (6)0.0081 (6)0.0024 (6)
C230.0271 (7)0.0288 (8)0.0292 (8)0.0056 (6)0.0068 (6)0.0021 (6)
C240.0346 (8)0.0262 (8)0.0239 (7)0.0012 (6)0.0095 (6)0.0030 (6)
C2410.0461 (10)0.0320 (9)0.0365 (9)0.0011 (7)0.0133 (7)0.0048 (7)
C250.0274 (8)0.0332 (8)0.0294 (8)0.0064 (6)0.0098 (6)0.0026 (6)
C260.0207 (7)0.0321 (8)0.0258 (7)0.0006 (6)0.0050 (6)0.0010 (6)
C30.0182 (6)0.0293 (8)0.0218 (7)0.0030 (5)0.0036 (5)0.0003 (6)
C3A0.0172 (6)0.0298 (8)0.0195 (6)0.0008 (5)0.0041 (5)0.0020 (6)
N40.0202 (6)0.0261 (6)0.0222 (6)0.0001 (5)0.0043 (5)0.0001 (5)
C50.0226 (7)0.0266 (7)0.0202 (7)0.0003 (6)0.0034 (5)0.0034 (6)
C510.0279 (8)0.0296 (8)0.0334 (8)0.0012 (6)0.0069 (6)0.0055 (6)
C60.0218 (7)0.0271 (8)0.0201 (6)0.0032 (6)0.0025 (5)0.0013 (6)
C670.0248 (7)0.0278 (8)0.0275 (7)0.0047 (6)0.0085 (6)0.0011 (6)
O670.0382 (6)0.0295 (6)0.0383 (6)0.0067 (5)0.0040 (5)0.0040 (5)
C610.0204 (7)0.0315 (8)0.0248 (7)0.0013 (6)0.0065 (6)0.0036 (6)
C620.0243 (7)0.0369 (9)0.0306 (8)0.0080 (6)0.0098 (6)0.0069 (7)
O620.0417 (7)0.0394 (7)0.0410 (7)0.0167 (5)0.0072 (5)0.0067 (5)
C630.0282 (8)0.0547 (11)0.0288 (8)0.0130 (7)0.0057 (6)0.0085 (8)
C640.0291 (8)0.0612 (12)0.0259 (8)0.0008 (8)0.0017 (6)0.0009 (8)
C650.0345 (9)0.0411 (10)0.0313 (8)0.0041 (7)0.0065 (7)0.0043 (7)
C660.0275 (7)0.0333 (8)0.0272 (8)0.0005 (6)0.0061 (6)0.0025 (6)
C70.0205 (7)0.0293 (8)0.0187 (6)0.0046 (5)0.0035 (5)0.0009 (6)
C710.0206 (7)0.0372 (8)0.0193 (7)0.0061 (6)0.0039 (5)0.0048 (6)
C720.0273 (8)0.0428 (9)0.0260 (8)0.0091 (7)0.0072 (6)0.0005 (7)
C730.0279 (8)0.0571 (11)0.0345 (9)0.0163 (8)0.0101 (7)0.0012 (8)
C740.0194 (7)0.0691 (13)0.0337 (9)0.0083 (8)0.0062 (6)0.0070 (8)
C750.0240 (8)0.0532 (11)0.0328 (9)0.0010 (7)0.0044 (6)0.0077 (8)
C760.0222 (7)0.0414 (9)0.0266 (7)0.0032 (6)0.0047 (6)0.0052 (7)
N7A0.0178 (6)0.0292 (6)0.0196 (6)0.0027 (5)0.0045 (4)0.0018 (5)
Geometric parameters (Å, º) top
N1—C21.3505 (18)C51—H51C0.98
C2—C31.4013 (19)C6—C671.496 (2)
C3—C3A1.377 (2)C67—O671.2418 (19)
C3A—N41.3525 (18)C67—C611.468 (2)
N4—C51.3141 (18)C61—C661.400 (2)
C5—C61.4342 (19)C61—C621.413 (2)
C6—C71.376 (2)C62—O621.346 (2)
C7—N7A1.3675 (18)C62—C631.384 (2)
N7A—N11.3603 (16)O62—H620.96
C3A—N7A1.4011 (17)C63—C641.373 (3)
C2—C211.472 (2)C63—H630.95
C21—C261.397 (2)C64—C651.389 (2)
C21—C221.399 (2)C64—H640.95
C22—C231.389 (2)C65—C661.379 (2)
C22—H220.95C65—H650.95
C23—C241.387 (2)C66—H660.95
C23—H230.95C7—C711.4857 (19)
C24—C251.393 (2)C71—C761.393 (2)
C24—C2411.505 (2)C71—C721.395 (2)
C241—H24A0.98C72—C731.392 (2)
C241—H24B0.98C72—H720.95
C241—H24C0.98C73—C741.380 (3)
C25—C261.388 (2)C73—H730.95
C25—H250.95C74—C751.380 (3)
C26—H260.95C74—H740.95
C3—H30.95C75—C761.390 (2)
C5—C511.502 (2)C75—H750.95
C51—H51A0.98C76—H760.95
C51—H51B0.98
C2—N1—N7A103.70 (11)O67—C67—C61120.77 (13)
N1—C2—C3113.00 (13)O67—C67—C6118.40 (13)
N1—C2—C21120.14 (12)C61—C67—C6120.68 (13)
C3—C2—C21126.83 (12)C66—C61—C62118.34 (14)
C26—C21—C22118.38 (14)C66—C61—C67122.14 (13)
C26—C21—C2121.83 (13)C62—C61—C67119.42 (14)
C22—C21—C2119.77 (13)O62—C62—C63117.67 (14)
C23—C22—C21120.56 (14)O62—C62—C61122.05 (14)
C23—C22—H22119.7C63—C62—C61120.28 (15)
C21—C22—H22119.7C62—O62—H62105.2
C24—C23—C22121.35 (14)C64—C63—C62119.82 (15)
C24—C23—H23119.3C64—C63—H63120.1
C22—C23—H23119.3C62—C63—H63120.1
C23—C24—C25117.82 (14)C63—C64—C65121.32 (15)
C23—C24—C241121.09 (14)C63—C64—H64119.3
C25—C24—C241121.07 (14)C65—C64—H64119.3
C24—C241—H24A109.5C66—C65—C64119.18 (16)
C24—C241—H24B109.5C66—C65—H65120.4
H24A—C241—H24B109.5C64—C65—H65120.4
C24—C241—H24C109.5C65—C66—C61121.05 (15)
H24A—C241—H24C109.5C65—C66—H66119.5
H24B—C241—H24C109.5C61—C66—H66119.5
C26—C25—C24121.68 (14)N7A—C7—C6116.24 (12)
C26—C25—H25119.2N7A—C7—C71119.98 (12)
C24—C25—H25119.2C6—C7—C71123.77 (13)
C25—C26—C21120.20 (14)C76—C71—C72119.58 (14)
C25—C26—H26119.9C76—C71—C7121.17 (13)
C21—C26—H26119.9C72—C71—C7119.10 (14)
C3A—C3—C2105.11 (12)C73—C72—C71119.65 (16)
C3A—C3—H3127.4C73—C72—H72120.2
C2—C3—H3127.4C71—C72—H72120.2
N4—C3A—C3132.04 (13)C74—C73—C72120.58 (16)
N4—C3A—N7A121.80 (12)C74—C73—H73119.7
C3—C3A—N7A106.16 (12)C72—C73—H73119.7
C5—N4—C3A118.00 (12)C75—C74—C73119.77 (15)
N4—C5—C6121.89 (13)C75—C74—H74120.1
N4—C5—C51116.77 (13)C73—C74—H74120.1
C6—C5—C51121.29 (13)C74—C75—C76120.53 (17)
C5—C51—H51A109.5C74—C75—H75119.7
C5—C51—H51B109.5C76—C75—H75119.7
H51A—C51—H51B109.5C75—C76—C71119.85 (15)
C5—C51—H51C109.5C75—C76—H76120.1
H51A—C51—H51C109.5C71—C76—H76120.1
H51B—C51—H51C109.5N1—N7A—C7126.51 (11)
C7—C6—C5120.48 (13)N1—N7A—C3A112.01 (11)
C7—C6—C67121.65 (13)C7—N7A—C3A121.43 (12)
C5—C6—C67117.86 (13)
N7A—N1—C2—C31.32 (15)C67—C61—C62—O622.6 (2)
N7A—N1—C2—C21176.72 (12)C66—C61—C62—C630.3 (2)
N1—C2—C21—C262.2 (2)C67—C61—C62—C63176.11 (14)
C3—C2—C21—C26175.57 (14)O62—C62—C63—C64177.97 (15)
N1—C2—C21—C22179.38 (13)C61—C62—C63—C640.8 (2)
C3—C2—C21—C222.9 (2)C62—C63—C64—C650.9 (3)
C26—C21—C22—C230.3 (2)C63—C64—C65—C660.1 (3)
C2—C21—C22—C23178.82 (13)C64—C65—C66—C611.2 (2)
C21—C22—C23—C240.2 (2)C62—C61—C66—C651.3 (2)
C22—C23—C24—C250.6 (2)C67—C61—C66—C65174.98 (14)
C22—C23—C24—C241177.57 (14)C5—C6—C7—N7A2.6 (2)
C23—C24—C25—C261.1 (2)C67—C6—C7—N7A175.93 (12)
C241—C24—C25—C26176.99 (14)C5—C6—C7—C71178.45 (13)
C24—C25—C26—C211.0 (2)C67—C6—C7—C713.0 (2)
C22—C21—C26—C250.2 (2)N7A—C7—C71—C7647.23 (19)
C2—C21—C26—C25178.22 (13)C6—C7—C71—C76131.71 (15)
N1—C2—C3—C3A0.66 (16)N7A—C7—C71—C72137.25 (14)
C21—C2—C3—C3A177.23 (13)C6—C7—C71—C7243.8 (2)
C2—C3—C3A—N4179.55 (14)C76—C71—C72—C732.0 (2)
C2—C3—C3A—N7A0.29 (15)C7—C71—C72—C73173.62 (14)
C3—C3A—N4—C5177.43 (15)C71—C72—C73—C740.3 (2)
N7A—C3A—N4—C52.75 (19)C72—C73—C74—C750.7 (3)
C3A—N4—C5—C60.7 (2)C73—C74—C75—C760.1 (3)
C3A—N4—C5—C51178.12 (12)C74—C75—C76—C711.6 (2)
N4—C5—C6—C73.5 (2)C72—C71—C76—C752.6 (2)
C51—C5—C6—C7179.21 (13)C7—C71—C76—C75172.87 (13)
N4—C5—C6—C67175.04 (13)C2—N1—N7A—C7176.01 (13)
C51—C5—C6—C672.2 (2)C2—N1—N7A—C3A1.50 (14)
C7—C6—C67—O67116.63 (16)C6—C7—N7A—N1178.09 (12)
C5—C6—C67—O6764.82 (18)C71—C7—N7A—N10.9 (2)
C7—C6—C67—C6167.74 (19)C6—C7—N7A—C3A0.80 (19)
C5—C6—C67—C61110.80 (15)C71—C7—N7A—C3A178.21 (12)
O67—C67—C61—C66168.53 (14)N4—C3A—N7A—N1178.71 (12)
C6—C67—C61—C667.0 (2)C3—C3A—N7A—N11.15 (15)
O67—C67—C61—C627.7 (2)N4—C3A—N7A—C73.6 (2)
C6—C67—C61—C62176.77 (13)C3—C3A—N7A—C7176.50 (12)
C66—C61—C62—O62178.99 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O62—H62···O670.961.682.554 (2)150
C3—H3···N4i0.952.613.543 (2)168
C22—H22···N4i0.952.573.513 (2)174
C74—H74···O62ii0.952.553.422 (2)154
C76—H76···O67iii0.952.563.444 (2)155
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y, z+1; (iii) x, y+1, z.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, UK. JC and JT thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JT also thanks the Universidad de Jaén for a research scholarship supporting a short stay at the EPSRC X-ray Crystallographic Service, University of Southampton, UK. JP thanks COLCIENCIAS, UNIVALLE (Universidad del Valle, Colombia), for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPortilla, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o452–o456.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPortilla, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o186–o189.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds