metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-(Di­phenyl­phosphino-κP)benzaldehyde]gold(I) chloride

aChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England, and bMolecular Profiles, 8 Orchard Place, Nottingham Business Park, Nottingham NG8 6PX, England
*Correspondence e-mail: m.b.smith@lboro.ac.uk

(Received 28 June 2006; accepted 7 July 2006; online 18 July 2006)

The title compound, [AuCl{(2-(C6H5)2PC6H4CHO}], crystallizes with two molecules in the asymmetric unit. A comparison of the Au—P, Au—Cl and Cl—Au—P bond lengths and angles for both independent mol­ecules with those of the previously reported compounds ClAu(2-Ph2PC6H4X) (X = H, OSiMe3 or OH) reveals that the nature of the ortho X substituent has a negligible effect on these structural parameters.

Comment

Functionalized tertiary phosphines bearing an additional hard oxygen donor group continue to find a range of uses in coordination and organometallic chemistry and catalysis (Downing & Smith, 2004[Downing, J. H. & Smith, M. B. (2004). Phosphorus Ligands, in Comprehensive Coordination Chemistry II, Vol. 1, pp. 253-296. Oxford: Elsevier.]). One classic example of such a hybrid ligand is 2-(diphenyl­phosphino)benzaldehyde (Hoots et al., 1982[Hoots, J. E., Rauchfuss, T. B. & Wrobleski, D. A. (1982). Inorg. Synth. 21, 175-178.]; Chandrasekaran et al., 2001[Chandrasekaran, A., Day, R. O. & Holmes, R. R. (2001). Inorg. Chem. 40, 6229-6238.]), which has been studied in conjunction with a range of transition metal centres, e.g. W, Re, Rh and Cu (Yeh et al., 2004[Yeh, W.-Y., Lin, C.-S., Peng, S.-M. & Lee, G.-H. (2004). Organometallics, 23, 917-920.], 2006[Yeh, W.-Y., Lee, G.-H. & Peng, S.-M. (2006). Inorg. Chim. Acta, 359, 659-664.]; Chen et al., 2001[Chen, X., Femia, F. J., Babich, J. W. & Zubieta, J. (2001). Inorg. Chim. Acta, 315, 147-152.]; Mail et al., 2000[Mail, R. E., Garralda, M. A., Hernández, R., Ibarlucea, L., Pinilla, E. & Torres, M. R. (2000). Organometallics, 19, 5310-5317.]). Furthermore, 2-Ph2PC6H4CHO undergoes Schiff base condensation reactions with primary amines to give a range of polydentate ligands containing, amongst others, PNO or PNSe donor sets (Bhattacharyya et al., 1998[Bhattacharyya, P., Parr, J. & Slawin, A. M. Z. (1998). J. Chem. Soc. Dalton Trans. pp. 3609-3614.]; Durran et al., 2002[Durran, S. E., Elsegood, M. R. J. & Smith, M. B. (2002). New J. Chem. 26, 1402-1408.]). We present here the structure of the title linear gold(I) complex, (I)[link]. Recently, trigonal and tetra­hedral copper(I) complexes with 2-Ph2PC6H4CHO have been reported (Yeh et al., 2006[Yeh, W.-Y., Lee, G.-H. & Peng, S.-M. (2006). Inorg. Chim. Acta, 359, 659-664.]).

[Scheme 1]

Compound (I)[link], ClAu[2-(C6H5)2PC6H4CHO], crystallizes in a centrosymmetric space group, the asymmetric unit containing two independent mol­ecules (Figs. 1[link] and 2[link], Table 1[link]). The crystal structure of (I)[link] confirms an essentially linear arrangement of both chloride and tertiary phosphine ligands around the gold(I) metal centre. In (I)[link], the Au—P and Au—Cl bond lengths for both independent moleules are typical for this class of compound and agree well with those reported for related complexes (Table 2[link]) (Hollatz et al., 1999[Hollatz, C., Schier, A. & Schmidbaur, H. (1999). Z. Naturforsch. Teil B, 54, 30-37.]; Baenziger et al., 1976[Baenziger, N. C., Bennett, W. E. & Soboroff, D. M. (1976). Acta Cryst. B32, 962-963.]).

Recently, it has been shown by X-ray diffraction that, in uncoordinated 2-Ph2PC6H4CHO, the carbonyl group resides in close proximity to the P atom and the C=O distance is 1.194 (3) Å [cf. 1.207 (7) and 1.219 (7) Å in (I)]. The Au⋯O separations in (I)[link] are 3.109 (4) and 3.106 (4) Å, shorter than the sum of their van der Waals radii of ca 3.2 Å, suggesting weak additional coordination. The shortest Au⋯Au inter­molecular separation is 5.5900 (4) Å, indicating extremely weak aurophilicity. The dihedral angle between the formyl group and the benzene ring is 3.0 (7)° in the complex containing Au1, and 2.4 (5)° in the complex containing Au2.

Weak inter­molecular hydrogen bonds are observed between phenyl CH groups and the coordinated Cl ligands, with C⋯Cl distances in the range 3.6–3.8 Å.

In summary, we have shown that the known ligand 2-Ph2PC6H4CHO can be complexed to gold(I), affording a classic two-coordinate complex with typical Au—P and Au—Cl bond lengths and Cl—Au—P bond angles.

[Figure 1]
Figure 1
A perspective view of the complex containing Au1, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
A perspective view of the complex containing Au2, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Experimental

The preparation of (I)[link] was carried out as follows. To a CH2Cl2 (10 ml) solution of AuCl(tht) (tht is tetrahydrothiophene; 0.048 g, 0.150 mmol) was added 2-Ph2PC6H4CHO (0.047 g, 0.162 mmol). The yellow solution was stirred for 10 min and the volume reduced to ca 2–3 ml under reduced pressure. Addition of diethyl ether (10 ml) and petroleum ether (b.p. 333–353 K, 20 ml) gave (I)[link], which was collected by suction filtration and dried in vacuo (yield 0.068 g, 87%). Selected spectroscopic data: 31P{1H} NMR (CDCl3, δ, p.p.m.): 32.2; 1H NMR (CDCl3, δ, p.p.m.): 10.26 (CHO), 8.10–6.94 (arom. H); FT–IR (ν, cm−1): 1698 (CO), 1678 (CO), 333 (AuCl). Analysis, found: C 43.89, H 2.62%; C19H15AuClOP requires: C 43.65, H 2.90%. Colourless block crystals of (I)[link] were obtained by vapour diffusion of diethyl ether into a CDCl3 solution.

Crystal data
  • [AuCl(C19H15OP)]

  • Mr = 522.70

  • Triclinic, [P \overline 1]

  • a = 10.2431 (2) Å

  • b = 10.4949 (2) Å

  • c = 16.6533 (3) Å

  • α = 97.1857 (7)°

  • β = 103.5519 (9)°

  • γ = 101.4375 (9)°

  • V = 1677.96 (6) Å3

  • Z = 4

  • Dx = 2.069 Mg m−3

  • Mo Kα radiation

  • μ = 9.02 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.25 × 0.20 × 0.04 mm

Data collection
  • Bruker Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan using multiple and symmetry-related data measurements (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.128, Tmax = 0.697

  • 29712 measured reflections

  • 7704 independent reflections

  • 6936 reflections with I > 2σ(I)

  • Rint = 0.063

  • θmax = 27.7°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.06

  • 7704 reflections

  • 415 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0588P)2 + 5.6P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 3.10 e Å−3

  • Δρmin = −1.40 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au1—P1 2.2297 (13)
Au1—Cl1 2.2819 (13)
P1—C14 1.822 (5)
P1—C1 1.825 (5)
P1—C8 1.827 (5)
C7—O1 1.207 (7)
Au2—P2 2.2304 (14)
Au2—Cl2 2.2836 (14)
P2—C33 1.807 (5)
P2—C27 1.817 (6)
P2—C20 1.838 (5)
C26—O2 1.219 (7)
P1—Au1—Cl1 178.79 (5)
P2—Au2—Cl2 178.12 (5)

Table 2
Selected bond lengths and angles (Å, °) taken from compounds of the form ClAu(2-Ph2PC6H4X) [X = H (Baenziger et al., 1976[Baenziger, N. C., Bennett, W. E. & Soboroff, D. M. (1976). Acta Cryst. B32, 962-963.]), OSiMe3 or OH (Hollatz et al., 1999[Hollatz, C., Schier, A. & Schmidbaur, H. (1999). Z. Naturforsch. Teil B, 54, 30-37.])]

