organic compounds
1-(4-Fluorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, and dDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: w.harrison@abdn.ac.uk
The planar molecules of the title compound, C15H13FO2, are normal. The non-centrosymmetric crystal packing may be influenced by weak C—H⋯O and C—H⋯F interactions.
Comment
Among the various organic compounds reported for their non-linear optical (NLO) properties, chalcone derivatives are notable for their excellent blue-light transmittance and good crystallizability (Uchida et al., 1998). They provide a necessary molecular to show NLO effects, with two aromatic rings connected through a conjugated bridge (Goto et al., 1991; Tam et al., 1989; Indira et al., 2002). Substitution on either of the benzene rings appears to increase the likelihood of non-centrosymmetric crystal packing, as well as enhancing the electronic properties of the molecule (Fichou et al., 1988). As part of our ongoing studies in this area (Harrison et al., 2005; Harrison, Yathirajan, Sarojini, Narayana & Vijaya Raj, 2006), we have prepared the title chalcone derivative, (I) (Fig. 1).
The geometric parameters for (I) are normal. The dihedral angle between the C1–C6 and C10–C15 benzene rings is 7.15 (10)°. The C16 methyl C atom is displaced from the C10–C15 ring plane by 0.059 (4) Å. The enone group is close to planar (r.m.s. deviation from the mean plane of C6–C10 + O1 = 0.028 Å). Overall, the molecule of (I) is approximately planar, which is different from the significantly more twisted conformation of the 4-chloro derivative (Harrison, Yathirajan, Sarojini, Narayana & Indira, 2006), where the dihedral angle between the benzene rings is 21.82 (6)°.
The only possible non-van der Waals intermolecular interactions in (I) are C—H⋯O and C—H⋯F bonds arising from the methyl group (Table 2, Fig. 2). There are no π–π stacking interactions in (I).
Compound (I) complements other chalcone derivatives with different substituents X at the 4-fluoro position (see scheme), including X = Cl (Harrison, Yathirajan, Sarojini, Narayana & Indira, 2006), X = OH (Sathiya Moorthi et al., 2005), X = CH3 (Wang et al., 2005), X = H (Rabinovich & Schmidt, 1970), X = OCH3 (Zheng et al., 1992) and X = NO2 (Patil et al., 2006). All of these compounds crystallize with different structures.
Experimental
4-Fluoroacetophenone (1.38 g, 0.01 mol) in ethanol (25 ml) was mixed with 4-methoxy-benzaldehyde (1.36 g, 0.01 mol) in ethanol (25 ml) and the mixture was treated with an aqueous solution (20 ml) of potassium hydroxide (20 ml, 5%). The resulting mixture was stirred well and left for 24 h, and the solid product was collected by filtration and dried. Crystals of (I) were recrystallized from ethanol (yield 90%; m.p. 371 K). Analysis, found (calculated) for C16H13FO2: C 74.29 (74.92%), H 5.72 (5.07%).
Crystal data
|
Refinement
|
|
In the absence of significant Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl group was rotated to fit the electron density.
effects, Friedel pairs were averaged and the of the crystal studied is indeterminate. The H atoms were placed in idealized locations (C—H = 0.95–0.98 Å) and refined as riding, withData collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK, DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S160053680602530X/sg2042sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053680602530X/sg2042Isup2.hkl
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK, DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.C16H13FO2 | F(000) = 536 |
Mr = 256.26 | Dx = 1.384 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1541 reflections |
a = 3.9148 (2) Å | θ = 1.0–27.5° |
b = 10.1977 (5) Å | µ = 0.10 mm−1 |
c = 30.8052 (14) Å | T = 120 K |
V = 1229.80 (10) Å3 | Block, colourless |
Z = 4 | 0.65 × 0.20 × 0.15 mm |
Nonius KappaCCD area-detector diffractometer | 1669 independent reflections |
Radiation source: fine-focus sealed tube | 1402 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ω and φ scans | θmax = 27.5°, θmin = 1.3° |
Absorption correction: multi-scan SADABS (Bruker, 2003) | h = −5→4 |
Tmin = 0.938, Tmax = 0.985 | k = −13→13 |
8063 measured reflections | l = −40→40 |
Refinement on F2 | Secondary atom site location: none |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.0274P)2 + 0.45P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
1669 reflections | Δρmax = 0.21 e Å−3 |
174 parameters | Δρmin = −0.17 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.017 (3) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3302 (6) | 0.5221 (2) | 0.08621 (6) | 0.0249 (5) | |
H1 | 0.3789 | 0.5496 | 0.1150 | 0.030* | |
C2 | 0.4042 (7) | 0.6047 (2) | 0.05194 (6) | 0.0271 (5) | |
H2 | 0.5029 | 0.6886 | 0.0568 | 0.033* | |
C3 | 0.3309 (6) | 0.5622 (2) | 0.01070 (6) | 0.0259 (5) | |
C4 | 0.1873 (7) | 0.4417 (2) | 0.00202 (6) | 0.0285 (6) | |
H4 | 0.1399 | 0.4153 | −0.0269 | 0.034* | |
C5 | 0.1141 (7) | 0.3604 (2) | 0.03656 (6) | 0.0265 (5) | |
H5 | 0.0140 | 0.2770 | 0.0313 | 0.032* | |
C6 | 0.1850 (6) | 0.39877 (19) | 0.07920 (6) | 0.0216 (5) | |
C7 | 0.0968 (6) | 0.3057 (2) | 0.11487 (6) | 0.0257 (5) | |
C8 | 0.2157 (6) | 0.3353 (2) | 0.15937 (6) | 0.0265 (5) | |
H8 | 0.3639 | 0.4078 | 0.1639 | 0.032* | |
C9 | 0.1196 (6) | 0.2625 (2) | 0.19346 (6) | 0.0249 (5) | |
H9 | −0.0287 | 0.1909 | 0.1876 | 0.030* | |
C10 | 0.2193 (6) | 0.2817 (2) | 0.23866 (6) | 0.0227 (5) | |
C11 | 0.1246 (6) | 0.1895 (2) | 0.26996 (6) | 0.0242 (5) | |
H11 | −0.0011 | 0.1142 | 0.2613 | 0.029* | |
C12 | 0.2094 (6) | 0.2053 (2) | 0.31321 (6) | 0.0241 (5) | |
H12 | 0.1451 | 0.1406 | 0.3338 | 0.029* | |
C13 | 0.3895 (6) | 0.3162 (2) | 0.32649 (6) | 0.0232 (5) | |
C14 | 0.4832 (6) | 0.4105 (2) | 0.29607 (6) | 0.0236 (5) | |
H14 | 0.6024 | 0.4871 | 0.3049 | 0.028* | |
C15 | 0.4010 (6) | 0.39162 (19) | 0.25281 (6) | 0.0245 (5) | |
H15 | 0.4704 | 0.4553 | 0.2321 | 0.029* | |
C16 | 0.6316 (7) | 0.4400 (2) | 0.38472 (7) | 0.0323 (6) | |
H16A | 0.6783 | 0.4321 | 0.4159 | 0.048* | |
H16B | 0.4846 | 0.5162 | 0.3796 | 0.048* | |
H16C | 0.8472 | 0.4512 | 0.3690 | 0.048* | |
O1 | −0.0729 (5) | 0.20711 (14) | 0.10708 (5) | 0.0344 (4) | |
O2 | 0.4625 (4) | 0.32341 (14) | 0.36970 (4) | 0.0303 (4) | |
F1 | 0.4078 (4) | 0.64183 (12) | −0.02341 (4) | 0.0381 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0287 (14) | 0.0251 (10) | 0.0210 (9) | 0.0020 (10) | −0.0018 (10) | −0.0029 (8) |
C2 | 0.0290 (13) | 0.0227 (10) | 0.0296 (10) | −0.0013 (11) | 0.0023 (10) | −0.0004 (8) |
C3 | 0.0282 (14) | 0.0268 (11) | 0.0228 (9) | 0.0060 (11) | 0.0036 (10) | 0.0061 (8) |
C4 | 0.0358 (15) | 0.0296 (12) | 0.0200 (9) | 0.0064 (12) | −0.0017 (10) | −0.0030 (8) |
C5 | 0.0310 (13) | 0.0214 (10) | 0.0271 (10) | −0.0002 (11) | −0.0030 (11) | −0.0023 (8) |
C6 | 0.0201 (12) | 0.0226 (10) | 0.0222 (9) | 0.0022 (9) | 0.0000 (9) | −0.0001 (8) |
C7 | 0.0250 (12) | 0.0248 (10) | 0.0273 (10) | 0.0021 (11) | 0.0012 (10) | −0.0008 (8) |
C8 | 0.0278 (13) | 0.0266 (11) | 0.0252 (10) | −0.0022 (11) | −0.0012 (10) | 0.0012 (9) |
C9 | 0.0230 (12) | 0.0233 (10) | 0.0285 (10) | 0.0017 (11) | 0.0004 (10) | 0.0002 (8) |
C10 | 0.0227 (12) | 0.0214 (10) | 0.0241 (9) | 0.0049 (10) | 0.0032 (9) | 0.0026 (8) |
C11 | 0.0232 (12) | 0.0206 (10) | 0.0289 (10) | 0.0020 (11) | 0.0031 (10) | 0.0014 (8) |
C12 | 0.0224 (12) | 0.0232 (10) | 0.0267 (10) | 0.0033 (10) | 0.0033 (9) | 0.0077 (9) |
C13 | 0.0189 (12) | 0.0267 (10) | 0.0240 (9) | 0.0063 (11) | 0.0005 (9) | 0.0016 (8) |
C14 | 0.0211 (12) | 0.0210 (10) | 0.0285 (10) | 0.0013 (10) | 0.0010 (10) | 0.0012 (8) |
C15 | 0.0243 (13) | 0.0211 (10) | 0.0282 (10) | 0.0034 (10) | 0.0054 (11) | 0.0044 (8) |
C16 | 0.0328 (14) | 0.0349 (12) | 0.0291 (10) | 0.0033 (13) | −0.0056 (11) | −0.0064 (9) |
O1 | 0.0414 (10) | 0.0291 (8) | 0.0327 (8) | −0.0111 (9) | −0.0038 (8) | 0.0015 (6) |
O2 | 0.0356 (10) | 0.0309 (8) | 0.0245 (7) | 0.0013 (8) | −0.0037 (7) | 0.0016 (6) |
F1 | 0.0527 (10) | 0.0345 (7) | 0.0270 (6) | 0.0042 (8) | 0.0086 (7) | 0.0092 (5) |
C1—C2 | 1.382 (3) | C9—H9 | 0.9500 |
C1—C6 | 1.397 (3) | C10—C11 | 1.397 (3) |
C1—H1 | 0.9500 | C10—C15 | 1.397 (3) |
C2—C3 | 1.373 (3) | C11—C12 | 1.382 (3) |
C2—H2 | 0.9500 | C11—H11 | 0.9500 |
C3—F1 | 1.362 (2) | C12—C13 | 1.394 (3) |
C3—C4 | 1.377 (3) | C12—H12 | 0.9500 |
C4—C5 | 1.379 (3) | C13—O2 | 1.363 (2) |
C4—H4 | 0.9500 | C13—C14 | 1.392 (3) |
C5—C6 | 1.398 (3) | C14—C15 | 1.384 (3) |
C5—H5 | 0.9500 | C14—H14 | 0.9500 |
C6—C7 | 1.493 (3) | C15—H15 | 0.9500 |
C7—O1 | 1.229 (3) | C16—O2 | 1.437 (3) |
C7—C8 | 1.479 (3) | C16—H16A | 0.9800 |
C8—C9 | 1.340 (3) | C16—H16B | 0.9800 |
C8—H8 | 0.9500 | C16—H16C | 0.9800 |
C9—C10 | 1.460 (3) | ||
C2—C1—C6 | 121.08 (19) | C10—C9—H9 | 116.6 |
C2—C1—H1 | 119.5 | C11—C10—C15 | 117.37 (18) |
C6—C1—H1 | 119.5 | C11—C10—C9 | 119.79 (19) |
C3—C2—C1 | 118.06 (19) | C15—C10—C9 | 122.81 (18) |
C3—C2—H2 | 121.0 | C12—C11—C10 | 121.5 (2) |
C1—C2—H2 | 121.0 | C12—C11—H11 | 119.2 |
F1—C3—C2 | 118.63 (19) | C10—C11—H11 | 119.2 |
F1—C3—C4 | 118.20 (18) | C11—C12—C13 | 119.91 (19) |
C2—C3—C4 | 123.16 (19) | C11—C12—H12 | 120.0 |
C3—C4—C5 | 118.11 (18) | C13—C12—H12 | 120.0 |
C3—C4—H4 | 120.9 | O2—C13—C14 | 124.38 (19) |
C5—C4—H4 | 120.9 | O2—C13—C12 | 115.88 (18) |
C4—C5—C6 | 121.03 (19) | C14—C13—C12 | 119.74 (18) |
C4—C5—H5 | 119.5 | C15—C14—C13 | 119.4 (2) |
C6—C5—H5 | 119.5 | C15—C14—H14 | 120.3 |
C1—C6—C5 | 118.56 (18) | C13—C14—H14 | 120.3 |
C1—C6—C7 | 123.56 (18) | C14—C15—C10 | 122.01 (19) |
C5—C6—C7 | 117.88 (18) | C14—C15—H15 | 119.0 |
O1—C7—C8 | 121.24 (19) | C10—C15—H15 | 119.0 |
O1—C7—C6 | 120.10 (18) | O2—C16—H16A | 109.5 |
C8—C7—C6 | 118.66 (19) | O2—C16—H16B | 109.5 |
C9—C8—C7 | 121.6 (2) | H16A—C16—H16B | 109.5 |
C9—C8—H8 | 119.2 | O2—C16—H16C | 109.5 |
C7—C8—H8 | 119.2 | H16A—C16—H16C | 109.5 |
C8—C9—C10 | 126.7 (2) | H16B—C16—H16C | 109.5 |
C8—C9—H9 | 116.6 | C13—O2—C16 | 117.11 (16) |
C6—C1—C2—C3 | 0.0 (4) | C7—C8—C9—C10 | 180.0 (2) |
C1—C2—C3—F1 | −178.9 (2) | C8—C9—C10—C11 | −173.7 (2) |
C1—C2—C3—C4 | 0.2 (4) | C8—C9—C10—C15 | 8.0 (4) |
F1—C3—C4—C5 | 179.1 (2) | C15—C10—C11—C12 | −0.6 (3) |
C2—C3—C4—C5 | 0.0 (4) | C9—C10—C11—C12 | −179.0 (2) |
C3—C4—C5—C6 | −0.3 (4) | C10—C11—C12—C13 | 0.9 (3) |
C2—C1—C6—C5 | −0.2 (3) | C11—C12—C13—O2 | −179.9 (2) |
C2—C1—C6—C7 | −179.5 (2) | C11—C12—C13—C14 | −0.1 (3) |
C4—C5—C6—C1 | 0.4 (3) | O2—C13—C14—C15 | 178.7 (2) |
C4—C5—C6—C7 | 179.7 (2) | C12—C13—C14—C15 | −1.1 (3) |
C1—C6—C7—O1 | 169.8 (2) | C13—C14—C15—C10 | 1.5 (3) |
C5—C6—C7—O1 | −9.4 (3) | C11—C10—C15—C14 | −0.6 (3) |
C1—C6—C7—C8 | −9.8 (3) | C9—C10—C15—C14 | 177.7 (2) |
C5—C6—C7—C8 | 171.0 (2) | C14—C13—O2—C16 | 3.5 (3) |
O1—C7—C8—C9 | −5.8 (4) | C12—C13—O2—C16 | −176.71 (19) |
C6—C7—C8—C9 | 173.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16B···O1i | 0.98 | 2.56 | 3.502 (3) | 161 |
C16—H16A···F1ii | 0.98 | 2.59 | 3.458 (3) | 148 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+3/2, −y+1, z+1/2. |
Acknowledgements
The authors thank the EPSRC National Crystallography Service (University of Southampton) for data collection. HGS thanks the University of Mysore for provision of research facilities. BKS thanks AICTE, Government of India, New Delhi, for financial assistance under the Career Award for Young Teachers (CAYT) scheme.
References
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2003). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, 429–430. CrossRef Web of Science Google Scholar
Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698. CrossRef CAS Web of Science Google Scholar
Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728–o730. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Indira, J. (2006). Acta Cryst. E62, o1647–o1649. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578–o1579. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214. Web of Science CrossRef CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896–o898. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rabinovich, D. & Schmidt, G. M. J. (1970). J. Chem. Soc. B, pp. 6–9. Google Scholar
Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o480–o482. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Tam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93–96. CSD CrossRef CAS Web of Science Google Scholar
Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140. Web of Science CrossRef Google Scholar
Wang, L., Lu, C.-R., Zhang, Y. & Zhang, D.-C. (2005). Jiegou Huaxue (Chin. J. Struct. Chem.), 24, 191–195. (In Chinese). Google Scholar
Zheng, J., Zhang, D., Sheng, P., Wang, H. & Yao, X. (1992). Yingyong Huaxue (Chin. J. Appl. Chem.), 9, 66–69. (In Chinese). CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.