organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Fluoro­phen­yl)-3-(4-meth­oxy­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, and dDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 27 June 2006; accepted 30 June 2006; online 12 July 2006)

The planar molecules of the title compound, C15H13FO2, are normal. The non-centrosymmetric crystal packing may be influenced by weak C—H⋯O and C—H⋯F inter­actions.

Comment

Among the various organic compounds reported for their non-linear optical (NLO) properties, chalcone derivatives are notable for their excellent blue-light transmittance and good crystallizability (Uchida et al., 1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]). They provide a necessary mol­ecular electronic configuration to show NLO effects, with two aromatic rings connected through a conjugated bridge (Goto et al., 1991[Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688-698.]; Tam et al., 1989[Tam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93-96.]; Indira et al., 2002[Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209-214.]). Substitution on either of the benzene rings appears to increase the likelihood of non-centrosymmetric crystal packing, as well as enhancing the electronic properties of the mol­ecule (Fichou et al., 1988[Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, 429-430.]). As part of our ongoing studies in this area (Harrison et al., 2005[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728-o730.]; Harrison, Yathirajan, Sarojini, Narayana & Vijaya Raj, 2006[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578-o1579.]), we have prepared the title chalcone derivative, (I)[link] (Fig. 1[link]).

[Scheme 1]

The geometric parameters for (I)[link] are normal. The dihedral angle between the C1–C6 and C10–C15 benzene rings is 7.15 (10)°. The C16 methyl C atom is displaced from the C10–C15 ring plane by 0.059 (4) Å. The enone group is close to planar (r.m.s. deviation from the mean plane of C6–C10 + O1 = 0.028 Å). Overall, the mol­ecule of (I)[link] is approximately planar, which is different from the significantly more twisted conformation of the 4-chloro derivative (Harrison, Yathirajan, Sarojini, Narayana & Indira, 2006[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Indira, J. (2006). Acta Cryst. E62, o1647-o1649.]), where the dihedral angle between the benzene rings is 21.82 (6)°.

The only possible non-van der Waals inter­molecular inter­actions in (I)[link] are C—H⋯O and C—H⋯F bonds arising from the methyl group (Table 2[link], Fig. 2[link]). There are no ππ stacking inter­actions in (I)[link].

Compound (I)[link] complements other chalcone derivatives with different substituents X at the 4-fluoro position (see scheme), including X = Cl (Harrison, Yathirajan, Sarojini, Narayana & Indira, 2006[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Indira, J. (2006). Acta Cryst. E62, o1647-o1649.]), X = OH (Sathiya Moorthi et al., 2005[Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o480-o482.]), X = CH3 (Wang et al., 2005[Wang, L., Lu, C.-R., Zhang, Y. & Zhang, D.-C. (2005). Jiegou Huaxue (Chin. J. Struct. Chem.), 24, 191-195. (In Chinese).]), X = H (Rabinovich & Schmidt, 1970[Rabinovich, D. & Schmidt, G. M. J. (1970). J. Chem. Soc. B, pp. 6-9.]), X = OCH3 (Zheng et al., 1992[Zheng, J., Zhang, D., Sheng, P., Wang, H. & Yao, X. (1992). Yingyong Huaxue (Chin. J. Appl. Chem.), 9, 66-69. (In Chinese).]) and X = NO2 (Patil et al., 2006[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896-o898.]). All of these compounds crystallize with different structures.

[Figure 1]
Figure 1
A view of (I)[link]. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The packing in (I)[link], viewed down [100], with C—H⋯O and C—H⋯F inter­actions indicated by dashed lines.

Experimental

4-Fluoro­acetophenone (1.38 g, 0.01 mol) in ethanol (25 ml) was mixed with 4-meth­oxy-benzaldehyde (1.36 g, 0.01 mol) in ethanol (25 ml) and the mixture was treated with an aqueous solution (20 ml) of potassium hydroxide (20 ml, 5%). The resulting mixture was stirred well and left for 24 h, and the solid product was collected by filtration and dried. Crystals of (I)[link] were recrystallized from ethanol (yield 90%; m.p. 371 K). Analysis, found (calculated) for C16H13FO2: C 74.29 (74.92%), H 5.72 (5.07%).

Crystal data
  • C16H13FO2

  • Mr = 256.26

  • Orthorhombic, P 21 21 21

  • a = 3.9148 (2) Å

  • b = 10.1977 (5) Å

  • c = 30.8052 (14) Å

  • V = 1229.80 (10) Å3

  • Z = 4

  • Dx = 1.384 Mg m−3

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.65 × 0.20 × 0.15 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan SADABS (Bruker, 2003[Bruker (2003). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.938, Tmax = 0.985

  • 8063 measured reflections

  • 1669 independent reflections

  • 1402 reflections with I > 2σ(I)

  • Rint = 0.034

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.083

  • S = 1.09

  • 1669 reflections

  • 174 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0274P)2 + 0.45P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

  • Extinction correction: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.])

  • Extinction coefficient: 0.017 (3)

Table 1
Selected torsion angles (°)

C5—C6—C7—O1 −9.4 (3)
O1—C7—C8—C9 −5.8 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16B⋯O1i 0.98 2.56 3.502 (3) 161
C16—H16A⋯F1ii 0.98 2.59 3.458 (3) 148
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

In the absence of significant anomalous scattering effects, Friedel pairs were averaged and the absolute structure of the crystal studied is indeterminate. The H atoms were placed in idealized locations (C—H = 0.95–0.98 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl group was rotated to fit the electron density.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK, DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK, DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

1-(4-Fluorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H13FO2F(000) = 536
Mr = 256.26Dx = 1.384 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1541 reflections
a = 3.9148 (2) Åθ = 1.0–27.5°
b = 10.1977 (5) ŵ = 0.10 mm1
c = 30.8052 (14) ÅT = 120 K
V = 1229.80 (10) Å3Block, colourless
Z = 40.65 × 0.20 × 0.15 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1669 independent reflections
Radiation source: fine-focus sealed tube1402 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and φ scansθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
SADABS (Bruker, 2003)
h = 54
Tmin = 0.938, Tmax = 0.985k = 1313
8063 measured reflectionsl = 4040
Refinement top
Refinement on F2Secondary atom site location: none
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.45P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1669 reflectionsΔρmax = 0.21 e Å3
174 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3302 (6)0.5221 (2)0.08621 (6)0.0249 (5)
H10.37890.54960.11500.030*
C20.4042 (7)0.6047 (2)0.05194 (6)0.0271 (5)
H20.50290.68860.05680.033*
C30.3309 (6)0.5622 (2)0.01070 (6)0.0259 (5)
C40.1873 (7)0.4417 (2)0.00202 (6)0.0285 (6)
H40.13990.41530.02690.034*
C50.1141 (7)0.3604 (2)0.03656 (6)0.0265 (5)
H50.01400.27700.03130.032*
C60.1850 (6)0.39877 (19)0.07920 (6)0.0216 (5)
C70.0968 (6)0.3057 (2)0.11487 (6)0.0257 (5)
C80.2157 (6)0.3353 (2)0.15937 (6)0.0265 (5)
H80.36390.40780.16390.032*
C90.1196 (6)0.2625 (2)0.19346 (6)0.0249 (5)
H90.02870.19090.18760.030*
C100.2193 (6)0.2817 (2)0.23866 (6)0.0227 (5)
C110.1246 (6)0.1895 (2)0.26996 (6)0.0242 (5)
H110.00110.11420.26130.029*
C120.2094 (6)0.2053 (2)0.31321 (6)0.0241 (5)
H120.14510.14060.33380.029*
C130.3895 (6)0.3162 (2)0.32649 (6)0.0232 (5)
C140.4832 (6)0.4105 (2)0.29607 (6)0.0236 (5)
H140.60240.48710.30490.028*
C150.4010 (6)0.39162 (19)0.25281 (6)0.0245 (5)
H150.47040.45530.23210.029*
C160.6316 (7)0.4400 (2)0.38472 (7)0.0323 (6)
H16A0.67830.43210.41590.048*
H16B0.48460.51620.37960.048*
H16C0.84720.45120.36900.048*
O10.0729 (5)0.20711 (14)0.10708 (5)0.0344 (4)
O20.4625 (4)0.32341 (14)0.36970 (4)0.0303 (4)
F10.4078 (4)0.64183 (12)0.02341 (4)0.0381 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0287 (14)0.0251 (10)0.0210 (9)0.0020 (10)0.0018 (10)0.0029 (8)
C20.0290 (13)0.0227 (10)0.0296 (10)0.0013 (11)0.0023 (10)0.0004 (8)
C30.0282 (14)0.0268 (11)0.0228 (9)0.0060 (11)0.0036 (10)0.0061 (8)
C40.0358 (15)0.0296 (12)0.0200 (9)0.0064 (12)0.0017 (10)0.0030 (8)
C50.0310 (13)0.0214 (10)0.0271 (10)0.0002 (11)0.0030 (11)0.0023 (8)
C60.0201 (12)0.0226 (10)0.0222 (9)0.0022 (9)0.0000 (9)0.0001 (8)
C70.0250 (12)0.0248 (10)0.0273 (10)0.0021 (11)0.0012 (10)0.0008 (8)
C80.0278 (13)0.0266 (11)0.0252 (10)0.0022 (11)0.0012 (10)0.0012 (9)
C90.0230 (12)0.0233 (10)0.0285 (10)0.0017 (11)0.0004 (10)0.0002 (8)
C100.0227 (12)0.0214 (10)0.0241 (9)0.0049 (10)0.0032 (9)0.0026 (8)
C110.0232 (12)0.0206 (10)0.0289 (10)0.0020 (11)0.0031 (10)0.0014 (8)
C120.0224 (12)0.0232 (10)0.0267 (10)0.0033 (10)0.0033 (9)0.0077 (9)
C130.0189 (12)0.0267 (10)0.0240 (9)0.0063 (11)0.0005 (9)0.0016 (8)
C140.0211 (12)0.0210 (10)0.0285 (10)0.0013 (10)0.0010 (10)0.0012 (8)
C150.0243 (13)0.0211 (10)0.0282 (10)0.0034 (10)0.0054 (11)0.0044 (8)
C160.0328 (14)0.0349 (12)0.0291 (10)0.0033 (13)0.0056 (11)0.0064 (9)
O10.0414 (10)0.0291 (8)0.0327 (8)0.0111 (9)0.0038 (8)0.0015 (6)
O20.0356 (10)0.0309 (8)0.0245 (7)0.0013 (8)0.0037 (7)0.0016 (6)
F10.0527 (10)0.0345 (7)0.0270 (6)0.0042 (8)0.0086 (7)0.0092 (5)
Geometric parameters (Å, º) top
C1—C21.382 (3)C9—H90.9500
C1—C61.397 (3)C10—C111.397 (3)
C1—H10.9500C10—C151.397 (3)
C2—C31.373 (3)C11—C121.382 (3)
C2—H20.9500C11—H110.9500
C3—F11.362 (2)C12—C131.394 (3)
C3—C41.377 (3)C12—H120.9500
C4—C51.379 (3)C13—O21.363 (2)
C4—H40.9500C13—C141.392 (3)
C5—C61.398 (3)C14—C151.384 (3)
C5—H50.9500C14—H140.9500
C6—C71.493 (3)C15—H150.9500
C7—O11.229 (3)C16—O21.437 (3)
C7—C81.479 (3)C16—H16A0.9800
C8—C91.340 (3)C16—H16B0.9800
C8—H80.9500C16—H16C0.9800
C9—C101.460 (3)
C2—C1—C6121.08 (19)C10—C9—H9116.6
C2—C1—H1119.5C11—C10—C15117.37 (18)
C6—C1—H1119.5C11—C10—C9119.79 (19)
C3—C2—C1118.06 (19)C15—C10—C9122.81 (18)
C3—C2—H2121.0C12—C11—C10121.5 (2)
C1—C2—H2121.0C12—C11—H11119.2
F1—C3—C2118.63 (19)C10—C11—H11119.2
F1—C3—C4118.20 (18)C11—C12—C13119.91 (19)
C2—C3—C4123.16 (19)C11—C12—H12120.0
C3—C4—C5118.11 (18)C13—C12—H12120.0
C3—C4—H4120.9O2—C13—C14124.38 (19)
C5—C4—H4120.9O2—C13—C12115.88 (18)
C4—C5—C6121.03 (19)C14—C13—C12119.74 (18)
C4—C5—H5119.5C15—C14—C13119.4 (2)
C6—C5—H5119.5C15—C14—H14120.3
C1—C6—C5118.56 (18)C13—C14—H14120.3
C1—C6—C7123.56 (18)C14—C15—C10122.01 (19)
C5—C6—C7117.88 (18)C14—C15—H15119.0
O1—C7—C8121.24 (19)C10—C15—H15119.0
O1—C7—C6120.10 (18)O2—C16—H16A109.5
C8—C7—C6118.66 (19)O2—C16—H16B109.5
C9—C8—C7121.6 (2)H16A—C16—H16B109.5
C9—C8—H8119.2O2—C16—H16C109.5
C7—C8—H8119.2H16A—C16—H16C109.5
C8—C9—C10126.7 (2)H16B—C16—H16C109.5
C8—C9—H9116.6C13—O2—C16117.11 (16)
C6—C1—C2—C30.0 (4)C7—C8—C9—C10180.0 (2)
C1—C2—C3—F1178.9 (2)C8—C9—C10—C11173.7 (2)
C1—C2—C3—C40.2 (4)C8—C9—C10—C158.0 (4)
F1—C3—C4—C5179.1 (2)C15—C10—C11—C120.6 (3)
C2—C3—C4—C50.0 (4)C9—C10—C11—C12179.0 (2)
C3—C4—C5—C60.3 (4)C10—C11—C12—C130.9 (3)
C2—C1—C6—C50.2 (3)C11—C12—C13—O2179.9 (2)
C2—C1—C6—C7179.5 (2)C11—C12—C13—C140.1 (3)
C4—C5—C6—C10.4 (3)O2—C13—C14—C15178.7 (2)
C4—C5—C6—C7179.7 (2)C12—C13—C14—C151.1 (3)
C1—C6—C7—O1169.8 (2)C13—C14—C15—C101.5 (3)
C5—C6—C7—O19.4 (3)C11—C10—C15—C140.6 (3)
C1—C6—C7—C89.8 (3)C9—C10—C15—C14177.7 (2)
C5—C6—C7—C8171.0 (2)C14—C13—O2—C163.5 (3)
O1—C7—C8—C95.8 (4)C12—C13—O2—C16176.71 (19)
C6—C7—C8—C9173.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O1i0.982.563.502 (3)161
C16—H16A···F1ii0.982.593.458 (3)148
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+3/2, y+1, z+1/2.
 

Acknowledgements

The authors thank the EPSRC National Crystallography Service (University of Southampton) for data collection. HGS thanks the University of Mysore for provision of research facilities. BKS thanks AICTE, Government of India, New Delhi, for financial assistance under the Career Award for Young Teachers (CAYT) scheme.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, 429–430.  CrossRef Web of Science Google Scholar
First citationGoto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.  CrossRef CAS Web of Science Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728–o730.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Indira, J. (2006). Acta Cryst. E62, o1647–o1649.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578–o1579.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationIndira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896–o898.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRabinovich, D. & Schmidt, G. M. J. (1970). J. Chem. Soc. B, pp. 6–9.  Google Scholar
First citationSathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o480–o482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93–96.  CSD CrossRef CAS Web of Science Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar
First citationWang, L., Lu, C.-R., Zhang, Y. & Zhang, D.-C. (2005). Jiegou Huaxue (Chin. J. Struct. Chem.), 24, 191–195. (In Chinese).  Google Scholar
First citationZheng, J., Zhang, D., Sheng, P., Wang, H. & Yao, X. (1992). Yingyong Huaxue (Chin. J. Appl. Chem.), 9, 66–69. (In Chinese).  CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds