organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­cyclo­hexyl­amine hydrogen peroxide hemisolvate

CROSSMARK_Color_square_no_text.svg

aN. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Science, 31 Leninskii Prospekt, Moscow 119991, Russian Federation, and bDepartment of Chemistry, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, England
*Correspondence e-mail: churakov@igic.ras.ru

(Received 4 July 2006; accepted 19 July 2006; online 26 July 2006)

The mol­ecules of the title complex, C12H23N·0.5H2O2, are linked together by O—H⋯N and N—H⋯O hydrogen bonds to give ten-membered rings, which form flat ribbons parallel to the a axis. Centrosymmetric H2O2 mol­ecules, as well as amino groups, act as both donors and acceptors of hydrogen bonds.

Comment

Hydrogen peroxide solvates are widely used as environmentally friendly bleaching compounds (Pritchard & Islam, 2003[Pritchard, R. G. & Islam, E. (2003). Acta Cryst. B59, 596-605.]; Cosgrove & Jones, 1998[Cosgrove, S. D. & Jones, W. (1998). J. Mater. Chem. 8, 419-424.]) and oxidation agents in organic synthesis (McKillop & Sanderson, 2000[McKillop, A. & Sanderson, W. R. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 471-476.]). Hydrogen bonding plays the main role in forming crystals of peroxosolvates. It was supposed that it might be possible to design stable hydrogen peroxide carriers by maximizing the number of hydrogen bonds in the structure (Adams & Ramdas, 1978[Adams, J. M. & Ramdas, V. (1978). Acta Cryst. B34, 2150-2156.]). However, due to their low stability, very few organic peroxo­solvates have been structurally characterized to date – there are 19 entries in Cambridge Structural Database (CSD, Version 5.27, January 2006; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). Here, we report the structure of the title new peroxosolvate mol­ecular complex of dicyclo­hexyl­amine with hydrogen peroxide, (I)[link].

[Scheme 1]

In the structure of (I)[link], the dicyclo­hexyl­amine mol­ecule exhibits the expected mol­ecular geometry and both cyclo­hexyl rings adopt a chair conformation, with the amine group occupying equatorial positions (Fig. 1[link]).

The H2O2 mol­ecule has an anti-periplanar conformation, with the H—O—O—H torsion angle equal to 180° as a consequence of the crystallographically imposed centre of symmetry. This feature was previously found in hydrogen peroxide solvates of guanidinium oxalate (Adams & Pritchard, 1976[Adams, J. M. & Pritchard, R. G. (1976). Acta Cryst. B32, 2438-2440.]), guanidinium pyromellitate (Adams & Ramdas, 1979[Adams, J. M. & Ramdas, V. (1979). Inorg. Chim. Acta, 34, L225-L227.]) and tetra­phenyl­arsonium chloride (Churakov et al., 2005[Churakov, A. V., Prikhodchenko, P. V. & Howard, J. A. K. (2005). CrystEngComm, 7, 664-669.]). The O—O bond length [1.4748 (15) Å] is somewhat longer than that observed for crystalline hydrogen peroxide [1.461 (3) Å; Savariault & Lehmann, 1980[Savariault, J.-M. & Lehmann, M. S. (1980). J. Am. Chem. Soc. 102, 1298-1303.]] and is comparable with the value found for guanidinium oxalate peroxosolvate dihydrate [1.468 (9) Å; Adams & Pritchard, 1976[Adams, J. M. & Pritchard, R. G. (1976). Acta Cryst. B32, 2438-2440.]].

Both components of complex (I)[link] are linked together by a system of hydrogen bonds (Fig. 2). Atom N1 acts as both a donor and an acceptor of hydrogen bonds for adjacent H2O2 mol­ecules. The amine group of dicyclo­hexyl­amine also forms two hydrogen bonds with cocrystallized mol­ecules in the structures of crystalline complexes with 2,4-di-tert-butyl­phenol (Komissarova et al., 2003[Komissarova, N. L., Vol'eva, V. B., Belostotskaya, I. S., Kurkovskaya, L. N. & Starikova, Z. A. (2003). Russ. J. Org. Chem. 39, 686-688.]) and cyclo­hexa­none oxime (Chetina et al., 2006[Chetina, O. V., Yufit, D. S. & Howard, J. A. K. (2006). Acta Cryst. E62, o2053-o2055.]). The H2O2 mol­ecule of (I)[link] is involved in four hydrogen bonds with adjacent dicyclo­hexyl­amine mol­ecules, forming two donor and two acceptor inter­actions. Thus, all `active' H atoms (both amino and peroxo) are engaged in hydrogen bonding in (I)[link].

Two dicyclo­hexyl­amine mol­ecules and two H2O2 mol­ecules are linked by hydrogen bonds into a ten-membered ring. Peroxide mol­ecules fuse these rings together, forming flat ribbons or tapes parallel to the a axis.

During the preparation of this manuscript, the latest update of the CSD has been released (May 2006), which contains the structure of compound (I)[link] as a private communication (refcode VAYGUY; Hursthouse et al., 2006[Hursthouse, M. B., Page, P. C. B. & Mazid, M. A. (2006). Private communication to the Cambridge Structural Database (refcode VAYGUY).]). The reported structure was determined at a different temperature to the present work, but the main structural features are similar to those we have found in (I)[link].

[Figure 1]
Figure 1
The structure of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a hydrogen bond. [Symmetry code: (i) −x, 1 − y, 1 − z.]
[Figure 2]
Figure 2
The hydrogen-bonded (dashed lines) chains in (I)[link], parallel to the a axis. H atoms not involved in hydrogen bonds have been omitted.

Experimental

Dicyclo­hexyl­amine (99%) and 50% hydrogen peroxide were purchased from Aldrich. Hydrogen peroxide (50%, 0.2 ml; ρ = 1.18 Mg m−3) was placed in a sample bottle (9 mm diameter) and covered with a 1:2 mixture of dichloro­methane and benzene (approximately 1 ml; ρ ≃ 1.0 Mg m−3). Finally, the organic layer was carefully covered with dicyclo­hexyl­amine (0.1 ml; ρ = 0.91 Mg m−3). After a few hours, several crystals (up to 5 mm in length) were observed on the wall of the sample bottle. Crystals of (I)[link] decompose slowly in air.

Crystal data
  • C12H23N·0.5H2O2

  • Mr = 198.32

  • Triclinic, [P \overline 1]

  • a = 5.2113 (2) Å

  • b = 10.2567 (4) Å

  • c = 11.4044 (5) Å

  • α = 84.034 (1)°

  • β = 80.011 (1)°

  • γ = 79.400 (1)°

  • V = 588.45 (4) Å3

  • Z = 2

  • Dx = 1.119 Mg m−3

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.32 × 0.24 × 0.18 mm

Data collection
  • Bruker SMART CCD 6000 area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, SAINT, SHELXTL and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.988

  • 4519 measured reflections

  • 2802 independent reflections

  • 2199 reflections with I > 2σ(I)

  • Rint = 0.017

  • θmax = 28.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.130

  • S = 1.08

  • 2802 reflections

  • 223 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0709P)2 + 0.0609P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—O1i 1.4748 (15)
O1—H1 0.91 (2)
N1—C11 1.4791 (14)
N1—C21 1.4808 (13)
N1—H2 0.870 (16)
O1i—O1—H1 99.4 (11)
C11—N1—C21 116.48 (8)
C11—N1—H2 106.7 (10)
C21—N1—H2 106.6 (9)
Symmetry code: (i) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.91 (2) 1.87 (2) 2.7733 (12) 175.8 (16)
N1—H2⋯O1ii 0.870 (16) 2.391 (16) 3.2388 (13) 164.9 (13)
Symmetry code: (ii) x+1, y, z.

All H atoms were located in a difference Fourier map and refined isotropically. In the final stages of the refinement, no residual peaks with intensity greater than 0.13 e A−3 were found in the hydrogen peroxide region, indicating the complete occupancy of this site by H2O2 mol­ecules and the absence of partial peroxide/water substitution (Churakov et al., 2005[Churakov, A. V., Prikhodchenko, P. V. & Howard, J. A. K. (2005). CrystEngComm, 7, 664-669.]).

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS, SAINT, SHELXTL and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS, SAINT, SHELXTL and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2003[Bruker (2003). SADABS, SAINT, SHELXTL and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Dicyclohexylamine hydrogen peroxide hemisolvate top
Crystal data top
C12H23N·0.5H2O2Z = 2
Mr = 198.32F(000) = 222
Triclinic, P1Dx = 1.119 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2113 (2) ÅCell parameters from 1920 reflections
b = 10.2567 (4) Åθ = 2.8–30.0°
c = 11.4044 (5) ŵ = 0.07 mm1
α = 84.034 (1)°T = 120 K
β = 80.011 (1)°Block, colourless
γ = 79.400 (1)°0.32 × 0.24 × 0.18 mm
V = 588.45 (4) Å3
Data collection top
Bruker SMART CCD 6000 area-detector
diffractometer
2802 independent reflections
Radiation source: fine-focus sealed tube2199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 66
Tmin = 0.978, Tmax = 0.988k = 1312
4519 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.130All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.0609P]
where P = (Fo2 + 2Fc2)/3
2802 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02665 (17)0.45770 (9)0.55559 (7)0.0257 (2)
N10.35999 (19)0.49679 (9)0.68121 (8)0.0168 (2)
C110.3104 (2)0.63840 (10)0.70704 (9)0.0163 (2)
C120.3710 (2)0.72101 (11)0.58902 (10)0.0197 (3)
C130.3087 (2)0.87000 (12)0.60482 (11)0.0230 (3)
C140.0221 (2)0.91188 (12)0.66185 (11)0.0250 (3)
C150.0372 (3)0.83146 (12)0.78098 (11)0.0243 (3)
C160.0241 (2)0.68175 (11)0.76548 (10)0.0202 (3)
C210.3732 (2)0.39791 (10)0.78521 (9)0.0162 (2)
C220.3926 (2)0.25921 (11)0.74285 (10)0.0208 (3)
C230.4090 (2)0.15064 (12)0.84557 (11)0.0226 (3)
C240.6419 (2)0.15434 (11)0.90936 (11)0.0217 (3)
C250.6217 (3)0.29192 (11)0.95341 (10)0.0216 (3)
C260.6050 (2)0.40046 (11)0.85117 (10)0.0190 (3)
H210.207 (3)0.4184 (13)0.8420 (11)0.018 (3)*
H2220.554 (3)0.2418 (13)0.6803 (12)0.020 (3)*
H110.425 (3)0.6570 (14)0.7637 (12)0.019 (3)*
H1220.262 (3)0.7010 (15)0.5310 (13)0.029 (4)*
H1320.429 (3)0.8914 (15)0.6553 (13)0.031 (4)*
H1420.091 (3)0.8943 (15)0.6059 (13)0.030 (4)*
H1210.554 (3)0.6934 (15)0.5552 (13)0.029 (4)*
H1620.090 (3)0.6583 (15)0.7140 (13)0.031 (4)*
H2320.243 (3)0.1638 (14)0.9028 (12)0.024 (3)*
H1610.014 (3)0.6294 (15)0.8456 (13)0.030 (4)*
H2520.462 (3)0.3095 (14)1.0150 (13)0.026 (4)*
H2620.769 (3)0.3890 (14)0.7917 (12)0.021 (3)*
H1310.350 (3)0.9203 (15)0.5246 (13)0.029 (4)*
H1520.068 (3)0.8541 (14)0.8390 (13)0.025 (3)*
H2510.775 (3)0.2960 (15)0.9926 (14)0.033 (4)*
H20.513 (3)0.4825 (15)0.6357 (13)0.026 (4)*
H2420.807 (3)0.1335 (15)0.8507 (13)0.029 (4)*
H2610.589 (3)0.4886 (16)0.8811 (13)0.029 (4)*
H2410.643 (3)0.0839 (16)0.9786 (14)0.033 (4)*
H2310.419 (3)0.0646 (16)0.8135 (13)0.029 (4)*
H1510.219 (3)0.8541 (16)0.8172 (14)0.035 (4)*
H2210.241 (3)0.2549 (15)0.7033 (12)0.028 (4)*
H10.102 (4)0.4736 (18)0.5937 (15)0.047 (5)*
H1410.016 (3)1.0087 (17)0.6736 (14)0.040 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0280 (5)0.0340 (5)0.0185 (4)0.0128 (4)0.0088 (4)0.0052 (4)
N10.0186 (5)0.0154 (5)0.0160 (4)0.0017 (3)0.0031 (4)0.0008 (3)
C110.0180 (5)0.0147 (5)0.0170 (5)0.0031 (4)0.0053 (4)0.0006 (4)
C120.0206 (6)0.0188 (5)0.0195 (5)0.0044 (4)0.0027 (4)0.0008 (4)
C130.0259 (6)0.0185 (6)0.0254 (6)0.0068 (4)0.0052 (5)0.0027 (4)
C140.0274 (6)0.0186 (6)0.0274 (6)0.0004 (5)0.0057 (5)0.0018 (5)
C150.0261 (6)0.0186 (6)0.0249 (6)0.0015 (5)0.0005 (5)0.0016 (5)
C160.0192 (5)0.0178 (5)0.0224 (6)0.0022 (4)0.0017 (4)0.0002 (4)
C210.0164 (5)0.0163 (5)0.0163 (5)0.0033 (4)0.0038 (4)0.0004 (4)
C220.0255 (6)0.0167 (5)0.0230 (6)0.0047 (4)0.0095 (5)0.0023 (4)
C230.0259 (6)0.0165 (5)0.0277 (6)0.0059 (4)0.0086 (5)0.0005 (4)
C240.0246 (6)0.0173 (5)0.0235 (6)0.0018 (4)0.0080 (5)0.0010 (4)
C250.0279 (6)0.0199 (6)0.0188 (5)0.0046 (4)0.0086 (5)0.0003 (4)
C260.0218 (6)0.0175 (5)0.0196 (5)0.0050 (4)0.0079 (4)0.0005 (4)
Geometric parameters (Å, º) top
O1—O1i1.4748 (15)C16—H1620.980 (16)
O1—H10.91 (2)C16—H1611.018 (15)
N1—C111.4791 (14)C21—C221.5299 (15)
N1—C211.4808 (13)C21—C261.5351 (15)
N1—H20.870 (16)C21—H210.990 (14)
C11—C161.5298 (16)C22—C231.5325 (15)
C11—C121.5308 (14)C22—H2221.004 (14)
C11—H111.005 (14)C22—H2210.984 (15)
C12—C131.5255 (16)C23—C241.5275 (16)
C12—H1221.001 (15)C23—H2320.988 (15)
C12—H1210.965 (16)C23—H2310.979 (16)
C13—C141.5245 (17)C24—C251.5260 (16)
C13—H1320.987 (16)C24—H2420.997 (15)
C13—H1311.012 (15)C24—H2411.013 (15)
C14—C151.5287 (16)C25—C261.5284 (14)
C14—H1420.991 (16)C25—H2520.992 (15)
C14—H1410.995 (17)C25—H2510.991 (16)
C15—C161.5321 (16)C26—H2620.990 (14)
C15—H1520.998 (15)C26—H2610.984 (16)
C15—H1510.964 (17)
O1i—O1—H199.4 (11)C15—C16—H161110.4 (9)
C11—N1—C21116.48 (8)H162—C16—H161106.7 (12)
C11—N1—H2106.7 (10)N1—C21—C22108.81 (8)
C21—N1—H2106.6 (9)N1—C21—C26113.46 (8)
N1—C11—C16111.14 (9)C22—C21—C26109.77 (9)
N1—C11—C12107.90 (9)N1—C21—H21107.8 (7)
C16—C11—C12110.41 (9)C22—C21—H21108.9 (8)
N1—C11—H11112.5 (8)C26—C21—H21108.0 (8)
C16—C11—H11106.3 (8)C21—C22—C23112.04 (9)
C12—C11—H11108.5 (8)C21—C22—H222108.7 (8)
C13—C12—C11112.02 (9)C23—C22—H222109.7 (7)
C13—C12—H122108.6 (9)C21—C22—H221110.8 (9)
C11—C12—H122109.2 (8)C23—C22—H221109.6 (8)
C13—C12—H121111.6 (9)H222—C22—H221105.8 (11)
C11—C12—H121108.7 (9)C24—C23—C22111.13 (9)
H122—C12—H121106.6 (12)C24—C23—H232109.6 (8)
C14—C13—C12111.20 (9)C22—C23—H232109.1 (8)
C14—C13—H132110.0 (9)C24—C23—H231112.5 (9)
C12—C13—H132108.7 (9)C22—C23—H231108.4 (8)
C14—C13—H131111.4 (9)H232—C23—H231105.9 (12)
C12—C13—H131109.1 (9)C25—C24—C23110.24 (10)
H132—C13—H131106.3 (12)C25—C24—H242110.1 (9)
C13—C14—C15110.36 (10)C23—C24—H242107.3 (8)
C13—C14—H142107.4 (9)C25—C24—H241110.6 (9)
C15—C14—H142109.7 (8)C23—C24—H241109.2 (9)
C13—C14—H141110.7 (10)H242—C24—H241109.3 (12)
C15—C14—H141110.3 (9)C24—C25—C26111.40 (9)
H142—C14—H141108.3 (13)C24—C25—H252109.4 (8)
C14—C15—C16111.27 (10)C26—C25—H252109.3 (8)
C14—C15—H152109.6 (8)C24—C25—H251110.7 (9)
C16—C15—H152110.3 (8)C26—C25—H251109.4 (9)
C14—C15—H151111.7 (9)H252—C25—H251106.5 (12)
C16—C15—H151108.6 (10)C25—C26—C21111.98 (9)
H152—C15—H151105.3 (12)C25—C26—H262110.7 (8)
C11—C16—C15111.57 (9)C21—C26—H262107.3 (8)
C11—C16—H162107.3 (9)C25—C26—H261110.5 (8)
C15—C16—H162110.3 (9)C21—C26—H261110.0 (8)
C11—C16—H161110.3 (9)H262—C26—H261106.1 (12)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.91 (2)1.87 (2)2.7733 (12)175.8 (16)
N1—H2···O1ii0.870 (16)2.391 (16)3.2388 (13)164.9 (13)
Symmetry code: (ii) x+1, y, z.
 

Acknowledgements

AVC is grateful to the Russian Science Support Foundation.

References

First citationAdams, J. M. & Pritchard, R. G. (1976). Acta Cryst. B32, 2438–2440.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAdams, J. M. & Ramdas, V. (1978). Acta Cryst. B34, 2150–2156.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAdams, J. M. & Ramdas, V. (1979). Inorg. Chim. Acta, 34, L225–L227.  CSD CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2003). SADABS, SAINT, SHELXTL and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChetina, O. V., Yufit, D. S. & Howard, J. A. K. (2006). Acta Cryst. E62, o2053–o2055.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChurakov, A. V., Prikhodchenko, P. V. & Howard, J. A. K. (2005). CrystEngComm, 7, 664–669.  Web of Science CSD CrossRef CAS Google Scholar
First citationCosgrove, S. D. & Jones, W. (1998). J. Mater. Chem. 8, 419–424.  CrossRef CAS Google Scholar
First citationHursthouse, M. B., Page, P. C. B. & Mazid, M. A. (2006). Private communication to the Cambridge Structural Database (refcode VAYGUY).  Google Scholar
First citationKomissarova, N. L., Vol'eva, V. B., Belostotskaya, I. S., Kurkovskaya, L. N. & Starikova, Z. A. (2003). Russ. J. Org. Chem. 39, 686–688.  CrossRef CAS Google Scholar
First citationMcKillop, A. & Sanderson, W. R. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 471–476.  Web of Science CrossRef Google Scholar
First citationPritchard, R. G. & Islam, E. (2003). Acta Cryst. B59, 596–605.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSavariault, J.-M. & Lehmann, M. S. (1980). J. Am. Chem. Soc. 102, 1298–1303.  CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds