organic compounds
(–)-(4R,5S)-4-Methyl-3-[2(R)-(4-methylphenyl)propionyl]-5-phenyloxazolidin-2-one
aDepartment of Chemistry, Queen Mary, University of London, Mile End Road, London E1 4NS, England, bDepartment of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England, cOnyx Scientific Limited, Units 97-98, Silverbriar, Sunderland Enterprise Park East, Sunderland SR5 2TQ, England, and dDepartment of Chemistry, J. J. Strossmayer University of Osijek, Trg Sv. Trojstva 3, Osijek 31000, Croatia
*Correspondence e-mail: j.eames@hull.ac.uk
In the title compound, C20H21NO3, formed from enantiomerically pure (+)-(4R,5S)-4-methyl-5-phenyl-2-oxazolidinone and racemic 2-(4-methylphenyl)propanoyl chloride, the two carbonyl groups are oriented anti to each other, and the methyl group of the (4-methylphenyl)propionyl substituent lies close to the mean plane of the five-membered ring.
Comment
The title compound is the third in a series of structurally related compounds, introduced in our earlier report (Coumbarides, Eames et al., 2006). With R1 = 4-(CH3)C6H4, the reaction shown in that report yielded the anti–syn and syn–syn in 38 and 38% yields, respectively. The title compound, (I), is the anti–syn diastereomer (Fig. 1). In the the conformation of the central portion of the molecule is closely comparable with that in the previously reported derivatives (Coumbarides, Eames et al., 2006; Coumbarides, Dingjan et al., 2006); in the twisted five-membered ring, atoms C1 and C2 lie, respectively, 0.245 (4) Å above and −0.202 (4) Å below the plane defined by atoms O1, O2, N1 and C3. The carbonyl groups (C3=O2 and C11=O3) are oriented anti to each other, with the torsion angle O3—C11—N1—C3 = −169.3 (2)°. The orientation of the 4-(CH3)C6H4 substituent resembles most closely that in the 4-(iBu)C6H4 derivative (Coumbarides, Dingjan et al., 2006), with the C19 methyl group lying close to the mean plane of the five-membered ring [deviating by 0.138 (8) Å from it] and the torsion angle N1—C11—C12—C13 = 78.7 (3)°.
Experimental
The experimental procedure is comparable with that reported previously (Coumbarides, Eames et al., 2006). The actual quantities used for the preparation of (I) were: n-butyllithium (15.45 ml, 2.5 M in hexanes, 38.6 mmol) and (R,S)-oxazolidinone (4.89 g, 27.6 mmol) in 60 ml tetrahydrofuran (THF), combined with a solution of (rac)-2-(4-methylphenyl)propanoyl chloride (5.02 g, 27.6 mmol) in 10 ml THF. The crude residue was purified by flash on silica gel, eluting with light petroleum (b.p. 313–333 K)/diethyl ether (1:1), to give a separable diastereoisomeric mixture in the ratio anti–syn:syn,syn 50:50. The anti–syn diastereomer was obtained as colourless crystals (3.39 g, 38% yield, m.p. 341–343 K, RF 0.71 [light petroleum (b.p 313–333 K)/diethyl ether, 7:3]. Spectroscopic analysis: [α]20D = −164.5 (CHCl3, 293 K, concentration 0.18 g per 100 ml); IR (CHCl3, νmax/cm−1): 1779 (C=O), 1710 (C=O); 1H NMR (270 MHz; CDCl3): δ 7.36–7.24 (9H, m, 9 × CH; Ar and Ph), 5.46 (1H, d, J = 6.9 Hz, CHO), 5.07 (1H, q, J = 7.1 Hz, ArCH), 4.65 (1H, m, NCHCH3), 2.31 (3H, s, CH3; Ar), 1.46 (3H, d, J = 7.1 Hz, CH3CH), 0.91 (3H, d, J = 6.9 Hz, CH3CHN); 13C NMR (67.5 MHz; CDCl3): δ 174.8 (NC=O), 152.9 (OC=O), 137.7, 137.1, 133.9 (3 × i-C; Ar and Ph), 129.7, 129.1, 128.3, 128.3, 126.1 (5 × CH; Ar and Ph), 79.1 (PhCHO), 55.0 (CHN), 43.6 (ArCH), 21.4 (CH3; Ar), 19.8 (CH3CH), 14.5 (CH3CHN); found: MH+ 324.1187; C20H22NO3 requires 324.1194.
Crystal data
|
H atoms were placed in geometrically idealised positions and constrained to ride on their parent atoms, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate about their local threefold axes. In the absence of significant effects, the few measured Friedel pairs have been merged. The is assigned on the basis of the known configuration of the starting material (Coumbarides, Eames et al., 2006).
Data collection: CAD-4-PC (Enraf–Nonius, 1994); cell CAD-4-PC; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536806031825/bi2030sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806031825/bi2030Isup2.hkl
Data collection: CAD-4-PC (Enraf–Nonius, 1994); cell
CAD-4-PC; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C20H21NO3 | F(000) = 344 |
Mr = 323.38 | Dx = 1.232 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 25 reflections |
a = 13.066 (8) Å | θ = 9.4–12.7° |
b = 9.509 (8) Å | µ = 0.08 mm−1 |
c = 7.201 (4) Å | T = 160 K |
β = 102.95 (4)° | Prism, colourless |
V = 871.9 (10) Å3 | 0.40 × 0.30 × 0.30 mm |
Z = 2 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.010 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 1.6° |
Graphite monochromator | h = 0→15 |
ω/2θ scans | k = −2→11 |
1743 measured reflections | l = −8→8 |
1630 independent reflections | 2 standard reflections every 100 reflections |
1417 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.078 | w = 1/[σ2(Fo2) + (0.04P)2 + 0.0761P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1630 reflections | Δρmax = 0.12 e Å−3 |
220 parameters | Δρmin = −0.16 e Å−3 |
1 restraint | Absolute structure: assigned on the basis of known starting material |
Primary atom site location: structure-invariant direct methods |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 1.7659 (0.0199) x + 8.7456 (0.0092) y + 2.3685 (0.0098) z = 8.8989 (0.0127) * -0.0015 (0.0008) N1 * 0.0050 (0.0024) C3 * -0.0014 (0.0007) O1 * -0.0020 (0.0010) O2 - 0.2450 (0.0044) C1 0.2015 (0.0043) C2 - 0.1382 (0.0075) C19 Rms deviation of fitted atoms = 0.0029 |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.51015 (17) | 0.6695 (3) | 0.8013 (3) | 0.0308 (5) | |
H1 | 0.4841 | 0.7159 | 0.9065 | 0.037* | |
C2 | 0.49740 (18) | 0.7696 (3) | 0.6297 (3) | 0.0339 (6) | |
H2 | 0.4978 | 0.8686 | 0.6766 | 0.041* | |
C3 | 0.66853 (19) | 0.6938 (3) | 0.6989 (3) | 0.0393 (6) | |
C4 | 0.4596 (2) | 0.5268 (3) | 0.7589 (4) | 0.0407 (7) | |
H4A | 0.4778 | 0.4676 | 0.8729 | 0.061* | |
H4B | 0.4850 | 0.4825 | 0.6548 | 0.061* | |
H4C | 0.3832 | 0.5377 | 0.7213 | 0.061* | |
C5 | 0.40230 (19) | 0.7494 (3) | 0.4694 (3) | 0.0325 (6) | |
C6 | 0.31243 (19) | 0.8228 (3) | 0.4763 (4) | 0.0409 (7) | |
H6 | 0.3128 | 0.8867 | 0.5779 | 0.049* | |
C7 | 0.2213 (2) | 0.8044 (4) | 0.3365 (4) | 0.0492 (8) | |
H7 | 0.1594 | 0.8547 | 0.3433 | 0.059* | |
C8 | 0.2208 (2) | 0.7140 (4) | 0.1891 (4) | 0.0524 (8) | |
H8 | 0.1581 | 0.6999 | 0.0946 | 0.063* | |
C9 | 0.3109 (3) | 0.6431 (4) | 0.1769 (4) | 0.0547 (8) | |
H9 | 0.3106 | 0.5817 | 0.0727 | 0.066* | |
C10 | 0.4023 (2) | 0.6610 (3) | 0.3167 (4) | 0.0430 (7) | |
H10 | 0.4646 | 0.6128 | 0.3076 | 0.052* | |
C11 | 0.67809 (18) | 0.6052 (3) | 1.0290 (3) | 0.0316 (6) | |
C12 | 0.79737 (18) | 0.6083 (3) | 1.0771 (3) | 0.0342 (6) | |
H12 | 0.8225 | 0.5842 | 0.9596 | 0.041* | |
C13 | 0.83601 (17) | 0.7545 (3) | 1.1413 (3) | 0.0320 (6) | |
C14 | 0.80485 (19) | 0.8201 (3) | 1.2912 (3) | 0.0378 (6) | |
H14 | 0.7535 | 0.7766 | 1.3467 | 0.045* | |
C15 | 0.8470 (2) | 0.9478 (3) | 1.3615 (4) | 0.0400 (7) | |
H15 | 0.8241 | 0.9904 | 1.4644 | 0.048* | |
C16 | 0.92221 (18) | 1.0146 (3) | 1.2845 (4) | 0.0371 (6) | |
C17 | 0.9518 (2) | 0.9500 (3) | 1.1328 (4) | 0.0415 (7) | |
H17 | 1.0024 | 0.9943 | 1.0762 | 0.050* | |
C18 | 0.90949 (19) | 0.8226 (3) | 1.0614 (4) | 0.0381 (6) | |
H18 | 0.9311 | 0.7812 | 0.9563 | 0.046* | |
C19 | 0.8401 (2) | 0.4990 (3) | 1.2299 (4) | 0.0430 (7) | |
H19A | 0.8174 | 0.5225 | 1.3470 | 0.064* | |
H19B | 0.9170 | 0.4985 | 1.2555 | 0.064* | |
H19C | 0.8133 | 0.4059 | 1.1853 | 0.064* | |
C20 | 0.9695 (2) | 1.1532 (3) | 1.3630 (4) | 0.0509 (8) | |
H20A | 0.9370 | 1.2298 | 1.2792 | 0.076* | |
H20B | 1.0453 | 1.1520 | 1.3701 | 0.076* | |
H20C | 0.9569 | 1.1676 | 1.4908 | 0.076* | |
N1 | 0.62582 (14) | 0.6602 (2) | 0.8523 (3) | 0.0317 (5) | |
O1 | 0.59164 (13) | 0.7465 (2) | 0.5591 (2) | 0.0458 (5) | |
O2 | 0.75664 (14) | 0.6802 (3) | 0.6804 (3) | 0.0566 (6) | |
O3 | 0.62656 (13) | 0.5637 (2) | 1.1380 (2) | 0.0410 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0269 (12) | 0.0347 (14) | 0.0304 (12) | 0.0006 (11) | 0.0059 (10) | 0.0005 (11) |
C2 | 0.0341 (12) | 0.0297 (15) | 0.0364 (13) | 0.0000 (11) | 0.0047 (10) | 0.0028 (11) |
C3 | 0.0340 (13) | 0.0503 (18) | 0.0333 (13) | −0.0036 (13) | 0.0072 (11) | 0.0092 (13) |
C4 | 0.0420 (14) | 0.0369 (17) | 0.0410 (15) | −0.0050 (13) | 0.0045 (12) | 0.0059 (12) |
C5 | 0.0359 (13) | 0.0299 (14) | 0.0293 (12) | 0.0035 (12) | 0.0024 (10) | 0.0040 (11) |
C6 | 0.0400 (14) | 0.0450 (17) | 0.0367 (13) | 0.0085 (13) | 0.0066 (11) | −0.0018 (13) |
C7 | 0.0388 (15) | 0.059 (2) | 0.0459 (16) | 0.0094 (14) | 0.0013 (13) | 0.0002 (15) |
C8 | 0.0463 (16) | 0.063 (2) | 0.0398 (15) | −0.0029 (16) | −0.0075 (13) | 0.0010 (15) |
C9 | 0.072 (2) | 0.054 (2) | 0.0334 (14) | −0.0040 (17) | 0.0015 (14) | −0.0114 (14) |
C10 | 0.0502 (15) | 0.0382 (16) | 0.0402 (14) | 0.0102 (14) | 0.0089 (12) | −0.0017 (14) |
C11 | 0.0335 (13) | 0.0340 (14) | 0.0281 (12) | 0.0014 (11) | 0.0082 (11) | 0.0020 (11) |
C12 | 0.0281 (13) | 0.0404 (15) | 0.0335 (13) | 0.0030 (12) | 0.0057 (11) | 0.0062 (12) |
C13 | 0.0242 (11) | 0.0404 (15) | 0.0304 (12) | 0.0045 (11) | 0.0037 (10) | 0.0105 (12) |
C14 | 0.0336 (13) | 0.0448 (17) | 0.0359 (14) | −0.0009 (13) | 0.0097 (11) | 0.0079 (13) |
C15 | 0.0431 (16) | 0.0410 (16) | 0.0362 (14) | 0.0035 (13) | 0.0094 (12) | 0.0003 (12) |
C16 | 0.0271 (12) | 0.0394 (16) | 0.0403 (14) | 0.0044 (12) | −0.0022 (11) | 0.0101 (13) |
C17 | 0.0312 (13) | 0.0447 (17) | 0.0499 (15) | −0.0052 (12) | 0.0122 (12) | 0.0109 (13) |
C18 | 0.0322 (13) | 0.0438 (16) | 0.0412 (14) | 0.0019 (13) | 0.0141 (11) | 0.0044 (13) |
C19 | 0.0358 (14) | 0.0401 (16) | 0.0500 (16) | 0.0021 (13) | 0.0031 (12) | 0.0103 (15) |
C20 | 0.0460 (16) | 0.0429 (17) | 0.0593 (18) | −0.0005 (14) | 0.0023 (14) | 0.0079 (15) |
N1 | 0.0270 (10) | 0.0392 (12) | 0.0294 (9) | 0.0004 (9) | 0.0070 (8) | 0.0067 (9) |
O1 | 0.0333 (9) | 0.0650 (14) | 0.0383 (10) | 0.0015 (10) | 0.0059 (8) | 0.0214 (10) |
O2 | 0.0325 (10) | 0.0970 (18) | 0.0426 (10) | 0.0018 (11) | 0.0134 (8) | 0.0239 (12) |
O3 | 0.0350 (9) | 0.0568 (13) | 0.0323 (9) | −0.0019 (9) | 0.0098 (8) | 0.0099 (9) |
C1—N1 | 1.476 (3) | C11—O3 | 1.210 (3) |
C1—C4 | 1.510 (4) | C11—N1 | 1.403 (3) |
C1—C2 | 1.539 (3) | C11—C12 | 1.519 (3) |
C1—H1 | 1.000 | C12—C13 | 1.515 (4) |
C2—O1 | 1.450 (3) | C12—C19 | 1.525 (4) |
C2—C5 | 1.507 (4) | C12—H12 | 1.000 |
C2—H2 | 1.000 | C13—C14 | 1.385 (4) |
C3—O2 | 1.195 (3) | C13—C18 | 1.385 (3) |
C3—O1 | 1.349 (3) | C14—C15 | 1.381 (4) |
C3—N1 | 1.382 (3) | C14—H14 | 0.950 |
C4—H4A | 0.980 | C15—C16 | 1.386 (4) |
C4—H4B | 0.980 | C15—H15 | 0.950 |
C4—H4C | 0.980 | C16—C17 | 1.381 (4) |
C5—C6 | 1.377 (4) | C16—C20 | 1.510 (4) |
C5—C10 | 1.383 (4) | C17—C18 | 1.382 (4) |
C6—C7 | 1.388 (4) | C17—H17 | 0.950 |
C6—H6 | 0.950 | C18—H18 | 0.950 |
C7—C8 | 1.365 (4) | C19—H19A | 0.980 |
C7—H7 | 0.950 | C19—H19B | 0.980 |
C8—C9 | 1.377 (4) | C19—H19C | 0.980 |
C8—H8 | 0.950 | C20—H20A | 0.980 |
C9—C10 | 1.389 (4) | C20—H20B | 0.980 |
C9—H9 | 0.950 | C20—H20C | 0.980 |
C10—H10 | 0.950 | ||
N1—C1—C4 | 111.9 (2) | N1—C11—C12 | 117.8 (2) |
N1—C1—C2 | 99.08 (18) | C13—C12—C11 | 110.0 (2) |
C4—C1—C2 | 115.4 (2) | C13—C12—C19 | 111.2 (2) |
N1—C1—H1 | 110.0 | C11—C12—C19 | 110.0 (2) |
C4—C1—H1 | 110.0 | C13—C12—H12 | 108.5 |
C2—C1—H1 | 110.0 | C11—C12—H12 | 108.5 |
O1—C2—C5 | 109.3 (2) | C19—C12—H12 | 108.5 |
O1—C2—C1 | 103.90 (18) | C14—C13—C18 | 117.7 (3) |
C5—C2—C1 | 117.3 (2) | C14—C13—C12 | 121.0 (2) |
O1—C2—H2 | 108.7 | C18—C13—C12 | 121.1 (2) |
C5—C2—H2 | 108.7 | C15—C14—C13 | 121.3 (2) |
C1—C2—H2 | 108.7 | C15—C14—H14 | 119.4 |
O2—C3—O1 | 122.1 (2) | C13—C14—H14 | 119.4 |
O2—C3—N1 | 129.5 (2) | C14—C15—C16 | 121.1 (3) |
O1—C3—N1 | 108.4 (2) | C14—C15—H15 | 119.4 |
C1—C4—H4A | 109.5 | C16—C15—H15 | 119.4 |
C1—C4—H4B | 109.5 | C17—C16—C15 | 117.5 (3) |
H4A—C4—H4B | 109.5 | C17—C16—C20 | 121.4 (3) |
C1—C4—H4C | 109.5 | C15—C16—C20 | 121.2 (3) |
H4A—C4—H4C | 109.5 | C16—C17—C18 | 121.7 (2) |
H4B—C4—H4C | 109.5 | C16—C17—H17 | 119.2 |
C6—C5—C10 | 119.2 (2) | C18—C17—H17 | 119.2 |
C6—C5—C2 | 118.1 (2) | C17—C18—C13 | 120.8 (3) |
C10—C5—C2 | 122.7 (2) | C17—C18—H18 | 119.6 |
C5—C6—C7 | 120.7 (3) | C13—C18—H18 | 119.6 |
C5—C6—H6 | 119.7 | C12—C19—H19A | 109.5 |
C7—C6—H6 | 119.7 | C12—C19—H19B | 109.5 |
C8—C7—C6 | 119.8 (3) | H19A—C19—H19B | 109.5 |
C8—C7—H7 | 120.1 | C12—C19—H19C | 109.5 |
C6—C7—H7 | 120.1 | H19A—C19—H19C | 109.5 |
C7—C8—C9 | 120.2 (3) | H19B—C19—H19C | 109.5 |
C7—C8—H8 | 119.9 | C16—C20—H20A | 109.5 |
C9—C8—H8 | 119.9 | C16—C20—H20B | 109.5 |
C8—C9—C10 | 120.1 (3) | H20A—C20—H20B | 109.5 |
C8—C9—H9 | 119.9 | C16—C20—H20C | 109.5 |
C10—C9—H9 | 119.9 | H20A—C20—H20C | 109.5 |
C5—C10—C9 | 119.9 (3) | H20B—C20—H20C | 109.5 |
C5—C10—H10 | 120.1 | C3—N1—C11 | 127.54 (19) |
C9—C10—H10 | 120.1 | C3—N1—C1 | 111.17 (19) |
O3—C11—N1 | 118.8 (2) | C11—N1—C1 | 120.77 (19) |
O3—C11—C12 | 123.4 (2) | C3—O1—C2 | 110.07 (18) |
N1—C1—C2—O1 | 25.9 (2) | C12—C13—C14—C15 | 174.1 (2) |
C4—C1—C2—O1 | −93.7 (2) | C13—C14—C15—C16 | −0.1 (4) |
N1—C1—C2—C5 | 146.7 (2) | C14—C15—C16—C17 | 1.2 (4) |
C4—C1—C2—C5 | 27.0 (3) | C14—C15—C16—C20 | −179.1 (2) |
O1—C2—C5—C6 | −151.5 (2) | C15—C16—C17—C18 | −0.9 (4) |
C1—C2—C5—C6 | 90.6 (3) | C20—C16—C17—C18 | 179.4 (2) |
O1—C2—C5—C10 | 28.2 (4) | C16—C17—C18—C13 | −0.5 (4) |
C1—C2—C5—C10 | −89.7 (3) | C14—C13—C18—C17 | 1.5 (4) |
C10—C5—C6—C7 | 2.7 (4) | C12—C13—C18—C17 | −173.8 (2) |
C2—C5—C6—C7 | −177.6 (3) | O2—C3—N1—C11 | 2.4 (5) |
C5—C6—C7—C8 | −0.8 (5) | O1—C3—N1—C11 | −178.6 (2) |
C6—C7—C8—C9 | −1.3 (5) | O2—C3—N1—C1 | −169.2 (3) |
C7—C8—C9—C10 | 1.3 (5) | O1—C3—N1—C1 | 9.7 (3) |
C6—C5—C10—C9 | −2.6 (4) | O3—C11—N1—C3 | −169.9 (3) |
C2—C5—C10—C9 | 177.7 (3) | C12—C11—N1—C3 | 13.2 (4) |
C8—C9—C10—C5 | 0.6 (5) | O3—C11—N1—C1 | 1.0 (4) |
O3—C11—C12—C13 | −98.0 (3) | C12—C11—N1—C1 | −175.8 (2) |
N1—C11—C12—C13 | 78.7 (3) | C4—C1—N1—C3 | 99.9 (3) |
O3—C11—C12—C19 | 24.8 (4) | C2—C1—N1—C3 | −22.4 (3) |
N1—C11—C12—C19 | −158.5 (2) | C4—C1—N1—C11 | −72.5 (3) |
C11—C12—C13—C14 | 55.6 (3) | C2—C1—N1—C11 | 165.3 (2) |
C19—C12—C13—C14 | −66.6 (3) | O2—C3—O1—C2 | −171.9 (3) |
C11—C12—C13—C18 | −129.2 (2) | N1—C3—O1—C2 | 9.0 (3) |
C19—C12—C13—C18 | 108.7 (3) | C5—C2—O1—C3 | −148.9 (2) |
C18—C13—C14—C15 | −1.3 (4) | C1—C2—O1—C3 | −22.9 (3) |
Acknowledgements
We are grateful to the Royal Society and the University of London Central Research Fund for their financial support to JE, and the EPSRC National
Service (Swansea) for accurate mass determination.References
Coumbarides, G. S., Dingjan, M., Eames, J., Motevalli, M. & Nela, M. (2006). Acta Cryst. E62, o4035–o4036. Web of Science CSD CrossRef IUCr Journals Google Scholar
Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4032–o4034. Web of Science CSD CrossRef IUCr Journals Google Scholar
Enraf–Nonius (1994). CAD-4-PC Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.