  X = H X = OH X = OSiMe3
Au—P 2.235 (3) 2.2226 (2) 2.2294 (8)
Au—Cl 2.279 (3) 2.285 (2) 2.2851 (8)
P—Au—Cl 179.68 (8) 176.85 (8) 177.30 (3)

H atoms were placed in geometric positions using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The maximum and minimum electron-density peaks are located 0.88 Å from Au1 and 0.70 Å from Au2, respectively.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

[2-(Diphenylphosphino-κP)benzaldehyde]gold(I) chloride top
Crystal data top
[AuCl(C19H15OP)]Z = 4
Mr = 522.70F(000) = 992
Triclinic, P1Dx = 2.069 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2431 (2) ÅCell parameters from 61735 reflections
b = 10.4949 (2) Åθ = 2.9–27.5°
c = 16.6533 (3) ŵ = 9.02 mm1
α = 97.1857 (7)°T = 120 K
β = 103.5519 (9)°Thick plate, colourless
γ = 101.4375 (9)°0.25 × 0.20 × 0.04 mm
V = 1677.96 (6) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
7704 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode6936 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.063
Detector resolution: 9.091 pixels mm-1θmax = 27.7°, θmin = 2.9°
φ and ω scansh = 1313
Absorption correction: multi-scan
using multiple and symmetry-related data measurements (SORTAV; Blessing, 1995)
k = 1313
Tmin = 0.128, Tmax = 0.697l = 2121
29712 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0588P)2 + 5.6P]
where P = (Fo2 + 2Fc2)/3
7704 reflections(Δ/σ)max = 0.002
415 parametersΔρmax = 3.10 e Å3
0 restraintsΔρmin = 1.40 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.69934 (2)0.116173 (19)0.424881 (11)0.01437 (7)
Cl10.65437 (14)0.03133 (14)0.28557 (8)0.0213 (3)
P10.73885 (14)0.19673 (13)0.56099 (8)0.0134 (3)
C10.8005 (5)0.0849 (5)0.6285 (3)0.0148 (10)
C20.7170 (6)0.0265 (5)0.6749 (3)0.0159 (10)
H20.62950.04610.67160.019*
C30.7597 (6)0.0604 (5)0.7263 (3)0.0201 (11)
H30.70040.10050.75690.024*
C40.8878 (6)0.0890 (6)0.7333 (4)0.0225 (12)
H40.91800.14640.76960.027*
C50.9703 (6)0.0332 (5)0.6869 (4)0.0191 (11)
H51.05770.05330.69080.023*
C60.9285 (6)0.0528 (5)0.6339 (3)0.0170 (10)
C71.0229 (6)0.1008 (5)0.5849 (3)0.0183 (11)
H71.10720.07310.59330.022*
O11.0025 (4)0.1729 (4)0.5346 (2)0.0205 (8)
C80.5803 (6)0.2252 (5)0.5844 (3)0.0163 (10)
C90.4615 (6)0.1980 (5)0.5197 (3)0.0184 (11)
H90.46070.15640.46550.022*
C100.3421 (6)0.2316 (6)0.5336 (4)0.0245 (12)
H100.26030.21290.48880.029*
C110.3431 (6)0.2918 (6)0.6123 (4)0.0217 (12)
H110.26250.31570.62170.026*
C120.4626 (6)0.3173 (6)0.6780 (4)0.0202 (11)
H120.46300.35740.73250.024*
C130.5815 (6)0.2844 (5)0.6641 (3)0.0182 (11)
H130.66320.30230.70890.022*
C140.8589 (5)0.3577 (5)0.6010 (3)0.0156 (10)
C150.8508 (6)0.4559 (6)0.5518 (4)0.0212 (11)
H150.78590.43660.49820.025*
C160.9366 (7)0.5807 (6)0.5808 (4)0.0271 (13)
H160.92990.64730.54730.032*
C171.0325 (6)0.6093 (6)0.6586 (4)0.0248 (12)
H171.09240.69480.67820.030*
C181.0402 (6)0.5130 (6)0.7074 (4)0.0232 (12)
H181.10590.53260.76080.028*
C190.9529 (6)0.3871 (6)0.6796 (4)0.0205 (11)
H190.95770.32180.71430.025*
Au21.02900 (2)0.690763 (19)0.904323 (12)0.01608 (7)
Cl21.24726 (15)0.77100 (15)0.89367 (9)0.0260 (3)
P20.81313 (14)0.61296 (13)0.91035 (8)0.0144 (3)
C200.7804 (5)0.6774 (5)1.0097 (3)0.0146 (10)
C210.7514 (6)0.5895 (5)1.0624 (4)0.0182 (11)
H210.74190.49781.04470.022*
C220.7360 (6)0.6354 (6)1.1419 (4)0.0222 (12)
H220.71640.57431.17750.027*
C230.7489 (6)0.7667 (6)1.1685 (4)0.0218 (11)
H230.73740.79691.22200.026*
C240.7788 (6)0.8559 (6)1.1167 (4)0.0210 (11)
H240.78920.94751.13550.025*
C250.7937 (6)0.8128 (5)1.0380 (3)0.0179 (11)
C260.8287 (6)0.9151 (6)0.9893 (4)0.0229 (12)
H260.83491.00401.01300.027*
O20.8505 (4)0.8949 (4)0.9205 (3)0.0248 (9)
C270.7707 (6)0.4343 (5)0.9010 (3)0.0161 (10)
C280.6382 (6)0.3653 (6)0.8953 (3)0.0193 (11)
H280.56880.41200.89910.023*
C290.6054 (7)0.2272 (6)0.8841 (4)0.0238 (12)
H290.51470.18020.88160.029*
C300.7064 (6)0.1600 (5)0.8768 (4)0.0228 (12)
H300.68450.06620.86920.027*
C310.8379 (6)0.2264 (6)0.8803 (4)0.0239 (12)
H310.90550.17880.87350.029*
C320.8715 (6)0.3641 (6)0.8938 (3)0.0188 (11)
H320.96320.41050.89830.023*
C330.6813 (5)0.6367 (5)0.8240 (3)0.0160 (10)
C340.5582 (6)0.6684 (6)0.8326 (4)0.0210 (11)
H340.54230.68300.88660.025*
C350.4597 (6)0.6786 (6)0.7625 (4)0.0246 (12)
H350.37730.70240.76850.030*
C360.4815 (6)0.6542 (6)0.6840 (4)0.0230 (12)
H360.41380.66130.63600.028*
C370.6008 (6)0.6195 (6)0.6745 (3)0.0214 (11)
H370.61350.60090.62000.026*
C380.7025 (6)0.6114 (5)0.7442 (4)0.0207 (11)
H380.78530.58910.73770.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01748 (12)0.01383 (11)0.01319 (11)0.00591 (8)0.00416 (8)0.00383 (8)
Cl10.0279 (7)0.0228 (7)0.0147 (6)0.0096 (6)0.0064 (5)0.0021 (5)
P10.0155 (6)0.0126 (6)0.0125 (6)0.0045 (5)0.0031 (5)0.0032 (5)
C10.018 (3)0.007 (2)0.016 (2)0.0006 (19)0.000 (2)0.0015 (18)
C20.020 (3)0.011 (2)0.018 (2)0.004 (2)0.005 (2)0.0029 (19)
C30.030 (3)0.015 (3)0.017 (3)0.003 (2)0.008 (2)0.006 (2)
C40.031 (3)0.017 (3)0.022 (3)0.006 (2)0.006 (2)0.011 (2)
C50.020 (3)0.013 (2)0.026 (3)0.007 (2)0.006 (2)0.006 (2)
C60.017 (3)0.009 (2)0.021 (3)0.001 (2)0.001 (2)0.003 (2)
C70.017 (3)0.015 (3)0.022 (3)0.004 (2)0.006 (2)0.002 (2)
O10.023 (2)0.0184 (19)0.024 (2)0.0053 (16)0.0086 (16)0.0097 (16)
C80.018 (3)0.012 (2)0.020 (3)0.004 (2)0.005 (2)0.006 (2)
C90.020 (3)0.016 (3)0.020 (3)0.005 (2)0.004 (2)0.005 (2)
C100.015 (3)0.025 (3)0.030 (3)0.004 (2)0.001 (2)0.005 (2)
C110.019 (3)0.018 (3)0.035 (3)0.008 (2)0.015 (2)0.008 (2)
C120.022 (3)0.018 (3)0.022 (3)0.005 (2)0.008 (2)0.005 (2)
C130.019 (3)0.018 (3)0.018 (3)0.004 (2)0.005 (2)0.007 (2)
C140.018 (3)0.012 (2)0.019 (3)0.005 (2)0.006 (2)0.005 (2)
C150.027 (3)0.019 (3)0.020 (3)0.008 (2)0.005 (2)0.008 (2)
C160.033 (3)0.019 (3)0.032 (3)0.004 (3)0.012 (3)0.014 (2)
C170.020 (3)0.014 (3)0.039 (3)0.001 (2)0.009 (3)0.004 (2)
C180.020 (3)0.018 (3)0.029 (3)0.005 (2)0.005 (2)0.003 (2)
C190.024 (3)0.018 (3)0.022 (3)0.010 (2)0.007 (2)0.004 (2)
Au20.01753 (12)0.01563 (12)0.01621 (11)0.00452 (8)0.00588 (8)0.00346 (8)
Cl20.0233 (7)0.0265 (7)0.0280 (7)0.0003 (6)0.0128 (6)0.0014 (6)
P20.0158 (6)0.0140 (6)0.0153 (6)0.0055 (5)0.0054 (5)0.0039 (5)
C200.015 (2)0.015 (2)0.016 (2)0.006 (2)0.0046 (19)0.0037 (19)
C210.015 (3)0.016 (3)0.024 (3)0.004 (2)0.006 (2)0.003 (2)
C220.017 (3)0.028 (3)0.022 (3)0.005 (2)0.006 (2)0.009 (2)
C230.023 (3)0.025 (3)0.020 (3)0.008 (2)0.007 (2)0.004 (2)
C240.022 (3)0.020 (3)0.024 (3)0.011 (2)0.006 (2)0.003 (2)
C250.021 (3)0.018 (3)0.016 (3)0.008 (2)0.005 (2)0.003 (2)
C260.029 (3)0.020 (3)0.021 (3)0.007 (2)0.008 (2)0.004 (2)
O20.033 (2)0.023 (2)0.023 (2)0.0084 (18)0.0109 (18)0.0084 (17)
C270.019 (3)0.016 (3)0.013 (2)0.007 (2)0.001 (2)0.0032 (19)
C280.021 (3)0.021 (3)0.019 (3)0.010 (2)0.006 (2)0.006 (2)
C290.027 (3)0.021 (3)0.020 (3)0.002 (2)0.001 (2)0.008 (2)
C300.034 (3)0.011 (2)0.022 (3)0.003 (2)0.006 (2)0.002 (2)
C310.026 (3)0.027 (3)0.021 (3)0.015 (2)0.004 (2)0.004 (2)
C320.017 (3)0.021 (3)0.019 (3)0.009 (2)0.001 (2)0.003 (2)
C330.018 (3)0.014 (2)0.016 (2)0.005 (2)0.001 (2)0.007 (2)
C340.025 (3)0.022 (3)0.022 (3)0.012 (2)0.012 (2)0.009 (2)
C350.025 (3)0.024 (3)0.029 (3)0.010 (2)0.009 (2)0.007 (2)
C360.027 (3)0.021 (3)0.022 (3)0.010 (2)0.002 (2)0.009 (2)
C370.030 (3)0.018 (3)0.016 (3)0.005 (2)0.006 (2)0.004 (2)
C380.027 (3)0.017 (3)0.022 (3)0.008 (2)0.011 (2)0.006 (2)
Geometric parameters (Å, º) top
Au1—P12.2297 (13)Au2—P22.2304 (14)
Au1—Cl12.2819 (13)Au2—Cl22.2836 (14)
P1—C141.822 (5)P2—C331.807 (5)
P1—C11.825 (5)P2—C271.817 (6)
P1—C81.827 (5)P2—C201.838 (5)
C1—C21.388 (7)C20—C211.388 (7)
C1—C61.402 (8)C20—C251.409 (7)
C2—C31.389 (7)C21—C221.406 (8)
C2—H20.9500C21—H210.9500
C3—C41.386 (8)C22—C231.364 (8)
C3—H30.9500C22—H220.9500
C4—C51.370 (8)C23—C241.387 (8)
C4—H40.9500C23—H230.9500
C5—C61.396 (7)C24—C251.385 (8)
C5—H50.9500C24—H240.9500
C6—C71.461 (8)C25—C261.465 (8)
C7—O11.207 (7)C26—O21.219 (7)
C7—H70.9500C26—H260.9500
C8—C91.376 (8)C27—C281.381 (8)
C8—C131.389 (7)C27—C321.400 (7)
C9—C101.399 (8)C28—C291.399 (8)
C9—H90.9500C28—H280.9500
C10—C111.379 (8)C29—C301.382 (9)
C10—H100.9500C29—H290.9500
C11—C121.391 (8)C30—C311.372 (9)
C11—H110.9500C30—H300.9500
C12—C131.391 (8)C31—C321.394 (8)
C12—H120.9500C31—H310.9500
C13—H130.9500C32—H320.9500
C14—C191.388 (8)C33—C381.398 (7)
C14—C151.398 (7)C33—C341.400 (8)
C15—C161.382 (8)C34—C351.383 (8)
C15—H150.9500C34—H340.9500
C16—C171.387 (9)C35—C361.379 (8)
C16—H160.9500C35—H350.9500
C17—C181.377 (9)C36—C371.379 (8)
C17—H170.9500C36—H360.9500
C18—C191.395 (8)C37—C381.390 (8)
C18—H180.9500C37—H370.9500
C19—H190.9500C38—H380.9500
P1—Au1—Cl1178.79 (5)P2—Au2—Cl2178.12 (5)
C14—P1—C1106.5 (2)C33—P2—C27101.7 (2)
C14—P1—C8102.6 (2)C33—P2—C20109.0 (2)
C1—P1—C8106.9 (2)C27—P2—C20105.5 (2)
C14—P1—Au1116.77 (18)C33—P2—Au2114.41 (18)
C1—P1—Au1112.69 (17)C27—P2—Au2112.05 (18)
C8—P1—Au1110.53 (18)C20—P2—Au2113.34 (18)
C2—C1—C6118.3 (5)C21—C20—C25118.2 (5)
C2—C1—P1119.2 (4)C21—C20—P2118.3 (4)
C6—C1—P1122.5 (4)C25—C20—P2123.3 (4)
C1—C2—C3120.9 (5)C20—C21—C22120.4 (5)
C1—C2—H2119.5C20—C21—H21119.8
C3—C2—H2119.5C22—C21—H21119.8
C4—C3—C2120.6 (5)C23—C22—C21120.7 (5)
C4—C3—H3119.7C23—C22—H22119.6
C2—C3—H3119.7C21—C22—H22119.6
C5—C4—C3118.9 (5)C22—C23—C24119.5 (5)
C5—C4—H4120.5C22—C23—H23120.2
C3—C4—H4120.5C24—C23—H23120.2
C4—C5—C6121.4 (5)C25—C24—C23120.7 (5)
C4—C5—H5119.3C25—C24—H24119.6
C6—C5—H5119.3C23—C24—H24119.6
C5—C6—C1119.9 (5)C24—C25—C20120.4 (5)
C5—C6—C7116.0 (5)C24—C25—C26116.4 (5)
C1—C6—C7124.0 (5)C20—C25—C26123.2 (5)
O1—C7—C6125.3 (5)O2—C26—C25124.9 (5)
O1—C7—H7117.4O2—C26—H26117.6
C6—C7—H7117.4C25—C26—H26117.6
C9—C8—C13120.1 (5)C28—C27—C32119.1 (5)
C9—C8—P1118.6 (4)C28—C27—P2121.2 (4)
C13—C8—P1121.0 (4)C32—C27—P2119.6 (4)
C8—C9—C10120.2 (5)C27—C28—C29120.7 (5)
C8—C9—H9119.9C27—C28—H28119.7
C10—C9—H9119.9C29—C28—H28119.7
C11—C10—C9120.0 (5)C30—C29—C28119.2 (6)
C11—C10—H10120.0C30—C29—H29120.4
C9—C10—H10120.0C28—C29—H29120.4
C10—C11—C12119.8 (5)C31—C30—C29121.1 (5)
C10—C11—H11120.1C31—C30—H30119.4
C12—C11—H11120.1C29—C30—H30119.4
C11—C12—C13120.2 (5)C30—C31—C32119.6 (5)
C11—C12—H12119.9C30—C31—H31120.2
C13—C12—H12119.9C32—C31—H31120.2
C8—C13—C12119.8 (5)C31—C32—C27120.3 (5)
C8—C13—H13120.1C31—C32—H32119.8
C12—C13—H13120.1C27—C32—H32119.8
C19—C14—C15119.4 (5)C38—C33—C34119.8 (5)
C19—C14—P1122.3 (4)C38—C33—P2116.2 (4)
C15—C14—P1118.2 (4)C34—C33—P2123.8 (4)
C16—C15—C14120.3 (6)C35—C34—C33120.1 (5)
C16—C15—H15119.9C35—C34—H34120.0
C14—C15—H15119.9C33—C34—H34120.0
C15—C16—C17120.2 (5)C36—C35—C34119.9 (5)
C15—C16—H16119.9C36—C35—H35120.1
C17—C16—H16119.9C34—C35—H35120.1
C18—C17—C16119.6 (5)C37—C36—C35120.6 (5)
C18—C17—H17120.2C37—C36—H36119.7
C16—C17—H17120.2C35—C36—H36119.7
C17—C18—C19120.9 (6)C36—C37—C38120.6 (5)
C17—C18—H18119.6C36—C37—H37119.7
C19—C18—H18119.6C38—C37—H37119.7
C14—C19—C18119.6 (5)C37—C38—C33119.1 (5)
C14—C19—H19120.2C37—C38—H38120.4
C18—C19—H19120.2C33—C38—H38120.4
C14—P1—C1—C2117.8 (4)C33—P2—C20—C21117.1 (4)
C8—P1—C1—C28.6 (5)C27—P2—C20—C218.7 (5)
Au1—P1—C1—C2113.0 (4)Au2—P2—C20—C21114.2 (4)
C14—P1—C1—C663.7 (5)C33—P2—C20—C2568.0 (5)
C8—P1—C1—C6172.9 (4)C27—P2—C20—C25176.4 (4)
Au1—P1—C1—C665.5 (5)Au2—P2—C20—C2560.6 (5)
C6—C1—C2—C30.7 (8)C25—C20—C21—C220.0 (8)
P1—C1—C2—C3179.3 (4)P2—C20—C21—C22175.1 (4)
C1—C2—C3—C41.0 (8)C20—C21—C22—C230.2 (8)
C2—C3—C4—C51.8 (9)C21—C22—C23—C240.6 (9)
C3—C4—C5—C60.9 (9)C22—C23—C24—C250.9 (9)
C4—C5—C6—C10.9 (8)C23—C24—C25—C200.8 (8)
C4—C5—C6—C7177.2 (5)C23—C24—C25—C26178.5 (5)
C2—C1—C6—C51.7 (8)C21—C20—C25—C240.3 (8)
P1—C1—C6—C5179.8 (4)P2—C20—C25—C24174.6 (4)
C2—C1—C6—C7176.3 (5)C21—C20—C25—C26177.9 (5)
P1—C1—C6—C72.2 (7)P2—C20—C25—C263.0 (8)
C5—C6—C7—O1178.1 (5)C24—C25—C26—O2177.2 (6)
C1—C6—C7—O10.1 (9)C20—C25—C26—O20.5 (9)
C14—P1—C8—C9124.1 (4)C33—P2—C27—C2851.3 (5)
C1—P1—C8—C9124.0 (4)C20—P2—C27—C2862.3 (5)
Au1—P1—C8—C91.1 (5)Au2—P2—C27—C28173.9 (4)
C14—P1—C8—C1350.0 (5)C33—P2—C27—C32124.5 (4)
C1—P1—C8—C1361.8 (5)C20—P2—C27—C32121.8 (4)
Au1—P1—C8—C13175.2 (4)Au2—P2—C27—C321.9 (5)
C13—C8—C9—C100.9 (8)C32—C27—C28—C291.1 (8)
P1—C8—C9—C10173.2 (4)P2—C27—C28—C29176.9 (4)
C8—C9—C10—C110.2 (9)C27—C28—C29—C301.4 (8)
C9—C10—C11—C120.8 (9)C28—C29—C30—C310.0 (9)
C10—C11—C12—C131.1 (9)C29—C30—C31—C321.9 (9)
C9—C8—C13—C120.7 (8)C30—C31—C32—C272.2 (8)
P1—C8—C13—C12173.3 (4)C28—C27—C32—C310.8 (8)
C11—C12—C13—C80.3 (8)P2—C27—C32—C31175.2 (4)
C1—P1—C14—C1914.6 (5)C27—P2—C33—C3878.4 (5)
C8—P1—C14—C1997.6 (5)C20—P2—C33—C38170.6 (4)
Au1—P1—C14—C19141.4 (4)Au2—P2—C33—C3842.6 (5)
C1—P1—C14—C15168.4 (4)C27—P2—C33—C3496.8 (5)
C8—P1—C14—C1579.5 (5)C20—P2—C33—C3414.2 (6)
Au1—P1—C14—C1541.5 (5)Au2—P2—C33—C34142.2 (4)
C19—C14—C15—C160.7 (8)C38—C33—C34—C351.9 (9)
P1—C14—C15—C16177.9 (5)P2—C33—C34—C35176.9 (5)
C14—C15—C16—C170.6 (9)C33—C34—C35—C361.6 (9)
C15—C16—C17—C181.0 (9)C34—C35—C36—C370.0 (9)
C16—C17—C18—C190.0 (9)C35—C36—C37—C381.5 (9)
C15—C14—C19—C181.7 (8)C36—C37—C38—C331.2 (9)
P1—C14—C19—C18178.7 (4)C34—C33—C38—C370.5 (8)
C17—C18—C19—C141.3 (8)P2—C33—C38—C37175.9 (4)
Selected bond lengths and angles (Å, °) taken from compounds of the form ClAu(2-Ph2PC6H4X) [X = H, OSiMe3 or OH] (Hollatz et al., 1999; Baenziger et al., 1976) top
X = HX = OHX = OSiMe3
Au—P2.235 (3)2.2226 (2)2.2294 (8)
Au—Cl2.279 (3)2.285 (2)2.2851 (8)
P—Au—Cl179.68 (8)176.85 (8)177.30 (3)
 

Acknowledgements

The authors acknowledge the EPSRC National Crystallography Service at the University of Southampton for the collection of data for (I)[link].

References

First citationBaenziger, N. C., Bennett, W. E. & Soboroff, D. M. (1976). Acta Cryst. B32, 962–963.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBhattacharyya, P., Parr, J. & Slawin, A. M. Z. (1998). J. Chem. Soc. Dalton Trans. pp. 3609–3614.  Web of Science CSD CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrasekaran, A., Day, R. O. & Holmes, R. R. (2001). Inorg. Chem. 40, 6229–6238.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChen, X., Femia, F. J., Babich, J. W. & Zubieta, J. (2001). Inorg. Chim. Acta, 315, 147–152.  Web of Science CSD CrossRef CAS Google Scholar
First citationDowning, J. H. & Smith, M. B. (2004). Phosphorus Ligands, in Comprehensive Coordination Chemistry II, Vol. 1, pp. 253–296. Oxford: Elsevier.  Google Scholar
First citationDurran, S. E., Elsegood, M. R. J. & Smith, M. B. (2002). New J. Chem. 26, 1402–1408.  CrossRef CAS Google Scholar
First citationHollatz, C., Schier, A. & Schmidbaur, H. (1999). Z. Naturforsch. Teil B, 54, 30–37.  CAS Google Scholar
First citationHoots, J. E., Rauchfuss, T. B. & Wrobleski, D. A. (1982). Inorg. Synth. 21, 175–178.  CAS Google Scholar
First citationMail, R. E., Garralda, M. A., Hernández, R., Ibarlucea, L., Pinilla, E. & Torres, M. R. (2000). Organometallics, 19, 5310–5317.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationYeh, W.-Y., Lee, G.-H. & Peng, S.-M. (2006). Inorg. Chim. Acta, 359, 659–664.  CrossRef CAS Google Scholar
First citationYeh, W.-Y., Lin, C.-S., Peng, S.-M. & Lee, G.-H. (2004). Organometallics, 23, 917–920.  CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds