organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-2-nitro­benzaldehyde isonicotinoylhydrazone: a three-dimensional framework built from N—H⋯N and C—H⋯O hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aInstituto de Tecnologia em Fármacos, Far-Manguinhos, FIOCRUZ, 21041-250 Rio de Janeiro, RJ, Brazil, bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 7 July 2006; accepted 7 July 2006; online 14 July 2006)

In the title compound, C13H9ClN4O3, the mol­ecules are linked into a three-dimensional framework by one N—H⋯N hydrogen bond and three C—H⋯O hydrogen bonds.

Comment

We report here the mol­ecular and supra­molecular structure of the title compound, (I)[link] (Fig. 1[link]), originally synthesized as a potential anti­mycobacterial agent (Junior et al., 2005[Junior, I. N., Lourenco, M. C. S., das Gracas, M., Henriques, M. O., Ferreira, B., Vasconcelos, T. R. A., Peralta, M. A., de Oliveira, P. S. M., Wardell, S. M. S. V. & de Souza, M. V. N. (2005). Lett. Drug. Des. Discov. 2, 563-566.]).

[Scheme 1]

The coordination of the hydrazine atom N1 is planar and the central spacer unit between C1 and C21 is nearly planar, as shown by the leading torsion angles (Table 1[link]); however, the two rings are significantly twisted out of this plane, although the two rings remain nearly parallel.

The mol­ecules of (I)[link] are linked by a combination of N—H⋯N and C—H⋯O hydrogen bonds (Table 2[link]) into a three-dimensional framework structure, whose formation is readily analysed in terms of a number of very simple one-dimensional substructures, each formed by the action of a single hydrogen bond.

Amino atom N1 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to pyridyl atom N4 in the mol­ecule at (−x, −[{1\over 2}] + y, [{3\over 2}] − z), so forming a C(7) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [010] direction and generated by the 21 screw axis along (0, y, [{3\over 4}]) (Fig. 2[link]). Atoms C3 and C24 in the mol­ecule at (x, y, z) act as hydrogen-bond donors, respectively, to carbonyl atom O7 in the mol­ecule at (x, [{3\over 2}] − y, [{1\over 2}] + z), and nitro atom O221 in the mol­ecule at (x, [{1\over 2}] − y, −[{1\over 2}] + z), so forming two distinct C(6) chains running parallel to the [001] direction and generated respectively by the c-glide planes at y = 0.75 (Fig. 3[link]) and y = 0.25 (Fig. 4[link]). Finally, atom C5 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to nitro atom O222 in the mol­ecule at (−1 + x, 1 + y, z), so generating by translation a C(12) chain running parallel to the [1[\overline{1}]0] direction (Fig. 5[link]).

The combination of the [010], [001] and [1[\overline{1}]0] chains generates a single three-dimensional framework structure: it is notable that all three O atoms act as hydrogen-bond acceptors.

[Figure 1]
Figure 1
The molecular structure of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link], showing the formation of a C(7) chain along [010] built from N—H⋯N hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−x, −[{1\over 2}] + y, [{3\over 2}] − z) and (−x, [{1\over 2}] + y, [{3\over 2}] − z), respectively.
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link], showing the formation of a C(6) chain along [001] built from C—HO(carbon­yl) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, [{3\over 2}] − y, [{1\over 2}] + z) and (x, [{3\over 2}] − y, −[{1\over 2}] + z), respectively.
[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link], showing the formation of a C(6) chain along [001] built from C—HO(nitro) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, [{1\over 2}] − y, −[{1\over 2}] + z) and (x, [{1\over 2}] − y, [{1\over 2}] + z), respectively.
[Figure 5]
Figure 5
Part of the crystal structure of compound (I)[link], showing the formation of a C(12) chain along [1[\overline{1}]0] built from C—HO(nitro) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−1 + x, 1 + y, z) and (1 + x, −1 + y, z), respectively.

Experimental

Crystals of the title compound were prepared according to a published procedure (Junior et al., 2005[Junior, I. N., Lourenco, M. C. S., das Gracas, M., Henriques, M. O., Ferreira, B., Vasconcelos, T. R. A., Peralta, M. A., de Oliveira, P. S. M., Wardell, S. M. S. V. & de Souza, M. V. N. (2005). Lett. Drug. Des. Discov. 2, 563-566.]).

Crystal data
  • C13H9ClN4O3

  • Mr = 304.69

  • Monoclinic, P 21 /c

  • a = 8.0597 (2) Å

  • b = 10.4797 (4) Å

  • c = 15.4798 (6) Å

  • β = 97.383 (2)°

  • V = 1296.63 (8) Å3

  • Z = 4

  • Dx = 1.561 Mg m−3

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 120 (2) K

  • Lath, colourless

  • 0.34 × 0.16 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.916, Tmax = 0.976

  • 17385 measured reflections

  • 2980 independent reflections

  • 2132 reflections with I > 2σ(I)

  • Rint = 0.053

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.143

  • S = 1.09

  • 2980 reflections

  • 190 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0817P)2 + 0.135P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected torsion angles (°)

C2—C1—C7—N1 24.3 (3)
C1—C7—N1—N2 −174.60 (17)
C7—N1—N2—C27 175.55 (18)
N1—N2—C27—C21 179.18 (16)
N2—C27—C21—C22 163.1 (2)
C21—C22—N22—O221 −29.5 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4i 0.88 2.14 3.002 (3) 168
C3—H3⋯O7ii 0.95 2.46 3.371 (3) 161
C5—H5⋯O222iii 0.95 2.35 3.175 (3) 145
C24—H24⋯O221iv 0.95 2.47 3.327 (3) 151
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y+1, z; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

All H atoms were located in difference maps, and then treated as riding atoms, with C—H = 0.95 Å, N—H = 0.88 Å and Uiso(H) = 1.2Ueq(C,N).

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

5-Chloro-2-nitrobenzaldehyde isonicotinoylhydrazone top
Crystal data top
C13H9ClN4O3F(000) = 624
Mr = 304.69Dx = 1.561 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2980 reflections
a = 8.0597 (2) Åθ = 2.4–27.5°
b = 10.4797 (4) ŵ = 0.31 mm1
c = 15.4798 (6) ÅT = 120 K
β = 97.383 (2)°Lath, colourless
V = 1296.63 (8) Å30.34 × 0.16 × 0.08 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2980 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.4°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1213
Tmin = 0.916, Tmax = 0.976l = 2020
17385 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0817P)2 + 0.135P]
where P = (Fo2 + 2Fc2)/3
2980 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.36 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0301 (3)0.7986 (2)0.63712 (13)0.0170 (5)
C20.0839 (3)0.7718 (2)0.72369 (13)0.0182 (5)
C30.0234 (3)0.8436 (2)0.78804 (14)0.0201 (5)
N40.0852 (2)0.93930 (19)0.77059 (12)0.0212 (4)
C50.1344 (3)0.9650 (2)0.68648 (15)0.0237 (5)
C60.0799 (3)0.8991 (2)0.61819 (14)0.0206 (5)
C70.0889 (3)0.7284 (2)0.56203 (13)0.0188 (5)
O70.0865 (2)0.77907 (16)0.49088 (10)0.0298 (4)
N10.1468 (2)0.60745 (16)0.57975 (11)0.0179 (4)
N20.2145 (2)0.54538 (17)0.51433 (11)0.0186 (4)
C270.2790 (2)0.4353 (2)0.53226 (13)0.0184 (5)
C210.3495 (2)0.3683 (2)0.46136 (13)0.0162 (4)
C220.4603 (3)0.2650 (2)0.47262 (13)0.0174 (5)
N220.5337 (2)0.22436 (19)0.56006 (12)0.0222 (4)
O2210.55542 (19)0.30530 (16)0.61789 (10)0.0272 (4)
O2220.5726 (2)0.11140 (16)0.57015 (11)0.0324 (4)
C230.5128 (3)0.1994 (2)0.40315 (14)0.0200 (5)
C240.4612 (3)0.2393 (2)0.31871 (14)0.0208 (5)
C250.3551 (2)0.3436 (2)0.30634 (13)0.0192 (5)
Cl250.28646 (7)0.39720 (6)0.20175 (3)0.0280 (2)
C260.2974 (3)0.4059 (2)0.37533 (13)0.0178 (5)
H20.16160.70480.73890.022*
H30.06090.82390.84720.024*
H50.21161.03280.67290.028*
H60.11710.92230.55960.025*
H10.13520.56780.62870.022*
H270.28140.39850.58850.022*
H230.58390.12720.41350.024*
H240.49760.19640.27050.025*
H260.22140.47500.36430.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0200 (10)0.0147 (11)0.0167 (11)0.0042 (9)0.0039 (8)0.0017 (8)
C20.0241 (11)0.0135 (11)0.0172 (11)0.0003 (9)0.0025 (9)0.0003 (9)
C30.0263 (11)0.0186 (12)0.0152 (10)0.0041 (10)0.0017 (9)0.0000 (9)
N40.0221 (9)0.0224 (10)0.0190 (10)0.0006 (8)0.0022 (7)0.0066 (8)
C50.0239 (11)0.0231 (13)0.0227 (12)0.0051 (10)0.0028 (9)0.0062 (10)
C60.0226 (11)0.0205 (12)0.0173 (11)0.0010 (9)0.0025 (9)0.0027 (9)
C70.0217 (11)0.0186 (12)0.0157 (11)0.0025 (9)0.0011 (8)0.0007 (9)
O70.0481 (11)0.0256 (9)0.0169 (8)0.0077 (8)0.0085 (7)0.0031 (7)
N10.0230 (9)0.0185 (10)0.0133 (9)0.0005 (8)0.0058 (7)0.0006 (7)
N20.0208 (9)0.0190 (10)0.0165 (9)0.0006 (8)0.0049 (7)0.0043 (8)
C270.0205 (11)0.0206 (12)0.0146 (10)0.0028 (9)0.0035 (8)0.0010 (9)
C210.0167 (10)0.0162 (11)0.0158 (10)0.0027 (9)0.0023 (8)0.0009 (8)
C220.0185 (10)0.0184 (11)0.0150 (10)0.0031 (9)0.0009 (8)0.0015 (9)
N220.0203 (9)0.0286 (12)0.0180 (9)0.0000 (8)0.0034 (8)0.0035 (9)
O2210.0276 (9)0.0361 (10)0.0174 (8)0.0046 (7)0.0013 (7)0.0014 (7)
O2220.0414 (10)0.0277 (10)0.0281 (10)0.0133 (8)0.0039 (8)0.0102 (7)
C230.0193 (11)0.0182 (12)0.0227 (12)0.0018 (9)0.0034 (9)0.0017 (9)
C240.0226 (11)0.0234 (12)0.0170 (11)0.0015 (9)0.0052 (9)0.0031 (9)
C250.0198 (11)0.0225 (12)0.0150 (10)0.0019 (9)0.0012 (8)0.0015 (9)
Cl250.0349 (3)0.0344 (4)0.0150 (3)0.0088 (3)0.0045 (2)0.0037 (2)
C260.0180 (10)0.0170 (12)0.0183 (11)0.0012 (9)0.0023 (8)0.0006 (9)
Geometric parameters (Å, º) top
C1—C21.383 (3)C27—C211.477 (3)
C1—C61.384 (3)C27—H270.95
C1—C71.503 (3)C21—C221.400 (3)
C2—C31.386 (3)C21—C261.400 (3)
C2—H20.95C22—C231.387 (3)
C3—N41.336 (3)C22—N221.469 (3)
C3—H30.95N22—O2211.229 (2)
N4—C51.339 (3)N22—O2221.229 (2)
C5—C61.380 (3)C23—C241.385 (3)
C5—H50.95C23—H230.95
C6—H60.95C24—C251.386 (3)
C7—O71.221 (3)C24—H240.95
C7—N11.366 (3)C25—C261.382 (3)
N1—N21.374 (2)C25—Cl251.736 (2)
N1—H10.88C26—H260.95
N2—C271.281 (3)
C2—C1—C6118.19 (19)N2—C27—H27121.6
C2—C1—C7123.99 (19)C21—C27—H27121.6
C6—C1—C7117.77 (19)C22—C21—C26116.40 (19)
C1—C2—C3119.4 (2)C22—C21—C27125.13 (19)
C1—C2—H2120.3C26—C21—C27118.42 (18)
C3—C2—H2120.3C23—C22—C21122.67 (19)
N4—C3—C2123.0 (2)C23—C22—N22116.36 (18)
N4—C3—H3118.5C21—C22—N22120.91 (18)
C2—C3—H3118.5O221—N22—O222124.18 (19)
C3—N4—C5116.87 (18)O221—N22—C22118.29 (18)
N4—C5—C6124.1 (2)O222—N22—C22117.52 (19)
N4—C5—H5117.9C24—C23—C22119.8 (2)
C6—C5—H5117.9C24—C23—H23120.1
C5—C6—C1118.4 (2)C22—C23—H23120.1
C5—C6—H6120.8C23—C24—C25118.30 (19)
C1—C6—H6120.8C23—C24—H24120.9
O7—C7—N1123.4 (2)C25—C24—H24120.9
O7—C7—C1121.0 (2)C26—C25—C24121.9 (2)
N1—C7—C1115.62 (18)C26—C25—Cl25117.99 (17)
C7—N1—N2116.68 (17)C24—C25—Cl25120.07 (16)
C7—N1—H1122.6C25—C26—C21120.81 (19)
N2—N1—H1120.5C25—C26—H26119.6
C27—N2—N1117.08 (18)C21—C26—H26119.6
N2—C27—C21116.84 (19)
C6—C1—C2—C31.6 (3)C26—C21—C22—C232.1 (3)
C7—C1—C2—C3179.1 (2)C27—C21—C22—C23175.0 (2)
C1—C2—C3—N40.3 (3)C26—C21—C22—N22174.93 (18)
C2—C3—N4—C50.5 (3)C27—C21—C22—N228.0 (3)
C3—N4—C5—C60.0 (3)C23—C22—N22—O221147.72 (19)
N4—C5—C6—C11.2 (3)C21—C22—N22—O22129.5 (3)
C2—C1—C6—C52.0 (3)C23—C22—N22—O22230.9 (3)
C7—C1—C6—C5179.66 (19)C21—C22—N22—O222151.9 (2)
C2—C1—C7—O7154.4 (2)C21—C22—C23—C243.0 (3)
C6—C1—C7—O723.1 (3)N22—C22—C23—C24174.15 (19)
C2—C1—C7—N124.3 (3)C22—C23—C24—C251.2 (3)
C1—C7—N1—N2174.60 (17)C23—C24—C25—C261.5 (3)
C7—N1—N2—C27175.55 (18)C23—C24—C25—Cl25179.84 (16)
N1—N2—C27—C21179.18 (16)C24—C25—C26—C212.4 (3)
N2—C27—C21—C22163.1 (2)Cl25—C25—C26—C21179.24 (16)
C6—C1—C7—N1158.12 (18)C22—C21—C26—C250.6 (3)
O7—C7—N1—N24.2 (3)C27—C21—C26—C25177.83 (19)
N2—C27—C21—C2619.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.882.143.002 (3)168
C3—H3···O7ii0.952.463.371 (3)161
C5—H5···O222iii0.952.353.175 (3)145
C24—H24···O221iv0.952.473.327 (3)151
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+3/2, z+1/2; (iii) x1, y+1, z; (iv) x, y+1/2, z1/2.
 

Acknowledgements

X-ray data were collected at the EPSRC National Crystallography Service, University of Southampton, England. The authors thank the staff of the Service for all their help and advice. JLW thanks CNPq for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJunior, I. N., Lourenco, M. C. S., das Gracas, M., Henriques, M. O., Ferreira, B., Vasconcelos, T. R. A., Peralta, M. A., de Oliveira, P. S. M., Wardell, S. M. S. V. & de Souza, M. V. N. (2005). Lett. Drug. Des. Discov. 2, 563–566.  CrossRef CAS Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds