organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(–)-(4R,5S)-3-[2(R)-(4-Chloro­phen­yl)propion­yl]-4-methyl-5-phenyl­oxazolidin-2-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Queen Mary, University of London, Mile End Road, London E1 4NS, England, bDepartment of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England, cOnyx Scientific Limited, Units 97-98, Silverbriar, Sunderland Enterprise Park East, Sunderland SR5 2TQ, England, and dDepartment of Chemistry, J. J. Strossmayer University of Osijek, Trg. Sv. Trojstva 3, Osijek 31000, Croatia
*Correspondence e-mail: j.eames@hull.ac.uk

(Received 27 June 2006; accepted 12 August 2006; online 23 August 2006)

The title compound, C19H18ClNO3, is formed from enanti­omerically pure (+)-(4R,5S)-4-methyl-5-phenyl-2-oxazolidinone and racemic 2-(4-chloro­phen­yl)propanoyl chloride. The crystal structure resembles closely that of the comparable (4-methyl­phen­yl)propionyl derivative, although the two structures differ in the nature of the inter­molecular contacts to the Cl atom and methyl group.

Comment

The title compound, (I)[link], is the fourth in a series of structurally related compounds, introduced in our earlier report (Coumbarides et al., 2006[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4032-o4034.]). With R1 = 4-(Cl)C6H4, the reaction shown in that report yielded the antisyn and synsyn diastereomers in 38 and 39% yields, respectively. The title compound, (I)[link], is the antisyn diastereomer (Fig. 1[link]). In the crystal structure, the conformation of the mol­ecule is essentially indistinguishable from that of the (4-methyl­phen­yl)propionyl derivative (Chavda et al., 2006[Chavda, S., Eames, J., Flynn, A., Motevalli, M. & Malatesti, N. (2006). Acta Cryst. E62, o4027-o4038.]).

[Scheme 1]

The crystal structure of (I)[link] is closely related to that of the (4-methyl­phen­yl)propionyl derivative. The two structures contain essentially identical two-dimensional layers, lying in the (010) planes for (I)[link] and in the (100) planes for the methyl derivative (Fig. 2[link]). In the methyl derivative, adjacent layers are related by translation along a, bringing the methyl groups of the 4-(CH3)C6H4 substituent into the vicinity of O2 [H20B⋯O2 = 2.71 Å]. In (I)[link], adjacent layers are related by 21 screw axes, and Cl1 forms its shortest inter­molecular contacts between layers to the methyl group C19 [H19B⋯Cl1i = 3.35 Å; symmetry code: (i) −[{1\over 2}] + x, [{3\over 2}] + y, [{3\over 2}] − z]. Thus, chloro/methyl inter­change (Edwards et al., 2006[Edwards, M. R., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 545-551.]) does not lead to isostructurality in this instance, and this can be attributed to the influence of the different charge distributions of the Cl atom and CH3 group.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.
[Figure 2]
Figure 2
Overlay of the unit-cell contents of (I)[link] (blue) and the (4-methyl­phen­yl)propionyl derivative (red) (Chavda et al., 2006[Chavda, S., Eames, J., Flynn, A., Motevalli, M. & Malatesti, N. (2006). Acta Cryst. E62, o4027-o4038.]), showing essentially identical layers of mol­ecules in the (010) planes of (I) and (100) planes of the methyl derivative.

Experimental

The experimental procedure is comparable with that reported previously (Coumbarides et al., 2006[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4032-o4034.]). The actual quanti­ties used for the preparation of (I)[link] were: n-butyl­lithium (15.81 ml, 2.5 M in hexa­nes, 39.5 mmol) and (R,S)-oxazolidinone (5.00 g, 28.2 mmol) in 60 ml tetrahydrofuran (THF), combined with a solution of (rac)-2-(4-chloro­phen­yl)propanoyl chloride (5.73 g, 28.2 mmol) in 10 ml THF. The crude residue was purified by flash column chromatography on silica gel, eluting with light petroleum (b.p. 313–333 K)/diethyl ether (7:3), to give a separable diastereoisomeric mixture in the approximate ratio antisyn:synsyn 50:50. The antisyn diastereomer was obtained as colourless crystals {3.68 g, 38% yield, m.p. 362–364 K, RF 0.58 [light petroleum (b.p 313–333 K)/diethyl ether, 7:3]}. Spectroscopic analysis: [α]22D = −60.0 (CHCl3, 293 K, concentration 0.60 g per 100 ml); IR (CHCl3, νmax/cm−1): 1779 (C=O), 1713 (C=O); 1H NMR (270 MHz; CDCl3): 7.36–7.20 (9H, m, 9 × CH; Ar and Ph), 5.62 (1H, d, J = 6.4 Hz, CHPh), 5.01 (1H, q, J = 6.9 Hz, ArCH), 4.79 (1H, m, CHN), 1.48 (3H, d, J = 6.9 Hz, CH3CH), 0.86 (3H, d, J = 6.4 Hz, CH3CHN); 13C NMR (100 MHz; CDCl3): δ 173.9 (NC=O), 152.5 (OC=O), 138.9 (i-CCl; Ar), 133.2, 133.1 (2 × i-C; Ar and Ph), 129.5, 128.9, 128.8, 128.7, 125.6 (5 × CH; Ar and Ph), 78.7 (PhCHO), 55.4 (CHN), 42.7 (ArCH), 19.2 (CH3CH), 14.4 (CH3CHN); found: MNH4+ 361.1307; C19H22ClN2O3 requires 361.1313.

Crystal data
  • C19H18ClNO3

  • Mr = 343.79

  • Orthorhombic, P 21 21 21

  • a = 7.105 (3) Å

  • b = 25.662 (12) Å

  • c = 9.580 (8) Å

  • V = 1746.7 (18) Å3

  • Z = 4

  • Dx = 1.307 Mg m−3

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 160 (2) K

  • Prism, colourless

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • ω/2θ scans

  • Absorption correction: none

  • 2316 measured reflections

  • 1794 independent reflections

  • 1083 reflections with I > 2σ(I)

  • Rint = 0.044

  • θmax = 25.0°

  • 2 standard reflections frequency: 60 min intensity decay: 2%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.105

  • S = 1.04

  • 1794 reflections

  • 219 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0394P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

H atoms were placed in geometrically idealised positions and constrained to ride on their parent atoms, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate about their local threefold axes. The absolute configuration could not be established and is assigned on the basis of the known configuration of the starting material (Coumbarides et al., 2006[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4032-o4034.]).

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

(-)-(4R,5S)-3-[2(R)-(4-Chlorophenyl)propionyl]-4-methyl- 5-phenyloxazolidin-2-one top
Crystal data top
C19H18ClNO3F(000) = 720
Mr = 343.79Dx = 1.307 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 7.105 (3) Åθ = 8.2–11.9°
b = 25.662 (12) ŵ = 0.24 mm1
c = 9.580 (8) ÅT = 160 K
V = 1746.7 (18) Å3Prism, colourless
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.044
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.6°
Graphite monochromatorh = 78
ω/2θ scansk = 2930
2316 measured reflectionsl = 911
1794 independent reflections2 standard reflections every 60 min
1083 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0394P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1794 reflectionsΔρmax = 0.21 e Å3
219 parametersΔρmin = 0.22 e Å3
0 restraintsAbsolute structure: assigned on the basis of known starting material
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0521 (7)0.99165 (16)0.6453 (5)0.0297 (11)
H10.16991.00540.60150.036*
C20.1152 (6)0.99826 (18)0.5432 (5)0.0313 (12)
H20.06410.99890.44590.038*
C30.1139 (7)0.9124 (2)0.6137 (6)0.0431 (15)
C40.0255 (7)1.01583 (19)0.7868 (5)0.0392 (14)
H4A0.09331.00360.82730.059*
H4B0.02211.05390.77770.059*
H4C0.13021.00580.84780.059*
C50.2390 (7)1.04543 (19)0.5625 (5)0.0316 (12)
C60.1982 (7)1.0901 (2)0.4914 (5)0.0438 (14)
H60.09431.09080.42910.053*
C70.3074 (9)1.1346 (2)0.5092 (7)0.0571 (17)
H70.27671.16570.46020.069*
C80.4585 (9)1.1337 (2)0.5972 (6)0.0546 (17)
H80.53311.16410.60940.065*
C90.5026 (7)1.0886 (2)0.6681 (5)0.0504 (15)
H90.60701.08820.73000.061*
C100.3963 (7)1.0440 (2)0.6502 (5)0.0399 (13)
H100.42981.01270.69690.048*
C110.2150 (7)0.9084 (2)0.7053 (5)0.0382 (13)
C120.2189 (7)0.84953 (18)0.6971 (5)0.0371 (13)
H120.09130.83610.72220.045*
C130.2654 (7)0.83165 (18)0.5505 (5)0.0346 (13)
C140.4216 (7)0.85110 (19)0.4812 (5)0.0389 (13)
H140.49480.87770.52400.047*
C150.4732 (8)0.83257 (19)0.3506 (5)0.0438 (14)
H150.57810.84700.30290.053*
C160.3700 (9)0.79294 (19)0.2913 (5)0.0459 (15)
C170.2146 (9)0.7732 (2)0.3574 (6)0.0539 (17)
H170.14340.74620.31480.065*
C180.1616 (9)0.7925 (2)0.4861 (6)0.0513 (16)
H180.05300.77890.53110.062*
C190.3609 (8)0.8280 (2)0.8017 (5)0.0443 (14)
H19A0.48770.83960.77600.066*
H19B0.35600.78980.80090.066*
H19C0.33020.84070.89540.066*
Cl10.4415 (3)0.76689 (5)0.13160 (15)0.0697 (6)
N10.0589 (6)0.93434 (14)0.6506 (4)0.0346 (10)
O10.2233 (5)0.95084 (13)0.5604 (4)0.0455 (10)
O20.1685 (5)0.86858 (14)0.6235 (5)0.0629 (13)
O30.3457 (5)0.93430 (12)0.7494 (4)0.0425 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.021 (3)0.032 (3)0.036 (3)0.000 (2)0.003 (3)0.007 (2)
C20.026 (3)0.038 (3)0.030 (3)0.003 (2)0.001 (2)0.000 (2)
C30.033 (3)0.034 (3)0.063 (4)0.002 (3)0.019 (3)0.009 (3)
C40.030 (3)0.052 (3)0.036 (3)0.008 (3)0.006 (3)0.002 (3)
C50.026 (3)0.040 (3)0.029 (3)0.009 (2)0.001 (3)0.004 (2)
C60.031 (3)0.048 (3)0.053 (4)0.003 (3)0.008 (3)0.010 (3)
C70.047 (4)0.052 (4)0.072 (4)0.014 (3)0.008 (4)0.007 (3)
C80.044 (4)0.056 (4)0.064 (4)0.023 (3)0.005 (4)0.001 (3)
C90.029 (3)0.072 (4)0.050 (4)0.010 (3)0.008 (3)0.003 (3)
C100.034 (3)0.046 (3)0.040 (3)0.003 (3)0.003 (3)0.010 (3)
C110.032 (3)0.041 (3)0.041 (3)0.002 (3)0.001 (3)0.006 (3)
C120.028 (3)0.033 (3)0.050 (3)0.002 (2)0.008 (3)0.008 (3)
C130.029 (3)0.031 (3)0.044 (3)0.005 (2)0.013 (3)0.007 (2)
C140.034 (3)0.034 (3)0.049 (3)0.008 (3)0.011 (3)0.005 (3)
C150.040 (3)0.044 (3)0.046 (3)0.002 (3)0.011 (3)0.004 (3)
C160.069 (4)0.024 (3)0.045 (3)0.004 (3)0.021 (4)0.006 (3)
C170.073 (5)0.033 (3)0.055 (4)0.018 (3)0.028 (4)0.004 (3)
C180.052 (4)0.046 (3)0.056 (4)0.016 (3)0.017 (3)0.012 (3)
C190.041 (3)0.048 (3)0.044 (3)0.003 (3)0.010 (3)0.012 (3)
Cl10.1206 (16)0.0473 (9)0.0412 (8)0.0003 (10)0.0178 (11)0.0029 (7)
N10.022 (2)0.038 (2)0.044 (3)0.000 (2)0.009 (2)0.006 (2)
O10.034 (2)0.036 (2)0.067 (3)0.0029 (18)0.023 (2)0.0009 (19)
O20.036 (2)0.039 (2)0.114 (4)0.0045 (19)0.028 (3)0.004 (2)
O30.026 (2)0.040 (2)0.061 (2)0.0048 (17)0.012 (2)0.0033 (18)
Geometric parameters (Å, º) top
C1—N11.472 (5)C9—H90.950
C1—C41.503 (6)C10—H100.950
C1—C21.548 (6)C11—O31.217 (6)
C1—H11.000C11—N11.396 (6)
C2—O11.449 (5)C11—C121.513 (7)
C2—C51.508 (6)C12—C131.514 (7)
C2—H21.000C12—C191.526 (6)
C3—O21.194 (6)C12—H121.000
C3—O11.355 (6)C13—C141.387 (7)
C3—N11.396 (6)C13—C181.391 (7)
C4—H4A0.980C14—C151.388 (6)
C4—H4B0.980C14—H140.950
C4—H4C0.980C15—C161.377 (7)
C5—C61.364 (7)C15—H150.950
C5—C101.399 (7)C16—C171.370 (8)
C6—C71.392 (7)C16—Cl11.745 (6)
C6—H60.950C17—C181.381 (8)
C7—C81.365 (8)C17—H170.950
C7—H70.950C18—H180.950
C8—C91.378 (7)C19—H19A0.980
C8—H80.950C19—H19B0.980
C9—C101.383 (7)C19—H19C0.980
N1—C1—C4112.7 (4)C5—C10—H10120.4
N1—C1—C299.0 (4)O3—C11—N1118.4 (5)
C4—C1—C2115.3 (4)O3—C11—C12123.3 (5)
N1—C1—H1109.8N1—C11—C12118.1 (5)
C4—C1—H1109.8C13—C12—C11110.8 (4)
C2—C1—H1109.8C13—C12—C19110.8 (4)
O1—C2—C5110.5 (4)C11—C12—C19109.9 (4)
O1—C2—C1104.1 (3)C13—C12—H12108.4
C5—C2—C1117.3 (4)C11—C12—H12108.4
O1—C2—H2108.2C19—C12—H12108.4
C5—C2—H2108.2C14—C13—C18118.2 (5)
C1—C2—H2108.2C14—C13—C12120.6 (5)
O2—C3—O1121.9 (5)C18—C13—C12121.0 (5)
O2—C3—N1130.2 (5)C13—C14—C15121.3 (5)
O1—C3—N1107.9 (4)C13—C14—H14119.3
C1—C4—H4A109.5C15—C14—H14119.3
C1—C4—H4B109.5C16—C15—C14119.0 (5)
H4A—C4—H4B109.5C16—C15—H15120.5
C1—C4—H4C109.5C14—C15—H15120.5
H4A—C4—H4C109.5C17—C16—C15120.7 (5)
H4B—C4—H4C109.5C17—C16—Cl1119.9 (4)
C6—C5—C10119.5 (5)C15—C16—Cl1119.4 (5)
C6—C5—C2119.3 (5)C16—C17—C18120.0 (5)
C10—C5—C2121.2 (4)C16—C17—H17120.0
C5—C6—C7120.7 (5)C18—C17—H17120.0
C5—C6—H6119.7C17—C18—C13120.7 (6)
C7—C6—H6119.7C17—C18—H18119.6
C8—C7—C6120.0 (6)C13—C18—H18119.6
C8—C7—H7120.0C12—C19—H19A109.5
C6—C7—H7120.0C12—C19—H19B109.5
C7—C8—C9119.8 (5)H19A—C19—H19B109.5
C7—C8—H8120.1C12—C19—H19C109.5
C9—C8—H8120.1H19A—C19—H19C109.5
C8—C9—C10120.7 (5)H19B—C19—H19C109.5
C8—C9—H9119.7C11—N1—C3127.0 (4)
C10—C9—H9119.7C11—N1—C1121.0 (4)
C9—C10—C5119.3 (5)C3—N1—C1111.4 (4)
C9—C10—H10120.4C3—O1—C2110.4 (4)
N1—C1—C2—O125.6 (4)C12—C13—C14—C15175.7 (5)
C4—C1—C2—O194.8 (5)C13—C14—C15—C162.1 (7)
N1—C1—C2—C5148.1 (4)C14—C15—C16—C172.3 (8)
C4—C1—C2—C527.7 (6)C14—C15—C16—Cl1176.4 (4)
O1—C2—C5—C6149.4 (4)C15—C16—C17—C181.0 (8)
C1—C2—C5—C691.5 (6)Cl1—C16—C17—C18177.7 (4)
O1—C2—C5—C1029.6 (6)C16—C17—C18—C130.6 (8)
C1—C2—C5—C1089.5 (5)C14—C13—C18—C170.8 (8)
C10—C5—C6—C72.4 (8)C12—C13—C18—C17174.3 (5)
C2—C5—C6—C7178.6 (5)O3—C11—N1—C3170.2 (5)
C5—C6—C7—C80.9 (9)C12—C11—N1—C314.2 (8)
C6—C7—C8—C90.0 (9)O3—C11—N1—C10.4 (7)
C7—C8—C9—C100.7 (8)C12—C11—N1—C1175.3 (4)
C8—C9—C10—C52.2 (8)O2—C3—N1—C112.3 (10)
C6—C5—C10—C93.0 (7)O1—C3—N1—C11177.8 (4)
C2—C5—C10—C9178.0 (4)O2—C3—N1—C1169.0 (6)
O3—C11—C12—C1399.3 (6)O1—C3—N1—C110.9 (6)
N1—C11—C12—C1376.1 (6)C4—C1—N1—C1172.3 (6)
O3—C11—C12—C1923.4 (7)C2—C1—N1—C11165.3 (4)
N1—C11—C12—C19161.1 (4)C4—C1—N1—C399.6 (5)
C11—C12—C13—C1451.5 (6)C2—C1—N1—C322.8 (5)
C19—C12—C13—C1470.7 (6)O2—C3—O1—C2172.4 (5)
C11—C12—C13—C18133.5 (5)N1—C3—O1—C27.7 (6)
C19—C12—C13—C18104.3 (6)C5—C2—O1—C3148.7 (4)
C18—C13—C14—C150.5 (7)C1—C2—O1—C321.9 (5)
 

Acknowledgements

We are grateful to the Royal Society and the University of London Central Research Fund for their financial support to JE, and the EPSRC National Mass Spectrometry Service (Swansea) for accurate mass determination.

References

First citationChavda, S., Eames, J., Flynn, A., Motevalli, M. & Malatesti, N. (2006). Acta Cryst. E62, o4027–o4038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCoumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4032–o4034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEdwards, M. R., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 545–551.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4-PC Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds