organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(3-Bromo-2-thien­yl)-3-(4-meth­oxy­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Chemistry, Sri Jayachamarajendra College of Engineering, Mysore 570 006, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 22 August 2006; accepted 22 August 2006; online 31 August 2006)

The mol­ecules of the title compound, C14H11BrO2S, display some distorted geometrical values that may be ascribed to an H⋯Br close contact. In the crystal structure, the mol­ecules form translation-symmetry-generated infinite chains by way of a C—H⋯O inter­action.

Comment

Chalcones and their heterocyclic derivatives show numerous biological effects (Opletalova & Sedivy, 1999[Opletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252-255.]). As part of our ongoing studies of these types of chalcones (Harrison et al., 2006[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578-o1579.]; Yathirajan et al., 2006[Yathirajan, H. S., Sarojini, B. K., Bindya, S., Narayana, B. & Bolte, M. (2006). Acta Cryst. E62, o4046-o4047.]), the synthesis and structure of the title compound, (I) (Fig. 1[link]), are presented here.

[Scheme 1]

The bond lengths and angles in (I) mostly fall within their expected ranges (Cambridge Structural Database, Version 5.27; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The terminal C14 methyl group is almost coplanar with its adjacent C8–C13 benzene ring mean plane [deviation of C14 = 0.015 (5) Å]. The dihedral angle between the C8–C13 benzene ring and C1–C4/S1 thio­phene ring is 19.58 (9)°. The C5=O1 carbonyl group is also twisted with respect to the heterocycle, as reflected in the S1—C4—C5—O1 and C3—C4—C5—O1 torsion angles of −15.9 (3) and 164.0 (3)°, respectively.

The C3—C4—C5 angle of 135.8 (2)° is far more obtuse than the S1—C4—C5 angle of 114.52 (18)°, possibly as a result of a close intra­molecular contact between Br1 and H6 (attached to C6): the separation of these atoms in (I) is 2.73 Å compared to the expected Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) van der Waals separation of 3.05 Å. We presume that this represents a steric repulsion between Br and H rather than a C—H⋯Br `bond'. The difference between the C4—C3—Br1 and C2—C3—Br1 bond angles [126.74 (18) and 119.08 (18)°, respectively] might also reflect this repulsive contact. Similar angular distortions have been seen in other 4-bromothio­phenes such as 4-(4-bromo-5-methyl­thio­phen-2-yl)pyridine (Xu et al., 2005[Xu, F., Chen, Z., Zhang, F., Wang, R.-J. & Zhao, F. (2005). Acta Cryst. E61, o1672-o1673.]) and 3,4′-dibromo-2,2′-bithio­phene (Antolini et al., 1997[Antolini, L., Goldoni, F., Iarossi, D., Mucci, A. & Schenetti, L. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1957-1961.]).

The crystal packing in (I) is consolidated by C1—H1⋯O2i inter­actions (Table 1[link]) that link the mol­ecules into chains propagating in [001]. A slightly short Br1⋯O2ii [symmetry code: (ii) 1-x, [{1\over 2}] + y, 1-z] contact of 3.2184 (18) Å arises; the expected Bondi separation is 3.37 Å.

[Figure 1]
Figure 1
View of (I) showing 50% displacement ellipsoids and arbitrary spheres for the H atoms.
[Figure 2]
Figure 2
Unit-cell packing in (I), with all H atoms except H1 omitted for clarity and C—H⋯O inter­actions indicated by dashed lines. Atoms with an asterisk (*) are generated by the symmetry operation (x, y, z + 1).

Experimental

3-Bromo-2-acetyl­thio­phene (10 g, 0.048 mol) in methanol (50 ml) was mixed with 4-meth­oxybenzaldehyde (6.52 g, 0.048 mol) and the mixture was treated with 10 ml of 30% potassium hydroxide solution at 278 K. The reaction mixture was then brought to room temperature and stirred for 3 h. The precipitated solid was filtered and washed with water, dried and recrytallized from acetone to yield light yellow crystals of (I) (yield 80%; m.p. 383 K).

Crystal data
  • C14H11BrO2S

  • Mr = 323.20

  • Monoclinic, P 21

  • a = 4.0025 (1) Å

  • b = 10.7048 (3) Å

  • c = 14.6451 (5) Å

  • β = 91.789 (2)°

  • V = 627.18 (3) Å3

  • Z = 2

  • Dx = 1.711 Mg m−3

  • Mo Kα radiation

  • μ = 3.43 mm−1

  • T = 120 (2) K

  • Slab, yellow

  • 0.34 × 0.18 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.388, Tmax = 0.795

  • 7197 measured reflections

  • 2705 independent reflections

  • 2555 reflections with I > 2σ(I)

  • Rint = 0.024

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.056

  • S = 1.08

  • 2705 reflections

  • 165 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + 0.0736P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.55 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.016 (2)

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1198 Friedel pairs

  • Flack parameter: 0.013 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.95 2.54 3.457 (3) 162
Symmetry code: (i) x, y, z-1.

The H atoms were placed in idealized locations (C—H = 0.95–0.99 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl group was rotated about its C—O bond to best fit the electron density.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

(2E)-1-(3-Bromo-2-thienyl)-3-(4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C14H11BrO2SF(000) = 324
Mr = 323.20Dx = 1.711 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1442 reflections
a = 4.0025 (1) Åθ = 1.0–27.5°
b = 10.7048 (3) ŵ = 3.43 mm1
c = 14.6451 (5) ÅT = 120 K
β = 91.789 (2)°Slab, yellow
V = 627.18 (3) Å30.34 × 0.18 × 0.07 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2705 independent reflections
Radiation source: fine-focus sealed tube2555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 55
Tmin = 0.388, Tmax = 0.795k = 1313
7197 measured reflectionsl = 1816
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + 0.0736P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.70 e Å3
2705 reflectionsΔρmin = 0.55 e Å3
165 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.016 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1198 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.013 (7)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2423 (6)0.0427 (2)0.04736 (17)0.0193 (5)
H10.26830.05230.11120.023*
C20.3344 (6)0.0614 (2)0.00015 (17)0.0184 (5)
H20.42820.13370.02690.022*
C30.2730 (6)0.0486 (2)0.09375 (16)0.0164 (5)
C40.1342 (5)0.0634 (2)0.11667 (16)0.0156 (5)
C50.0263 (6)0.1228 (2)0.20151 (18)0.0207 (5)
C60.1591 (6)0.0777 (3)0.29061 (18)0.0224 (5)
H60.30670.00820.29340.027*
C70.0716 (6)0.1346 (2)0.36740 (18)0.0221 (5)
H70.08660.20040.36080.026*
C80.1923 (6)0.1069 (2)0.46063 (18)0.0205 (5)
C90.3797 (6)0.0006 (2)0.48433 (18)0.0220 (5)
H90.43610.05660.43760.026*
C100.4853 (6)0.0241 (2)0.57303 (18)0.0221 (5)
H100.60660.09810.58750.027*
C110.4104 (6)0.0621 (3)0.64133 (18)0.0194 (5)
C120.2243 (6)0.1685 (2)0.62022 (18)0.0207 (6)
H120.17220.22640.66680.025*
C130.1154 (6)0.1897 (2)0.53092 (17)0.0215 (5)
H130.01440.26190.51710.026*
C140.6933 (6)0.0627 (3)0.75581 (19)0.0251 (6)
H14A0.75170.06040.82130.038*
H14B0.55410.13610.74240.038*
H14C0.89790.06730.72090.038*
O10.1577 (5)0.2146 (2)0.19520 (14)0.0293 (4)
O20.5115 (4)0.04857 (17)0.73066 (12)0.0252 (4)
S10.07572 (15)0.15396 (5)0.01985 (4)0.01747 (14)
Br10.36561 (5)0.18455 (3)0.172837 (14)0.02187 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0257 (12)0.0204 (12)0.0121 (12)0.0067 (10)0.0037 (9)0.0018 (10)
C20.0190 (11)0.0179 (12)0.0186 (13)0.0024 (9)0.0038 (9)0.0024 (10)
C30.0173 (11)0.0168 (12)0.0148 (12)0.0011 (9)0.0026 (9)0.0016 (10)
C40.0170 (10)0.0155 (12)0.0141 (12)0.0008 (9)0.0026 (9)0.0009 (10)
C50.0266 (12)0.0185 (13)0.0170 (14)0.0042 (10)0.0006 (10)0.0034 (10)
C60.0241 (12)0.0245 (13)0.0187 (14)0.0001 (11)0.0002 (10)0.0014 (11)
C70.0230 (12)0.0225 (13)0.0207 (15)0.0009 (11)0.0004 (10)0.0005 (11)
C80.0238 (12)0.0227 (13)0.0153 (13)0.0068 (10)0.0045 (10)0.0018 (10)
C90.0245 (12)0.0196 (13)0.0223 (14)0.0048 (10)0.0068 (10)0.0077 (11)
C100.0205 (11)0.0201 (12)0.0260 (15)0.0002 (11)0.0036 (10)0.0050 (11)
C110.0167 (10)0.0250 (13)0.0167 (13)0.0062 (10)0.0046 (9)0.0042 (11)
C120.0201 (12)0.0251 (14)0.0172 (14)0.0040 (10)0.0041 (10)0.0100 (11)
C130.0259 (12)0.0182 (12)0.0206 (14)0.0021 (10)0.0041 (10)0.0034 (10)
C140.0216 (12)0.0295 (14)0.0240 (15)0.0039 (11)0.0014 (10)0.0022 (11)
O10.0318 (10)0.0298 (11)0.0262 (11)0.0097 (8)0.0006 (8)0.0079 (9)
O20.0282 (9)0.0273 (10)0.0199 (10)0.0009 (8)0.0034 (7)0.0036 (8)
S10.0220 (3)0.0143 (3)0.0159 (3)0.0006 (2)0.0015 (2)0.0022 (2)
Br10.02817 (13)0.01867 (13)0.01862 (14)0.00414 (12)0.00191 (8)0.00505 (12)
Geometric parameters (Å, º) top
C1—C21.357 (4)C8—C131.400 (4)
C1—S11.695 (3)C8—C91.401 (4)
C1—H10.9500C9—C101.379 (4)
C2—C31.411 (3)C9—H90.9500
C2—H20.9500C10—C111.400 (4)
C3—C41.368 (3)C10—H100.9500
C3—Br11.889 (2)C11—O21.365 (3)
C4—C51.472 (3)C11—C121.390 (4)
C4—S11.727 (2)C12—C131.384 (4)
C5—O11.230 (3)C12—H120.9500
C5—C61.475 (4)C13—H130.9500
C6—C71.335 (4)C14—O21.437 (3)
C6—H60.9500C14—H14A0.9800
C7—C81.464 (4)C14—H14B0.9800
C7—H70.9500C14—H14C0.9800
C2—C1—S1112.75 (19)C10—C9—C8122.3 (2)
C2—C1—H1123.6C10—C9—H9118.8
S1—C1—H1123.6C8—C9—H9118.8
C1—C2—C3111.4 (2)C9—C10—C11118.8 (2)
C1—C2—H2124.3C9—C10—H10120.6
C3—C2—H2124.3C11—C10—H10120.6
C4—C3—C2114.1 (2)O2—C11—C12116.2 (2)
C4—C3—Br1126.74 (18)O2—C11—C10123.4 (2)
C2—C3—Br1119.08 (18)C12—C11—C10120.4 (2)
C3—C4—C5135.8 (2)C13—C12—C11119.7 (2)
C3—C4—S1109.64 (18)C13—C12—H12120.2
C5—C4—S1114.52 (18)C11—C12—H12120.2
O1—C5—C4118.2 (2)C12—C13—C8121.4 (2)
O1—C5—C6121.8 (2)C12—C13—H13119.3
C4—C5—C6119.9 (2)C8—C13—H13119.3
C7—C6—C5119.9 (3)O2—C14—H14A109.5
C7—C6—H6120.0O2—C14—H14B109.5
C5—C6—H6120.0H14A—C14—H14B109.5
C6—C7—C8127.2 (3)O2—C14—H14C109.5
C6—C7—H7116.4H14A—C14—H14C109.5
C8—C7—H7116.4H14B—C14—H14C109.5
C13—C8—C9117.4 (2)C11—O2—C14117.8 (2)
C13—C8—C7118.9 (2)C1—S1—C492.12 (12)
C9—C8—C7123.6 (2)
S1—C1—C2—C31.2 (3)C13—C8—C9—C100.4 (3)
C1—C2—C3—C40.4 (3)C7—C8—C9—C10178.9 (2)
C1—C2—C3—Br1177.62 (17)C8—C9—C10—C111.8 (4)
C2—C3—C4—C5179.6 (2)C9—C10—C11—O2178.0 (2)
Br1—C3—C4—C53.5 (4)C9—C10—C11—C121.9 (3)
C2—C3—C4—S10.5 (3)O2—C11—C12—C13179.3 (2)
Br1—C3—C4—S1176.42 (13)C10—C11—C12—C130.6 (4)
C3—C4—C5—O1164.0 (3)C11—C12—C13—C80.9 (4)
S1—C4—C5—O115.9 (3)C9—C8—C13—C121.0 (3)
C3—C4—C5—C620.6 (4)C7—C8—C13—C12179.7 (2)
S1—C4—C5—C6159.54 (18)C12—C11—O2—C14177.6 (2)
O1—C5—C6—C72.1 (4)C10—C11—O2—C142.5 (3)
C4—C5—C6—C7177.4 (2)C2—C1—S1—C41.29 (19)
C5—C6—C7—C8176.5 (2)C3—C4—S1—C11.00 (18)
C6—C7—C8—C13169.4 (3)C5—C4—S1—C1179.08 (18)
C6—C7—C8—C911.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.543.457 (3)162
Symmetry code: (i) x, y, z1.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAntolini, L., Goldoni, F., Iarossi, D., Mucci, A. & Schenetti, L. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1957–1961.  CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578–o1579.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOpletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252–255.  PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationXu, F., Chen, Z., Zhang, F., Wang, R.-J. & Zhao, F. (2005). Acta Cryst. E61, o1672–o1673.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Sarojini, B. K., Bindya, S., Narayana, B. & Bolte, M. (2006). Acta Cryst. E62, o4046–o4047.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds