organic compounds
(+)-(4R,5S)-4-Methyl-5-phenyl-3-[2(S)-phenylpropionyl]oxazolidin-2-one
aDepartment of Chemistry, Queen Mary, University of London, Mile End Road, London E1 4NS, England, bDepartment of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England, and cDepartment of Chemistry, J. J. Strossmayer University of Osijek, Trg Sv. Trojstva 3, Osijek 31000, Croatia
*Correspondence e-mail: j.eames@hull.ac.uk
In the title compound, C19H19NO3, formed from enantiomerically pure (+)-(4R,5S)-4-methyl-5-phenyl-2-oxazolidinone and racemic 2-phenylpropanoyl chloride, the two carbonyl groups are oriented anti to each other, and the two methyl groups are oriented anti to each other.
Comment
The development of predictable and efficient resolution methodology is becoming increasingly important for academia and industry alike. With this aim in mind, we have recently focused our attention on the resolution of profens (Sonawane et al., 1992; Fuji et al., 1989; Larsen et al., 1989), such as ibuprofen (Alper & Hamel, 1990; Piccolo et al., 1991) and naproxen (Stille & Parrinello, 1993; Ohta et al., 1987; Kumar et al., 1991), using a novel parallel methodology (Coumbarides, Dingjan, Eames, Flinn et al., 2006; Coumbarides, Dingjan et al., 2005; Coumbarides, Eames et al., 2005). For this project, we were required to determine the relative and absolute configurations of a series of related profen adducts derived from (+)-(4R,5S)-4-methyl-5-phenyl-2-oxazolidinone, (1). The compounds were obtained in each case by addition of racemic 2-(R1)-propanoyl chloride (where R1 is a substituent group) to a solution of lithiated oxazolidinone, the latter being derived from the addition of n-BuLi to the (R,S)-oxazolidinone (1) in tetrahydrofuran at 195 K (see reaction scheme).
The reaction provided in each case a separable mixture of diastereoisomeric anti–syn and syn–syn oxazolidinone adducts. In the following series of reports (Chavda et al. 2006a,b; Coumbarides, Dingjan, Eames, Motevalli & Malatesti et al., 2006; Chavda et al., 2006; Coumbarides, Eames, Motevalli, Malatesti & Yohannes, 2006), we describe the crystal structures of six of these related compounds.
With R1 = C6H5, the reaction shown in the scheme yielded the anti–syn and syn–syn in 23 and 25% yields, respectively. The title compound, (I), is the syn–syn diastereomer (Fig. 1).
In the , the five-membered ring displays a twist conformation in which atoms O1, O2, N1 and C3 lie in an approximate plane, and C1 and C2 lie, respectively, 0.248 (3) Å above and 0.262 (3) Å below that plane. The two methyl groups (C4 and C19) lie anti to each other, on either side of the central five-membered ring. The carbonyl groups (C3=O2 and C11=O3) are also oriented anti to each other [torsion angle O3—C11—N1—C3 = −169.3 (2)°], avoiding electrostatic repulsion between the two O atoms. The electrostatic factor also appears to be important for determining the molecular packing (Fig. 2), whereby adjacent molecules approach each other in a `side-on' manner. The shortest intermolecular contacts to each O atom are made by H atoms [H4A⋯O2i = 2.66 Å, H2⋯O3ii = 2.63 Å; symmetry codes: (i) 1 − x, + y, 2 − z; (ii) 1 − x, − + y, 1 − z].
of (I)Experimental
The following procedure is representative for the reaction sequence depicted in the reaction scheme. n-Butyllithium (6.33 ml, 2.5 M in hexanes, 15.8 mmol) was added dropwise to a stirred solution of (R,S)-oxazolidinone, (1) (2 g, 11.3 mmol), in tetrahydrofuran (20 ml) at 195 K. The resulting solution was stirred at 195 K for 1 h. A solution of racemic 2-phenylpropanoyl chloride (1.90 g, 11.3 mmol) in tetrahydrofuran (5 ml) was added dropwise and the resulting solution was stirred at 195 K for 2 h. The reaction was quenched by the addition of water (10 ml), extracted with CH2Cl2 (3 × 10 ml) and dried over MgSO4. The combined organic layers were evaporated under reduced pressure. The crude residue was purified by flash on silica gel, eluting with light petroleum (b.p. 313–333 K)/diethyl ether (7:3), to give a separable diastereoisomeric mixture (in the approximate ratio anti–syn:syn–syn 50:50) of the title compound; anti–syn diastereomer (0.80 g, 23%), syn–syn diastereomer (0.87 g, 25%). The latter was obtained as colourless crystals suitable for X-ray analysis [m.p. 394–396 K, RF 0.63 (light petroleum (b.p 313–333 K)/diethyl ether, 1:1].
Spectroscopic analysis for (I): [α]20D = 122.9 (CHCl3, 293 K, concentration 0.81 g per 100 ml); IR (CHCl3, νmax, cm−1): 1774 (C=O), 1701 (C=O); 1H NMR (250 MHz, CDCl3): δ 7.40–7.17 (10H, m, 10 × CH; Pha and Phb), 5.64 (1H, d, J = 7.2 Hz, OCHPh), 5.08 (1H, q, J = 7.1 Hz, PhCH), 4.82 (1H, m, CHN), 1.51 (3H, d, J = 7.1 Hz, CH3CHCO), 0.74 (3H, d, J = 6.6 Hz, CH3CHN); 13C NMR (62.9 MHz; CDCl3): δ 174.3 (NC=O), 152.5 (OC=O), 140.3 (i-C; Pha), 133.5 (i-C; Phb), 128.9, 128.8, 128.6, 128.1, 127.1, 125.7 (6 × CH; Pha and Phb), 78.8 (OCHPh), 54.7 (CH3CHO), 43.6 (PhCH), 19.4 (CH3), 14.1 (CH3); MS m/z: MH+ 310.1460; C19H20NO3 requires 310.1443.
Crystal data
|
H atoms were placed in geometrically idealised positions and constrained to ride on their parent atoms, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate about their local threefold axes. In the absence of significant effects, the few measured Friedel pairs were merged. The is assigned on the basis of the known configuration of (1) (Evans et al., 1985).
Data collection: CAD-4-PC (Enraf–Nonius, 1994); cell CAD-4-PC; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536806031813/bi2029sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806031813/bi2029Isup2.hkl
Data collection: CAD-4-PC (Enraf–Nonius, 1994); cell
CAD-4-PC; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C19H19NO3 | F(000) = 328 |
Mr = 309.35 | Dx = 1.298 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 25 reflections |
a = 14.757 (2) Å | θ = 9.7–13.0° |
b = 6.069 (2) Å | µ = 0.09 mm−1 |
c = 9.109 (4) Å | T = 160 K |
β = 104.02 (6)° | Prism, colourless |
V = 791.5 (5) Å3 | 0.40 × 0.30 × 0.20 mm |
Z = 2 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.009 |
Radiation source: fine-focus sealed tube | θmax = 25.1°, θmin = 1.4° |
Graphite monochromator | h = −16→17 |
ω/2θ scans | k = 0→7 |
1623 measured reflections | l = −10→0 |
1521 independent reflections | 4 standard reflections every 100 reflections |
1449 reflections with I > 2σ(I) | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.0487P)2 + 0.119P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1521 reflections | Δρmax = 0.13 e Å−3 |
210 parameters | Δρmin = −0.23 e Å−3 |
1 restraint | Absolute structure: assigned on the basis of known starting material |
Primary atom site location: structure-invariant direct methods |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 3.1511 (0.0161) x + 5.4484 (0.0064) y + 3.8763 (0.0094) z = 1.0707 (0.0091) * 0.0004 (0.0005) O1 * 0.0006 (0.0007) O2 * 0.0004 (0.0005) N1 * -0.0014 (0.0018) C3 0.2480 (0.0033) C1 - 0.2624 (0.0030) C2 Rms deviation of fitted atoms = 0.0008 |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.49725 (10) | −0.0506 (3) | 0.75171 (16) | 0.0223 (4) | |
O1 | 0.36438 (9) | −0.1645 (3) | 0.80375 (14) | 0.0288 (3) | |
O2 | 0.49467 (11) | −0.2176 (3) | 0.98430 (16) | 0.0292 (3) | |
O3 | 0.61111 (9) | 0.1127 (3) | 0.66406 (15) | 0.0304 (4) | |
C1 | 0.42346 (13) | 0.0405 (3) | 0.6275 (2) | 0.0228 (4) | |
H1A | 0.4394 | 0.0154 | 0.5282 | 0.027* | |
C2 | 0.34228 (13) | −0.1103 (3) | 0.6418 (2) | 0.0241 (4) | |
H2A | 0.3448 | −0.2483 | 0.5830 | 0.029* | |
C3 | 0.45794 (13) | −0.1511 (4) | 0.8604 (2) | 0.0240 (4) | |
C4 | 0.40795 (14) | 0.2829 (4) | 0.6495 (2) | 0.0290 (5) | |
H4A | 0.4663 | 0.3634 | 0.6553 | 0.043* | |
H4B | 0.3879 | 0.3045 | 0.7435 | 0.043* | |
H4C | 0.3596 | 0.3383 | 0.5639 | 0.043* | |
C5 | 0.24509 (13) | −0.0169 (4) | 0.5956 (2) | 0.0249 (4) | |
C6 | 0.19350 (13) | −0.0559 (4) | 0.4484 (2) | 0.0271 (4) | |
H6A | 0.2190 | −0.1435 | 0.3818 | 0.033* | |
C7 | 0.10495 (14) | 0.0336 (4) | 0.3992 (2) | 0.0317 (5) | |
H7A | 0.0700 | 0.0079 | 0.2985 | 0.038* | |
C8 | 0.06702 (14) | 0.1605 (4) | 0.4963 (2) | 0.0343 (5) | |
H8A | 0.0064 | 0.2221 | 0.4619 | 0.041* | |
C9 | 0.11767 (14) | 0.1972 (4) | 0.6431 (3) | 0.0359 (5) | |
H9A | 0.0916 | 0.2836 | 0.7096 | 0.043* | |
C10 | 0.20617 (14) | 0.1087 (4) | 0.6934 (2) | 0.0316 (5) | |
H10A | 0.2405 | 0.1333 | 0.7946 | 0.038* | |
C11 | 0.59155 (12) | −0.0054 (3) | 0.7605 (2) | 0.0227 (4) | |
C12 | 0.66371 (13) | −0.1199 (4) | 0.8843 (2) | 0.0241 (4) | |
H12A | 0.6446 | −0.1038 | 0.9818 | 0.029* | |
C13 | 0.75975 (13) | −0.0172 (3) | 0.9030 (2) | 0.0241 (4) | |
C14 | 0.81250 (13) | −0.0474 (4) | 0.7946 (2) | 0.0275 (4) | |
H14A | 0.7872 | −0.1311 | 0.7060 | 0.033* | |
C15 | 0.90074 (13) | 0.0432 (4) | 0.8157 (2) | 0.0311 (5) | |
H15A | 0.9355 | 0.0216 | 0.7417 | 0.037* | |
C16 | 0.93844 (13) | 0.1653 (4) | 0.9444 (2) | 0.0335 (5) | |
H16A | 0.9991 | 0.2273 | 0.9592 | 0.040* | |
C17 | 0.88689 (14) | 0.1966 (4) | 1.0521 (2) | 0.0349 (5) | |
H17A | 0.9124 | 0.2813 | 1.1402 | 0.042* | |
C18 | 0.79813 (14) | 0.1048 (4) | 1.0317 (2) | 0.0302 (5) | |
H18A | 0.7638 | 0.1258 | 1.1063 | 0.036* | |
C19 | 0.66362 (14) | −0.3671 (4) | 0.8450 (2) | 0.0311 (5) | |
H19D | 0.6039 | −0.4327 | 0.8507 | 0.047* | |
H19A | 0.7146 | −0.4411 | 0.9171 | 0.047* | |
H19B | 0.6723 | −0.3845 | 0.7423 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0212 (7) | 0.0260 (9) | 0.0195 (7) | −0.0001 (7) | 0.0047 (6) | 0.0030 (7) |
O1 | 0.0235 (7) | 0.0334 (8) | 0.0295 (7) | −0.0010 (7) | 0.0067 (5) | 0.0069 (7) |
O2 | 0.0333 (7) | 0.0314 (8) | 0.0229 (7) | 0.0022 (7) | 0.0065 (5) | 0.0082 (7) |
O3 | 0.0266 (7) | 0.0378 (9) | 0.0270 (7) | −0.0020 (7) | 0.0071 (5) | 0.0087 (7) |
C1 | 0.0219 (9) | 0.0297 (10) | 0.0163 (9) | 0.0025 (8) | 0.0035 (7) | 0.0015 (8) |
C2 | 0.0254 (10) | 0.0244 (11) | 0.0217 (9) | −0.0001 (8) | 0.0039 (7) | −0.0035 (8) |
C3 | 0.0251 (9) | 0.0205 (9) | 0.0271 (10) | 0.0007 (8) | 0.0081 (8) | −0.0011 (9) |
C4 | 0.0274 (10) | 0.0289 (11) | 0.0284 (10) | −0.0003 (9) | 0.0023 (8) | 0.0060 (9) |
C5 | 0.0226 (9) | 0.0239 (10) | 0.0283 (9) | −0.0035 (8) | 0.0066 (7) | −0.0001 (9) |
C6 | 0.0253 (9) | 0.0266 (11) | 0.0298 (9) | −0.0039 (9) | 0.0072 (8) | −0.0026 (9) |
C7 | 0.0264 (10) | 0.0334 (12) | 0.0320 (10) | −0.0044 (9) | 0.0004 (8) | −0.0008 (10) |
C8 | 0.0239 (9) | 0.0338 (12) | 0.0445 (11) | 0.0018 (10) | 0.0071 (8) | 0.0047 (11) |
C9 | 0.0299 (10) | 0.0377 (13) | 0.0431 (11) | 0.0031 (10) | 0.0147 (9) | −0.0054 (11) |
C10 | 0.0290 (10) | 0.0373 (13) | 0.0288 (10) | 0.0006 (10) | 0.0076 (8) | −0.0030 (10) |
C11 | 0.0234 (9) | 0.0247 (11) | 0.0201 (9) | 0.0007 (8) | 0.0053 (7) | −0.0005 (9) |
C12 | 0.0232 (9) | 0.0273 (11) | 0.0213 (9) | 0.0013 (8) | 0.0045 (7) | 0.0018 (8) |
C13 | 0.0236 (9) | 0.0222 (10) | 0.0241 (9) | 0.0051 (8) | 0.0014 (7) | 0.0025 (9) |
C14 | 0.0260 (9) | 0.0297 (11) | 0.0249 (9) | 0.0017 (9) | 0.0028 (7) | −0.0011 (9) |
C15 | 0.0259 (10) | 0.0333 (11) | 0.0343 (11) | 0.0037 (9) | 0.0077 (8) | 0.0034 (10) |
C16 | 0.0246 (9) | 0.0299 (11) | 0.0424 (11) | −0.0010 (10) | 0.0013 (8) | 0.0012 (11) |
C17 | 0.0311 (10) | 0.0329 (13) | 0.0362 (11) | −0.0017 (9) | −0.0007 (9) | −0.0089 (10) |
C18 | 0.0288 (10) | 0.0315 (13) | 0.0290 (10) | 0.0041 (9) | 0.0046 (8) | −0.0037 (9) |
C19 | 0.0303 (10) | 0.0255 (11) | 0.0367 (11) | 0.0013 (9) | 0.0067 (8) | −0.0001 (10) |
N1—C11 | 1.402 (2) | C8—H8A | 0.950 |
N1—C3 | 1.403 (3) | C9—C10 | 1.384 (3) |
N1—C1 | 1.475 (2) | C9—H9A | 0.950 |
O1—C3 | 1.354 (2) | C10—H10A | 0.950 |
O1—C2 | 1.469 (2) | C11—C12 | 1.519 (3) |
O2—C3 | 1.197 (2) | C12—C13 | 1.520 (3) |
O3—C11 | 1.222 (2) | C12—C19 | 1.542 (3) |
C1—C4 | 1.510 (3) | C12—H12A | 1.000 |
C1—C2 | 1.538 (3) | C13—C18 | 1.386 (3) |
C1—H1A | 1.000 | C13—C14 | 1.409 (3) |
C2—C5 | 1.504 (3) | C14—C15 | 1.383 (3) |
C2—H2A | 1.000 | C14—H14A | 0.950 |
C4—H4A | 0.980 | C15—C16 | 1.385 (3) |
C4—H4B | 0.980 | C15—H15A | 0.950 |
C4—H4C | 0.980 | C16—C17 | 1.392 (3) |
C5—C6 | 1.393 (3) | C16—H16A | 0.950 |
C5—C10 | 1.397 (3) | C17—C18 | 1.394 (3) |
C6—C7 | 1.385 (3) | C17—H17A | 0.950 |
C6—H6A | 0.950 | C18—H18A | 0.950 |
C7—C8 | 1.389 (3) | C19—H19D | 0.980 |
C7—H7A | 0.950 | C19—H19A | 0.980 |
C8—C9 | 1.383 (3) | C19—H19B | 0.980 |
C11—N1—C3 | 128.28 (16) | C8—C9—H9A | 119.9 |
C11—N1—C1 | 120.59 (16) | C10—C9—H9A | 119.9 |
C3—N1—C1 | 110.48 (14) | C9—C10—C5 | 120.09 (19) |
C3—O1—C2 | 109.10 (15) | C9—C10—H10A | 120.0 |
N1—C1—C4 | 111.80 (18) | C5—C10—H10A | 120.0 |
N1—C1—C2 | 99.06 (15) | O3—C11—N1 | 118.56 (17) |
C4—C1—C2 | 115.00 (17) | O3—C11—C12 | 123.87 (16) |
N1—C1—H1A | 110.2 | N1—C11—C12 | 117.44 (17) |
C4—C1—H1A | 110.2 | C11—C12—C13 | 111.25 (17) |
C2—C1—H1A | 110.2 | C11—C12—C19 | 108.15 (16) |
O1—C2—C5 | 109.26 (16) | C13—C12—C19 | 111.92 (17) |
O1—C2—C1 | 103.31 (15) | C11—C12—H12A | 108.5 |
C5—C2—C1 | 117.49 (17) | C13—C12—H12A | 108.5 |
O1—C2—H2A | 108.8 | C19—C12—H12A | 108.5 |
C5—C2—H2A | 108.8 | C18—C13—C14 | 118.69 (18) |
C1—C2—H2A | 108.8 | C18—C13—C12 | 119.50 (18) |
O2—C3—O1 | 121.74 (19) | C14—C13—C12 | 121.78 (18) |
O2—C3—N1 | 129.92 (18) | C15—C14—C13 | 120.80 (19) |
O1—C3—N1 | 108.34 (16) | C15—C14—H14A | 119.6 |
C1—C4—H4A | 109.5 | C13—C14—H14A | 119.6 |
C1—C4—H4B | 109.5 | C14—C15—C16 | 120.12 (19) |
H4A—C4—H4B | 109.5 | C14—C15—H15A | 119.9 |
C1—C4—H4C | 109.5 | C16—C15—H15A | 119.9 |
H4A—C4—H4C | 109.5 | C15—C16—C17 | 119.58 (19) |
H4B—C4—H4C | 109.5 | C15—C16—H16A | 120.2 |
C6—C5—C10 | 119.57 (18) | C17—C16—H16A | 120.2 |
C6—C5—C2 | 117.84 (18) | C16—C17—C18 | 120.5 (2) |
C10—C5—C2 | 122.59 (17) | C16—C17—H17A | 119.7 |
C7—C6—C5 | 119.84 (19) | C18—C17—H17A | 119.7 |
C7—C6—H6A | 120.1 | C13—C18—C17 | 120.31 (19) |
C5—C6—H6A | 120.1 | C13—C18—H18A | 119.8 |
C6—C7—C8 | 120.37 (19) | C17—C18—H18A | 119.8 |
C6—C7—H7A | 119.8 | C12—C19—H19D | 109.5 |
C8—C7—H7A | 119.8 | C12—C19—H19A | 109.5 |
C9—C8—C7 | 119.9 (2) | H19D—C19—H19A | 109.5 |
C9—C8—H8A | 120.1 | C12—C19—H19B | 109.5 |
C7—C8—H8A | 120.1 | H19D—C19—H19B | 109.5 |
C8—C9—C10 | 120.2 (2) | H19A—C19—H19B | 109.5 |
C11—N1—C1—C4 | −75.0 (2) | C7—C8—C9—C10 | 0.3 (4) |
C3—N1—C1—C4 | 96.5 (2) | C8—C9—C10—C5 | 0.5 (4) |
C11—N1—C1—C2 | 163.36 (17) | C6—C5—C10—C9 | −1.3 (3) |
C3—N1—C1—C2 | −25.2 (2) | C2—C5—C10—C9 | 177.6 (2) |
C3—O1—C2—C5 | −152.44 (17) | C3—N1—C11—O3 | −169.1 (2) |
C3—O1—C2—C1 | −26.6 (2) | C1—N1—C11—O3 | 0.8 (3) |
N1—C1—C2—O1 | 29.82 (18) | C3—N1—C11—C12 | 15.0 (3) |
C4—C1—C2—O1 | −89.5 (2) | C1—N1—C11—C12 | −175.22 (18) |
N1—C1—C2—C5 | 150.16 (16) | O3—C11—C12—C13 | 17.3 (3) |
C4—C1—C2—C5 | 30.9 (3) | N1—C11—C12—C13 | −166.97 (16) |
C2—O1—C3—O2 | −169.2 (2) | O3—C11—C12—C19 | −106.0 (2) |
C2—O1—C3—N1 | 11.1 (2) | N1—C11—C12—C19 | 69.7 (2) |
C11—N1—C3—O2 | 1.1 (4) | C11—C12—C13—C18 | 109.8 (2) |
C1—N1—C3—O2 | −169.5 (2) | C19—C12—C13—C18 | −129.1 (2) |
C11—N1—C3—O1 | −179.17 (19) | C11—C12—C13—C14 | −72.0 (2) |
C1—N1—C3—O1 | 10.2 (2) | C19—C12—C13—C14 | 49.1 (2) |
O1—C2—C5—C6 | −148.48 (18) | C18—C13—C14—C15 | −0.2 (3) |
C1—C2—C5—C6 | 94.3 (2) | C12—C13—C14—C15 | −178.4 (2) |
O1—C2—C5—C10 | 32.6 (3) | C13—C14—C15—C16 | 0.0 (3) |
C1—C2—C5—C10 | −84.6 (2) | C14—C15—C16—C17 | −0.2 (3) |
C10—C5—C6—C7 | 1.3 (3) | C15—C16—C17—C18 | 0.5 (4) |
C2—C5—C6—C7 | −177.71 (19) | C14—C13—C18—C17 | 0.5 (3) |
C5—C6—C7—C8 | −0.5 (3) | C12—C13—C18—C17 | 178.76 (19) |
C6—C7—C8—C9 | −0.3 (4) | C16—C17—C18—C13 | −0.7 (3) |
Acknowledgements
We are grateful to the EPSRC and Queen Mary, University of London, for a studentship to YY, the Royal Society and the University of London Central Research Fund for financial support to JE, and the EPSRC National
Service (Swansea) for accurate mass determination.References
Alper, H. & Hamel, N. (1990). J. Am. Chem. Soc. 112, 2803–2804. CrossRef CAS Web of Science Google Scholar
Chavda, S., Eames, J., Flinn, A., Motevalli, M. & Malatesti, N. (2006a). Acta Cryst. E62, o4037–o4038. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chavda, S., Eames, J., Flinn, A., Motevalli, M. & Malatesti, N. (2006b). Acta Cryst. E62, o4039–o4040. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chavda, S., Eames, J., Motevalli, M. & Malatesti, N. (2006). Acta Cryst. E62, o4043–o4045. Web of Science CSD CrossRef IUCr Journals Google Scholar
Coumbarides, G. S., Dingjan, M., Eames, J., Flinn, A., Motevalli, M., Northen, J. & Yohannes, Y. (2006). Synlett, pp. 101–105. Google Scholar
Coumbarides, G. S., Dingjan, M., Eames, J., Flinn, A., Northen, J. & Yohannes, Y. (2005). Tetrahedron Lett. 46, 2897–2902. Web of Science CSD CrossRef CAS Google Scholar
Coumbarides, G. S., Dingjan, M., Eames, J., Motevalli, M. & Malatesti, N. (2006). Acta Cryst. E62, o4035–o4036. Web of Science CSD CrossRef IUCr Journals Google Scholar
Coumbarides, G. S., Eames, J., Flinn, A., Northen, J. & Yohannes, Y. (2005). Tetrahedron Lett. 46, 849–853. Web of Science CrossRef CAS Google Scholar
Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4041–o4042. Web of Science CSD CrossRef IUCr Journals Google Scholar
Enraf–Nonius (1994). CAD-4-PC Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Evans, D. A., Mathre, D. J. & Scott, W. L. (1985). J. Org. Chem. 50, 1830–1835. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fuji, K., Node, M., Tanaka, F. & Hosoi, S. (1989). Tetrahedron Lett. 30, 2825–2828. CrossRef CAS Web of Science Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Kumar, A., Salunkhe, R. V., Rane, R. A. & Dike, S. Y. (1991). J. Chem. Soc. Chem. Commun. pp. 485–486. CrossRef Google Scholar
Larsen, R. D., Corley, E. G., Davis, P., Reider, P. J. & Grabowski, E. J. J. (1989). J. Am. Chem. Soc. 111, 7650–7651. CrossRef CAS Web of Science Google Scholar
Ohta, T., Takaya, H., Kitamura, M., Nagai, K. & Noyori, R. (1987). J. Org. Chem. 52, 3174–3176. CrossRef CAS Web of Science Google Scholar
Piccolo, O., Azzena, U., Melloni, G., Delogu, G. & Valoti, E. (1991). J. Org. Chem. 56, 183–187. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sonawane, H. R., Bellur, N. S., Ahuja, J. R. & Kulkarni, D. G. (1992). Tetrahedron Asymmetry, 3, 163–192. CrossRef CAS Web of Science Google Scholar
Stille, J. K. & Parrinello, G. (1993). J. Mol. Catal. 21, 203–210. CrossRef Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.