organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(+)-(4R,5S)-4-Methyl-5-phenyl-3-[2(S)-phenyl­propion­yl]oxazolidin-2-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Queen Mary, University of London, Mile End Road, London E1 4NS, England, bDepartment of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England, and cDepartment of Chemistry, J. J. Strossmayer University of Osijek, Trg Sv. Trojstva 3, Osijek 31000, Croatia
*Correspondence e-mail: j.eames@hull.ac.uk

(Received 26 June 2006; accepted 12 August 2006; online 23 August 2006)

In the title compound, C19H19NO3, formed from enanti­omerically pure (+)-(4R,5S)-4-methyl-5-phenyl-2-oxazolidinone and racemic 2-phenyl­propanoyl chloride, the two carbonyl groups are oriented anti to each other, and the two methyl groups are oriented anti to each other.

Comment

The development of predicta­ble and efficient resolution methodology is becoming increasingly important for academia and industry alike. With this aim in mind, we have recently focused our attention on the resolution of profens (Sonawane et al., 1992[Sonawane, H. R., Bellur, N. S., Ahuja, J. R. & Kulkarni, D. G. (1992). Tetrahedron Asymmetry, 3, 163-192.]; Fuji et al., 1989[Fuji, K., Node, M., Tanaka, F. & Hosoi, S. (1989). Tetrahedron Lett. 30, 2825-2828.]; Larsen et al., 1989[Larsen, R. D., Corley, E. G., Davis, P., Reider, P. J. & Grabowski, E. J. J. (1989). J. Am. Chem. Soc. 111, 7650-7651.]), such as ibuprofen (Alper & Hamel, 1990[Alper, H. & Hamel, N. (1990). J. Am. Chem. Soc. 112, 2803-2804.]; Piccolo et al., 1991[Piccolo, O., Azzena, U., Melloni, G., Delogu, G. & Valoti, E. (1991). J. Org. Chem. 56, 183-187.]) and naproxen (Stille & Parrinello, 1993[Stille, J. K. & Parrinello, G. (1993). J. Mol. Catal. 21, 203-210.]; Ohta et al., 1987[Ohta, T., Takaya, H., Kitamura, M., Nagai, K. & Noyori, R. (1987). J. Org. Chem. 52, 3174-3176.]; Kumar et al., 1991[Kumar, A., Salunkhe, R. V., Rane, R. A. & Dike, S. Y. (1991). J. Chem. Soc. Chem. Commun. pp. 485-486.]), using a novel parallel kinetic resolution method­ology (Coumbarides, Dingjan, Eames, Flinn et al., 2006[Coumbarides, G. S., Dingjan, M., Eames, J., Flinn, A., Motevalli, M., Northen, J. & Yohannes, Y. (2006). Synlett, pp. 101-105.]; Coumbarides, Dingjan et al., 2005[Coumbarides, G. S., Dingjan, M., Eames, J., Flinn, A., Northen, J. & Yohannes, Y. (2005). Tetrahedron Lett. 46, 2897-2902.]; Coumbarides, Eames et al., 2005[Coumbarides, G. S., Eames, J., Flinn, A., Northen, J. & Yohannes, Y. (2005). Tetrahedron Lett. 46, 849-853.]). For this project, we were required to determine the relative and absolute configurations of a series of related profen adducts derived from (+)-(4R,5S)-4-methyl-5-phenyl-2-oxazolidinone, (1). The compounds were obtained in each case by addition of racemic 2-(R1)-propanoyl chloride (where R1 is a substituent group) to a solution of lithia­ted oxazolidin­one, the latter being derived from the addition of n-BuLi to the (R,S)-oxazolidinone (1)[link] in tetra­hydro­furan at 195 K (see reaction scheme[link]).

[Scheme 1]

The reaction provided in each case a separable mixture of diastereoisomeric antisyn and synsyn oxazolidinone adducts. In the following series of reports (Chavda et al. 2006a[Chavda, S., Eames, J., Flinn, A., Motevalli, M. & Malatesti, N. (2006a). Acta Cryst. E62, o4037-o4038.],b[Chavda, S., Eames, J., Flinn, A., Motevalli, M. & Malatesti, N. (2006b). Acta Cryst. E62, o4039-o4040.]; Coumbarides, Dingjan, Eames, Motevalli & Malatesti et al., 2006[Coumbarides, G. S., Dingjan, M., Eames, J., Motevalli, M. & Malatesti, N. (2006). Acta Cryst. E62, o4035-o4036.]; Chavda et al., 2006[Chavda, S., Eames, J., Motevalli, M. & Malatesti, N. (2006). Acta Cryst. E62, o4043-o4045.]; Coumbarides, Eames, Motevalli, Malatesti & Yohannes, 2006[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4041-o4042.]), we describe the crystal structures of six of these related compounds.

With R1 = C6H5, the reaction shown in the scheme[link] yielded the antisyn and synsyn diastereomers in 23 and 25% yields, respectively. The title compound, (I)[link], is the synsyn diastereomer (Fig. 1[link]).

In the crystal structure of (I)[link], the five-membered ring displays a twist conformation in which atoms O1, O2, N1 and C3 lie in an approximate plane, and C1 and C2 lie, respectively, 0.248 (3) Å above and 0.262 (3) Å below that plane. The two methyl groups (C4 and C19) lie anti to each other, on either side of the central five-membered ring. The carbonyl groups (C3=O2 and C11=O3) are also oriented anti to each other [torsion angle O3—C11—N1—C3 = −169.3 (2)°], avoiding electrostatic repulsion between the two O atoms. The electrostatic factor also appears to be important for determining the mol­ecular packing (Fig. 2[link]), whereby adjacent mol­ecules approach each other in a `side-on' manner. The shortest inter­molecular contacts to each O atom are made by H atoms [H4A⋯O2i = 2.66 Å, H2⋯O3ii = 2.63 Å; symmetry codes: (i) 1 − x, [{1\over 2}] + y, 2 − z; (ii) 1 − x, −[{1\over 2}] + y, 1 − z].

[Scheme 2]
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.
[Figure 2]
Figure 2
The crystal packing of (I), viewed along the b axis. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.

Experimental

The following procedure is representative for the reaction sequence depicted in the reaction scheme[link]. n-Butyl­lithium (6.33 ml, 2.5 M in hexa­nes, 15.8 mmol) was added dropwise to a stirred solution of (R,S)-oxazolidinone, (1)[link] (2 g, 11.3 mmol), in tetra­hydro­furan (20 ml) at 195 K. The resulting solution was stirred at 195 K for 1 h. A solution of racemic 2-phenyl­propanoyl chloride (1.90 g, 11.3 mmol) in tetra­hydro­furan (5 ml) was added dropwise and the resulting solution was stirred at 195 K for 2 h. The reaction was quenched by the addition of water (10 ml), extracted with CH2Cl2 (3 × 10 ml) and dried over MgSO4. The combined organic layers were evaporated under reduced pressure. The crude residue was purified by flash column chromatography on silica gel, eluting with light petroleum (b.p. 313–333 K)/diethyl ether (7:3), to give a separable diastereo­isomeric mixture (in the approximate ratio antisyn:synsyn 50:50) of the title compound; antisyn diastereomer (0.80 g, 23%), synsyn diastereomer (0.87 g, 25%). The latter was obtained as colourless crystals suitable for X-ray analysis [m.p. 394–396 K, RF 0.63 (light petroleum (b.p 313–333 K)/diethyl ether, 1:1].

Spectroscopic analysis for (I): [α]20D = 122.9 (CHCl3, 293 K, concentration 0.81 g per 100 ml); IR (CHCl3, νmax, cm−1): 1774 (C=O), 1701 (C=O); 1H NMR (250 MHz, CDCl3): δ 7.40–7.17 (10H, m, 10 × CH; Pha and Phb), 5.64 (1H, d, J = 7.2 Hz, OCHPh), 5.08 (1H, q, J = 7.1 Hz, PhCH), 4.82 (1H, m, CHN), 1.51 (3H, d, J = 7.1 Hz, CH3CHCO), 0.74 (3H, d, J = 6.6 Hz, CH3CHN); 13C NMR (62.9 MHz; CDCl3): δ 174.3 (NC=O), 152.5 (OC=O), 140.3 (i-C; Pha), 133.5 (i-C; Phb), 128.9, 128.8, 128.6, 128.1, 127.1, 125.7 (6 × CH; Pha and Phb), 78.8 (OCHPh), 54.7 (CH3CHO), 43.6 (PhCH), 19.4 (CH3), 14.1 (CH3); MS m/z: MH+ 310.1460; C19H20NO3 requires 310.1443.

Crystal data
  • C19H19NO3

  • Mr = 309.35

  • Monoclinic, P 21

  • a = 14.757 (2) Å

  • b = 6.069 (2) Å

  • c = 9.109 (4) Å

  • β = 104.02 (6)°

  • V = 791.5 (5) Å3

  • Z = 2

  • Dx = 1.298 Mg m−3

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 160 (2) K

  • Prism, colourless

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • ω/2θ scans

  • Absorption correction: none

  • 1623 measured reflections

  • 1521 independent reflections

  • 1449 reflections with I > 2σ(I)

  • Rint = 0.009

  • θmax = 25.1°

  • 4 standard reflections every 100 reflections intensity decay: none

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.06

  • 1521 reflections

  • 210 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0487P)2 + 0.119P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.23 e Å−3

H atoms were placed in geometrically idealised positions and constrained to ride on their parent atoms, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate about their local threefold axes. In the absence of significant anomalous scattering effects, the few measured Friedel pairs were merged. The absolute configuration is assigned on the basis of the known configuration of (1)[link] (Evans et al., 1985[Evans, D. A., Mathre, D. J. & Scott, W. L. (1985). J. Org. Chem. 50, 1830-1835.]).

Data collection: CAD-4-PC (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1994); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

(+)-(4R,5S)-4-Methyl-5-phenyl-3-[-2(S)-phenylpropionyl]- oxazolidin-2-one top
Crystal data top
C19H19NO3F(000) = 328
Mr = 309.35Dx = 1.298 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 14.757 (2) Åθ = 9.7–13.0°
b = 6.069 (2) ŵ = 0.09 mm1
c = 9.109 (4) ÅT = 160 K
β = 104.02 (6)°Prism, colourless
V = 791.5 (5) Å30.40 × 0.30 × 0.20 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.009
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 1.4°
Graphite monochromatorh = 1617
ω/2θ scansk = 07
1623 measured reflectionsl = 100
1521 independent reflections4 standard reflections every 100 reflections
1449 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.119P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1521 reflectionsΔρmax = 0.13 e Å3
210 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: assigned on the basis of known starting material
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 3.1511 (0.0161) x + 5.4484 (0.0064) y + 3.8763 (0.0094) z = 1.0707 (0.0091)

* 0.0004 (0.0005) O1 * 0.0006 (0.0007) O2 * 0.0004 (0.0005) N1 * -0.0014 (0.0018) C3 0.2480 (0.0033) C1 - 0.2624 (0.0030) C2

Rms deviation of fitted atoms = 0.0008

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.49725 (10)0.0506 (3)0.75171 (16)0.0223 (4)
O10.36438 (9)0.1645 (3)0.80375 (14)0.0288 (3)
O20.49467 (11)0.2176 (3)0.98430 (16)0.0292 (3)
O30.61111 (9)0.1127 (3)0.66406 (15)0.0304 (4)
C10.42346 (13)0.0405 (3)0.6275 (2)0.0228 (4)
H1A0.43940.01540.52820.027*
C20.34228 (13)0.1103 (3)0.6418 (2)0.0241 (4)
H2A0.34480.24830.58300.029*
C30.45794 (13)0.1511 (4)0.8604 (2)0.0240 (4)
C40.40795 (14)0.2829 (4)0.6495 (2)0.0290 (5)
H4A0.46630.36340.65530.043*
H4B0.38790.30450.74350.043*
H4C0.35960.33830.56390.043*
C50.24509 (13)0.0169 (4)0.5956 (2)0.0249 (4)
C60.19350 (13)0.0559 (4)0.4484 (2)0.0271 (4)
H6A0.21900.14350.38180.033*
C70.10495 (14)0.0336 (4)0.3992 (2)0.0317 (5)
H7A0.07000.00790.29850.038*
C80.06702 (14)0.1605 (4)0.4963 (2)0.0343 (5)
H8A0.00640.22210.46190.041*
C90.11767 (14)0.1972 (4)0.6431 (3)0.0359 (5)
H9A0.09160.28360.70960.043*
C100.20617 (14)0.1087 (4)0.6934 (2)0.0316 (5)
H10A0.24050.13330.79460.038*
C110.59155 (12)0.0054 (3)0.7605 (2)0.0227 (4)
C120.66371 (13)0.1199 (4)0.8843 (2)0.0241 (4)
H12A0.64460.10380.98180.029*
C130.75975 (13)0.0172 (3)0.9030 (2)0.0241 (4)
C140.81250 (13)0.0474 (4)0.7946 (2)0.0275 (4)
H14A0.78720.13110.70600.033*
C150.90074 (13)0.0432 (4)0.8157 (2)0.0311 (5)
H15A0.93550.02160.74170.037*
C160.93844 (13)0.1653 (4)0.9444 (2)0.0335 (5)
H16A0.99910.22730.95920.040*
C170.88689 (14)0.1966 (4)1.0521 (2)0.0349 (5)
H17A0.91240.28131.14020.042*
C180.79813 (14)0.1048 (4)1.0317 (2)0.0302 (5)
H18A0.76380.12581.10630.036*
C190.66362 (14)0.3671 (4)0.8450 (2)0.0311 (5)
H19D0.60390.43270.85070.047*
H19A0.71460.44110.91710.047*
H19B0.67230.38450.74230.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0212 (7)0.0260 (9)0.0195 (7)0.0001 (7)0.0047 (6)0.0030 (7)
O10.0235 (7)0.0334 (8)0.0295 (7)0.0010 (7)0.0067 (5)0.0069 (7)
O20.0333 (7)0.0314 (8)0.0229 (7)0.0022 (7)0.0065 (5)0.0082 (7)
O30.0266 (7)0.0378 (9)0.0270 (7)0.0020 (7)0.0071 (5)0.0087 (7)
C10.0219 (9)0.0297 (10)0.0163 (9)0.0025 (8)0.0035 (7)0.0015 (8)
C20.0254 (10)0.0244 (11)0.0217 (9)0.0001 (8)0.0039 (7)0.0035 (8)
C30.0251 (9)0.0205 (9)0.0271 (10)0.0007 (8)0.0081 (8)0.0011 (9)
C40.0274 (10)0.0289 (11)0.0284 (10)0.0003 (9)0.0023 (8)0.0060 (9)
C50.0226 (9)0.0239 (10)0.0283 (9)0.0035 (8)0.0066 (7)0.0001 (9)
C60.0253 (9)0.0266 (11)0.0298 (9)0.0039 (9)0.0072 (8)0.0026 (9)
C70.0264 (10)0.0334 (12)0.0320 (10)0.0044 (9)0.0004 (8)0.0008 (10)
C80.0239 (9)0.0338 (12)0.0445 (11)0.0018 (10)0.0071 (8)0.0047 (11)
C90.0299 (10)0.0377 (13)0.0431 (11)0.0031 (10)0.0147 (9)0.0054 (11)
C100.0290 (10)0.0373 (13)0.0288 (10)0.0006 (10)0.0076 (8)0.0030 (10)
C110.0234 (9)0.0247 (11)0.0201 (9)0.0007 (8)0.0053 (7)0.0005 (9)
C120.0232 (9)0.0273 (11)0.0213 (9)0.0013 (8)0.0045 (7)0.0018 (8)
C130.0236 (9)0.0222 (10)0.0241 (9)0.0051 (8)0.0014 (7)0.0025 (9)
C140.0260 (9)0.0297 (11)0.0249 (9)0.0017 (9)0.0028 (7)0.0011 (9)
C150.0259 (10)0.0333 (11)0.0343 (11)0.0037 (9)0.0077 (8)0.0034 (10)
C160.0246 (9)0.0299 (11)0.0424 (11)0.0010 (10)0.0013 (8)0.0012 (11)
C170.0311 (10)0.0329 (13)0.0362 (11)0.0017 (9)0.0007 (9)0.0089 (10)
C180.0288 (10)0.0315 (13)0.0290 (10)0.0041 (9)0.0046 (8)0.0037 (9)
C190.0303 (10)0.0255 (11)0.0367 (11)0.0013 (9)0.0067 (8)0.0001 (10)
Geometric parameters (Å, º) top
N1—C111.402 (2)C8—H8A0.950
N1—C31.403 (3)C9—C101.384 (3)
N1—C11.475 (2)C9—H9A0.950
O1—C31.354 (2)C10—H10A0.950
O1—C21.469 (2)C11—C121.519 (3)
O2—C31.197 (2)C12—C131.520 (3)
O3—C111.222 (2)C12—C191.542 (3)
C1—C41.510 (3)C12—H12A1.000
C1—C21.538 (3)C13—C181.386 (3)
C1—H1A1.000C13—C141.409 (3)
C2—C51.504 (3)C14—C151.383 (3)
C2—H2A1.000C14—H14A0.950
C4—H4A0.980C15—C161.385 (3)
C4—H4B0.980C15—H15A0.950
C4—H4C0.980C16—C171.392 (3)
C5—C61.393 (3)C16—H16A0.950
C5—C101.397 (3)C17—C181.394 (3)
C6—C71.385 (3)C17—H17A0.950
C6—H6A0.950C18—H18A0.950
C7—C81.389 (3)C19—H19D0.980
C7—H7A0.950C19—H19A0.980
C8—C91.383 (3)C19—H19B0.980
C11—N1—C3128.28 (16)C8—C9—H9A119.9
C11—N1—C1120.59 (16)C10—C9—H9A119.9
C3—N1—C1110.48 (14)C9—C10—C5120.09 (19)
C3—O1—C2109.10 (15)C9—C10—H10A120.0
N1—C1—C4111.80 (18)C5—C10—H10A120.0
N1—C1—C299.06 (15)O3—C11—N1118.56 (17)
C4—C1—C2115.00 (17)O3—C11—C12123.87 (16)
N1—C1—H1A110.2N1—C11—C12117.44 (17)
C4—C1—H1A110.2C11—C12—C13111.25 (17)
C2—C1—H1A110.2C11—C12—C19108.15 (16)
O1—C2—C5109.26 (16)C13—C12—C19111.92 (17)
O1—C2—C1103.31 (15)C11—C12—H12A108.5
C5—C2—C1117.49 (17)C13—C12—H12A108.5
O1—C2—H2A108.8C19—C12—H12A108.5
C5—C2—H2A108.8C18—C13—C14118.69 (18)
C1—C2—H2A108.8C18—C13—C12119.50 (18)
O2—C3—O1121.74 (19)C14—C13—C12121.78 (18)
O2—C3—N1129.92 (18)C15—C14—C13120.80 (19)
O1—C3—N1108.34 (16)C15—C14—H14A119.6
C1—C4—H4A109.5C13—C14—H14A119.6
C1—C4—H4B109.5C14—C15—C16120.12 (19)
H4A—C4—H4B109.5C14—C15—H15A119.9
C1—C4—H4C109.5C16—C15—H15A119.9
H4A—C4—H4C109.5C15—C16—C17119.58 (19)
H4B—C4—H4C109.5C15—C16—H16A120.2
C6—C5—C10119.57 (18)C17—C16—H16A120.2
C6—C5—C2117.84 (18)C16—C17—C18120.5 (2)
C10—C5—C2122.59 (17)C16—C17—H17A119.7
C7—C6—C5119.84 (19)C18—C17—H17A119.7
C7—C6—H6A120.1C13—C18—C17120.31 (19)
C5—C6—H6A120.1C13—C18—H18A119.8
C6—C7—C8120.37 (19)C17—C18—H18A119.8
C6—C7—H7A119.8C12—C19—H19D109.5
C8—C7—H7A119.8C12—C19—H19A109.5
C9—C8—C7119.9 (2)H19D—C19—H19A109.5
C9—C8—H8A120.1C12—C19—H19B109.5
C7—C8—H8A120.1H19D—C19—H19B109.5
C8—C9—C10120.2 (2)H19A—C19—H19B109.5
C11—N1—C1—C475.0 (2)C7—C8—C9—C100.3 (4)
C3—N1—C1—C496.5 (2)C8—C9—C10—C50.5 (4)
C11—N1—C1—C2163.36 (17)C6—C5—C10—C91.3 (3)
C3—N1—C1—C225.2 (2)C2—C5—C10—C9177.6 (2)
C3—O1—C2—C5152.44 (17)C3—N1—C11—O3169.1 (2)
C3—O1—C2—C126.6 (2)C1—N1—C11—O30.8 (3)
N1—C1—C2—O129.82 (18)C3—N1—C11—C1215.0 (3)
C4—C1—C2—O189.5 (2)C1—N1—C11—C12175.22 (18)
N1—C1—C2—C5150.16 (16)O3—C11—C12—C1317.3 (3)
C4—C1—C2—C530.9 (3)N1—C11—C12—C13166.97 (16)
C2—O1—C3—O2169.2 (2)O3—C11—C12—C19106.0 (2)
C2—O1—C3—N111.1 (2)N1—C11—C12—C1969.7 (2)
C11—N1—C3—O21.1 (4)C11—C12—C13—C18109.8 (2)
C1—N1—C3—O2169.5 (2)C19—C12—C13—C18129.1 (2)
C11—N1—C3—O1179.17 (19)C11—C12—C13—C1472.0 (2)
C1—N1—C3—O110.2 (2)C19—C12—C13—C1449.1 (2)
O1—C2—C5—C6148.48 (18)C18—C13—C14—C150.2 (3)
C1—C2—C5—C694.3 (2)C12—C13—C14—C15178.4 (2)
O1—C2—C5—C1032.6 (3)C13—C14—C15—C160.0 (3)
C1—C2—C5—C1084.6 (2)C14—C15—C16—C170.2 (3)
C10—C5—C6—C71.3 (3)C15—C16—C17—C180.5 (4)
C2—C5—C6—C7177.71 (19)C14—C13—C18—C170.5 (3)
C5—C6—C7—C80.5 (3)C12—C13—C18—C17178.76 (19)
C6—C7—C8—C90.3 (4)C16—C17—C18—C130.7 (3)
 

Acknowledgements

We are grateful to the EPSRC and Queen Mary, University of London, for a studentship to YY, the Royal Society and the University of London Central Research Fund for financial support to JE, and the EPSRC National Mass Spectrometry Service (Swansea) for accurate mass determination.

References

First citationAlper, H. & Hamel, N. (1990). J. Am. Chem. Soc. 112, 2803–2804.  CrossRef CAS Web of Science Google Scholar
First citationChavda, S., Eames, J., Flinn, A., Motevalli, M. & Malatesti, N. (2006a). Acta Cryst. E62, o4037–o4038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChavda, S., Eames, J., Flinn, A., Motevalli, M. & Malatesti, N. (2006b). Acta Cryst. E62, o4039–o4040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChavda, S., Eames, J., Motevalli, M. & Malatesti, N. (2006). Acta Cryst. E62, o4043–o4045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCoumbarides, G. S., Dingjan, M., Eames, J., Flinn, A., Motevalli, M., Northen, J. & Yohannes, Y. (2006). Synlett, pp. 101–105.  Google Scholar
First citationCoumbarides, G. S., Dingjan, M., Eames, J., Flinn, A., Northen, J. & Yohannes, Y. (2005). Tetrahedron Lett. 46, 2897–2902.  Web of Science CSD CrossRef CAS Google Scholar
First citationCoumbarides, G. S., Dingjan, M., Eames, J., Motevalli, M. & Malatesti, N. (2006). Acta Cryst. E62, o4035–o4036.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCoumbarides, G. S., Eames, J., Flinn, A., Northen, J. & Yohannes, Y. (2005). Tetrahedron Lett. 46, 849–853.  Web of Science CrossRef CAS Google Scholar
First citationCoumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4041–o4042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4-PC Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEvans, D. A., Mathre, D. J. & Scott, W. L. (1985). J. Org. Chem. 50, 1830–1835.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFuji, K., Node, M., Tanaka, F. & Hosoi, S. (1989). Tetrahedron Lett. 30, 2825–2828.  CrossRef CAS Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKumar, A., Salunkhe, R. V., Rane, R. A. & Dike, S. Y. (1991). J. Chem. Soc. Chem. Commun. pp. 485–486.  CrossRef Google Scholar
First citationLarsen, R. D., Corley, E. G., Davis, P., Reider, P. J. & Grabowski, E. J. J. (1989). J. Am. Chem. Soc. 111, 7650–7651.  CrossRef CAS Web of Science Google Scholar
First citationOhta, T., Takaya, H., Kitamura, M., Nagai, K. & Noyori, R. (1987). J. Org. Chem. 52, 3174–3176.  CrossRef CAS Web of Science Google Scholar
First citationPiccolo, O., Azzena, U., Melloni, G., Delogu, G. & Valoti, E. (1991). J. Org. Chem. 56, 183–187.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSonawane, H. R., Bellur, N. S., Ahuja, J. R. & Kulkarni, D. G. (1992). Tetrahedron Asymmetry, 3, 163–192.  CrossRef CAS Web of Science Google Scholar
First citationStille, J. K. & Parrinello, G. (1993). J. Mol. Catal. 21, 203–210.  CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds