organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(+)-(4R,5S)-3-[2(S)-(4-Iso­butyl­phen­yl)propion­yl]- 4-methyl-5-phenyl­oxazolidin-2-one

aDepartment of Chemistry, Queen Mary, University of London, Mile End Road, London E1 4NS, England, bDepartment of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England, and cDepartment of Chemistry, J. J. Strossmayer University of Osijek, Trg Sv. Trojstva 3, Osijek 31000, Croatia
*Correspondence e-mail: j.eames@hull.ac.uk

(Received 27 June 2006; accepted 12 August 2006; online 23 August 2006)

In the title compound, C23H27NO3, formed from enanti­omerically pure (+)-(4R,5S)-4-methyl-5-phenyl-2-oxazolidinone and racemic 2-(4-isobutyl­phen­yl)propanoyl chloride, the two carbonyl groups are oriented anti to each other, and the methyl group of the (4-isobutyl­phen­yl)propionyl substituent lies close to the mean plane of the five-membered ring.

Comment

The title compound, (I)[link], is the second in a series of structurally related compounds, introduced in our previous report (Coumbarides et al., 2006[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4032-o4034.]). With R1 = 4-(iBu)C6H4, the reaction shown in that report yielded the antisyn and synsyn diastereomers in 34 and 32% yields, respectively. The title compound, (I)[link], is the synsyn diastereomer (Fig. 1[link]). In the crystal structure, the conformation of the central portion of the mol­ecule is closely comparable with that in the phenyl derivative (Coumbarides et al., 2006[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4032-o4034.]). The conformation of the five-membered ring is similar, with atoms C1 and C2 lying respectively 0.170 (6) Å above and 0.298 (6) Å below the plane defined by atoms O1, O2, N1 and C3. The carbonyl groups (C3=O2 and C11=O3) are oriented anti to each other, with the torsion angle O3—C11—N1—C3 = −179.7 (4)°. The principal difference between the conformations of (I)[link][link] and the phenyl derivative lies in the orientation of the (4-isobutyl­phen­yl)propionyl substituent with respect to the remainder of the mol­ecule: in (I)[link], the torsion angle N1—C11—C12—C13 = −90.2 (4)° compared with −166.97 (16)° for the comparable measurement in the phenyl derivative. Thus, the C19 methyl group lies closer to the plane of the five-membered ring in (I)[link], in contrast with the anti arrangement observed for the C4 and C19 methyl groups in the phenyl derivative.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.

Experimental

The experimental procedure is comparable with that reported previously (Coumbarides et al., 2006[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4032-o4034.]). The actual quanti­ties used for preparation of (I)[link] were: n-butyl­lithium (0.22 ml, 2.5 M in hexa­nes, 0.56 mmol) and (R,S)-oxazolidinone (0.1 g, 0.56 mmol) in 10 ml tetrahydrofuran (THF), combined with a solution of (rac)-2-(4-isobutyl­phen­yl)propanoyl chloride (0.125 g, 0.56 mmol) in 1 ml THF. The crude residue was purified by flash column chromatography on silica gel, eluting with light petroleum (b.p. 313–333 K)/diethyl ether (1:1) to give a separable diastereoisomeric mixture (in the ratio anti–syn:synsyn 54:46). The synsyn diastereomer was obtained as colourless crystals {67 mg, 32% yield, m.p. 394–396 K, RF 0.55 [light petroleum (b.p 313–333 K)/diethyl ether, 1:1]}. Spectroscopic analysis: [α]25D = +98.1 (CHCl3, 293 K, concentration 1.3 g per 100 ml); IR (CHCl3, νmax, cm−1): 1770 (C=O), 1699 (C=O); 1H NMR (250 MHz; CDCl3): δ 7.38–7.16 (7H, m, 7 × CH; Ar and Ph), 7.08 (2H, d, J = 8.2 Hz, 2 × CH; Ar), 5.63 (1H, d, J = 7.4 Hz, CHO), 5.05 (1H, q, J = 7.1 Hz, ArCH), 4.81 (1H, m, CHN), 2.43 (2H, d, J = 7.2 Hz, CH2), 1.89–1.79 (1H, m, CH(CH3)2)), 1.48 (3H, d, J = 7.1 Hz, CH3CHAr), 0.88 (3H, d, J = 6.7 Hz, CH3aCHCH3b), 0.87 (3H, d, J = 6.7 Hz, CH3aCHCH3b), 0.72 (3H, d, J = 6.7 Hz, CH3CHN); 13C NMR (100.6 MHz; CDCl3): δ 174.6 (NC=O), 152.6 (OC=O), 140.5 (i-C; Ar), 137.5 (i-C; Ar), 133.6 (i-C; Ph), 129.3, 127.7 (2 × CH; Ar), 129.1, 128.7 and 125.8 (3 × CH; Ph), 78.8 (OCHPh), 54.7 (CHN), 45.1 [CH(CH3)2], 42.2 (ArCH), 30.1 (CH2), 22.5 (CH3aCHCH3b; isobutyl­phen­yl), 19.4 (CH3CH), 14.2 (CH3CHN); found: M 365.1986; C23H27NO3 requires 365.1985.

Crystal data
  • C23H27NO3

  • Mr = 365.46

  • Orthorhombic, P 21 21 21

  • a = 7.194 (4) Å

  • b = 14.208 (8) Å

  • c = 20.049 (11) Å

  • V = 2049 (2) Å3

  • Z = 4

  • Dx = 1.185 Mg m−3

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 160 (2) K

  • Block, colourless

  • 0.63 × 0.38 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • ω/2θ scans

  • Absorption correction: none

  • 2141 measured reflections

  • 2079 independent reflections

  • 1340 reflections with I > 2σ(I)

  • Rint = 0.004

  • θmax = 25.0°

  • 2 standard reflections frequency: 60 min intensity decay: 1%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.101

  • S = 1.00

  • 2079 reflections

  • 248 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0466P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

H atoms were placed in geometrically idealised positions and constrained to ride on their parent atoms, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate about their local threefold axes. In the absence of significant anomalous scattering effects, Friedel pairs have been merged. The absolute configuration is assigned on the basis of the known configuration of the starting material (Coumbarides et al., 2006[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4032-o4034.]).

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

(+)-(4R,5S)-3-[2(S)-(4-Isobutylphenyl)propionyl]- 4-methyl-5-phenyloxazolidin-2-one top
Crystal data top
C23H27NO3F(000) = 784
Mr = 365.46Dx = 1.185 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 7.194 (4) Åθ = 10.0–12.3°
b = 14.208 (8) ŵ = 0.08 mm1
c = 20.049 (11) ÅT = 160 K
V = 2049 (2) Å3Block, colourless
Z = 40.63 × 0.38 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.004
Radiation source: Enraf Nonius FR590θmax = 25.0°, θmin = 1.8°
Graphite monochromatorh = 08
ω/2θ scansk = 016
2141 measured reflectionsl = 023
2079 independent reflections2 standard reflections every 60 min
1340 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0466P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2079 reflectionsΔρmax = 0.18 e Å3
248 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: assigned on the basis of known starting material
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

0.2684 (0.0131) x + 8.7530 (0.0193) y + 15.7745 (0.0224) z = 7.3649 (0.0082)

* 0.0000 (0.0010) O1 * 0.0000 (0.0013) O2 * 0.0000 (0.0010) N1 * 0.0001 (0.0033) C3 0.1698 (0.0055) C1 - 0.2981 (0.0059) C2 - 1.3428 (0.0082) C19

Rms deviation of fitted atoms = 0.0001

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2227 (5)0.2446 (2)0.33816 (18)0.0277 (9)
H10.12360.23790.30350.033*
C20.2850 (5)0.1467 (2)0.36175 (18)0.0289 (9)
H20.26350.10070.32480.035*
C30.5476 (6)0.2262 (3)0.3321 (2)0.0339 (10)
C40.1573 (5)0.3102 (3)0.39234 (18)0.0363 (10)
H4A0.24700.30990.42910.054*
H4B0.03580.28940.40870.054*
H4C0.14650.37420.37440.054*
C50.1927 (5)0.1101 (3)0.42366 (18)0.0296 (9)
C60.2798 (6)0.1061 (3)0.48455 (17)0.0426 (11)
H60.40490.12660.48870.051*
C70.1862 (7)0.0723 (3)0.5399 (2)0.0517 (13)
H70.24680.07050.58200.062*
C80.0071 (6)0.0417 (3)0.5342 (2)0.0450 (12)
H80.05660.01790.57210.054*
C90.0809 (6)0.0453 (3)0.4732 (2)0.0446 (11)
H90.20620.02500.46920.053*
C100.0126 (6)0.0783 (3)0.4181 (2)0.0373 (11)
H100.04760.07920.37590.045*
C110.3942 (5)0.3446 (2)0.25742 (16)0.0267 (8)
C120.5717 (5)0.3735 (3)0.22302 (17)0.0286 (9)
H120.65900.31870.22290.034*
C130.6625 (5)0.4547 (2)0.25974 (18)0.0260 (9)
C140.5624 (5)0.5283 (3)0.28743 (17)0.0286 (9)
H140.43050.52630.28660.034*
C150.6509 (5)0.6051 (3)0.31640 (18)0.0322 (9)
H150.57860.65390.33580.039*
C160.8434 (5)0.6115 (3)0.31736 (17)0.0308 (9)
C170.9411 (5)0.5378 (3)0.28901 (19)0.0362 (10)
H171.07300.54020.28880.043*
C180.8537 (5)0.4608 (3)0.26105 (18)0.0329 (9)
H180.92620.41150.24250.039*
C190.5285 (6)0.4009 (3)0.15034 (17)0.0415 (10)
H19A0.47100.34730.12740.062*
H19B0.64410.41810.12760.062*
H19C0.44290.45450.14980.062*
C200.9382 (6)0.6947 (3)0.34867 (18)0.0409 (11)
H20A0.87160.75260.33520.049*
H20B1.06640.69890.33100.049*
C210.9471 (6)0.6910 (3)0.4245 (2)0.0435 (11)
H210.81880.67850.44150.052*
C221.0109 (7)0.7844 (3)0.4524 (2)0.0663 (15)
H22A1.00570.78250.50120.099*
H22B0.92950.83460.43590.099*
H22C1.13890.79670.43800.099*
C231.0722 (7)0.6124 (3)0.4485 (2)0.0656 (15)
H23A1.20000.62460.43400.098*
H23B1.02970.55250.42970.098*
H23C1.06780.60920.49730.098*
N10.3962 (4)0.27652 (19)0.30671 (13)0.0269 (7)
O10.4839 (3)0.15713 (18)0.37146 (13)0.0376 (7)
O20.7093 (4)0.2401 (2)0.32159 (15)0.0477 (8)
O30.2465 (4)0.38040 (17)0.24285 (12)0.0381 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0224 (19)0.032 (2)0.0284 (19)0.0008 (18)0.0002 (17)0.0020 (17)
C20.027 (2)0.032 (2)0.027 (2)0.0007 (17)0.0009 (18)0.0006 (17)
C30.034 (3)0.033 (2)0.035 (2)0.002 (2)0.0005 (19)0.003 (2)
C40.036 (2)0.032 (2)0.041 (2)0.0037 (19)0.010 (2)0.0010 (18)
C50.036 (2)0.026 (2)0.027 (2)0.0018 (19)0.0077 (18)0.0020 (18)
C60.037 (2)0.059 (3)0.032 (2)0.005 (2)0.003 (2)0.003 (2)
C70.056 (3)0.067 (3)0.032 (2)0.007 (3)0.006 (2)0.009 (2)
C80.051 (3)0.050 (3)0.033 (2)0.008 (3)0.010 (2)0.007 (2)
C90.042 (3)0.048 (3)0.044 (2)0.007 (2)0.004 (2)0.003 (2)
C100.039 (3)0.046 (3)0.027 (2)0.005 (2)0.003 (2)0.0012 (19)
C110.029 (2)0.0208 (17)0.030 (2)0.0013 (18)0.0017 (19)0.0009 (17)
C120.023 (2)0.030 (2)0.033 (2)0.0011 (17)0.0050 (17)0.0012 (17)
C130.021 (2)0.030 (2)0.027 (2)0.0019 (17)0.0012 (17)0.0052 (19)
C140.021 (2)0.036 (2)0.029 (2)0.0017 (19)0.0005 (17)0.0073 (19)
C150.034 (2)0.033 (2)0.029 (2)0.009 (2)0.0019 (19)0.001 (2)
C160.031 (2)0.036 (2)0.025 (2)0.001 (2)0.0042 (18)0.007 (2)
C170.023 (2)0.041 (2)0.045 (3)0.003 (2)0.0041 (19)0.005 (2)
C180.023 (2)0.039 (2)0.037 (2)0.0060 (19)0.0014 (19)0.001 (2)
C190.046 (2)0.046 (2)0.032 (2)0.015 (2)0.003 (2)0.002 (2)
C200.040 (3)0.040 (2)0.043 (2)0.006 (2)0.011 (2)0.004 (2)
C210.036 (2)0.056 (3)0.038 (2)0.001 (2)0.007 (2)0.012 (2)
C220.061 (3)0.066 (3)0.072 (3)0.007 (3)0.025 (3)0.032 (3)
C230.084 (4)0.060 (3)0.053 (3)0.002 (3)0.032 (3)0.005 (3)
N10.0198 (16)0.0300 (17)0.0310 (16)0.0022 (14)0.0008 (15)0.0051 (14)
O10.0325 (17)0.0388 (15)0.0414 (16)0.0045 (13)0.0004 (13)0.0083 (14)
O20.0227 (16)0.061 (2)0.0593 (19)0.0015 (14)0.0004 (15)0.0207 (16)
O30.0244 (14)0.0374 (14)0.0524 (17)0.0030 (14)0.0007 (14)0.0149 (14)
Geometric parameters (Å, º) top
C1—N11.470 (4)C12—C191.540 (5)
C1—C41.507 (5)C12—H121.000
C1—C21.536 (5)C13—C181.378 (5)
C1—H11.000C13—C141.386 (5)
C2—O11.452 (4)C14—C151.390 (5)
C2—C51.500 (5)C14—H140.950
C2—H21.000C15—C161.388 (5)
C3—O21.198 (4)C15—H150.950
C3—O11.340 (4)C16—C171.383 (5)
C3—N11.399 (5)C16—C201.502 (5)
C4—H4A0.980C17—C181.380 (5)
C4—H4B0.980C17—H170.950
C4—H4C0.980C18—H180.950
C5—C61.373 (5)C19—H19A0.980
C5—C101.377 (5)C19—H19B0.980
C6—C71.384 (5)C19—H19C0.980
C6—H60.950C20—C211.522 (5)
C7—C81.365 (6)C20—H20A0.990
C7—H70.950C20—H20B0.990
C8—C91.377 (5)C21—C221.512 (6)
C8—H80.950C21—C231.513 (6)
C9—C101.376 (5)C21—H211.000
C9—H90.950C22—H22A0.980
C10—H100.950C22—H22B0.980
C11—O31.214 (4)C22—H22C0.980
C11—N11.383 (4)C23—H23A0.980
C11—C121.508 (5)C23—H23B0.980
C12—C131.517 (5)C23—H23C0.980
N1—C1—C4112.5 (3)C14—C13—C12123.0 (3)
N1—C1—C299.5 (3)C13—C14—C15121.5 (3)
C4—C1—C2115.5 (3)C13—C14—H14119.3
N1—C1—H1109.7C15—C14—H14119.3
C4—C1—H1109.7C16—C15—C14120.9 (4)
C2—C1—H1109.7C16—C15—H15119.5
O1—C2—C5111.1 (3)C14—C15—H15119.5
O1—C2—C1103.6 (3)C17—C16—C15116.9 (4)
C5—C2—C1116.1 (3)C17—C16—C20122.5 (3)
O1—C2—H2108.6C15—C16—C20120.7 (4)
C5—C2—H2108.6C18—C17—C16122.3 (4)
C1—C2—H2108.6C18—C17—H17118.8
O2—C3—O1123.8 (4)C16—C17—H17118.8
O2—C3—N1127.4 (4)C13—C18—C17120.8 (4)
O1—C3—N1108.8 (3)C13—C18—H18119.6
C1—C4—H4A109.5C17—C18—H18119.6
C1—C4—H4B109.5C12—C19—H19A109.5
H4A—C4—H4B109.5C12—C19—H19B109.5
C1—C4—H4C109.5H19A—C19—H19B109.5
H4A—C4—H4C109.5C12—C19—H19C109.5
H4B—C4—H4C109.5H19A—C19—H19C109.5
C6—C5—C10119.2 (4)H19B—C19—H19C109.5
C6—C5—C2123.2 (3)C16—C20—C21114.2 (3)
C10—C5—C2117.6 (4)C16—C20—H20A108.7
C5—C6—C7120.4 (4)C21—C20—H20A108.7
C5—C6—H6119.8C16—C20—H20B108.7
C7—C6—H6119.8C21—C20—H20B108.7
C8—C7—C6120.1 (4)H20A—C20—H20B107.6
C8—C7—H7119.9C22—C21—C23110.5 (3)
C6—C7—H7119.9C22—C21—C20110.6 (4)
C7—C8—C9119.8 (4)C23—C21—C20111.6 (3)
C7—C8—H8120.1C22—C21—H21108.0
C9—C8—H8120.1C23—C21—H21108.0
C10—C9—C8120.1 (4)C20—C21—H21108.0
C10—C9—H9120.0C21—C22—H22A109.5
C8—C9—H9120.0C21—C22—H22B109.5
C9—C10—C5120.4 (4)H22A—C22—H22B109.5
C9—C10—H10119.8C21—C22—H22C109.5
C5—C10—H10119.8H22A—C22—H22C109.5
O3—C11—N1118.3 (3)H22B—C22—H22C109.5
O3—C11—C12121.1 (3)C21—C23—H23A109.5
N1—C11—C12120.6 (3)C21—C23—H23B109.5
C11—C12—C13110.5 (3)H23A—C23—H23B109.5
C11—C12—C19109.3 (3)C21—C23—H23C109.5
C13—C12—C19110.7 (3)H23A—C23—H23C109.5
C11—C12—H12108.7H23B—C23—H23C109.5
C13—C12—H12108.7C11—N1—C3128.7 (3)
C19—C12—H12108.7C11—N1—C1120.9 (3)
C18—C13—C14117.6 (4)C3—N1—C1110.3 (3)
C18—C13—C12119.2 (3)C3—O1—C2109.5 (3)
N1—C1—C2—O127.6 (3)C14—C15—C16—C170.7 (6)
C4—C1—C2—O193.0 (4)C14—C15—C16—C20179.9 (3)
N1—C1—C2—C5149.7 (3)C15—C16—C17—C180.2 (6)
C4—C1—C2—C529.1 (5)C20—C16—C17—C18179.1 (3)
O1—C2—C5—C612.4 (5)C14—C13—C18—C170.0 (6)
C1—C2—C5—C6105.7 (4)C12—C13—C18—C17174.4 (3)
O1—C2—C5—C10166.9 (3)C16—C17—C18—C130.6 (6)
C1—C2—C5—C1075.0 (4)C17—C16—C20—C21100.7 (4)
C10—C5—C6—C71.3 (6)C15—C16—C20—C2178.6 (5)
C2—C5—C6—C7179.4 (4)C16—C20—C21—C22169.4 (4)
C5—C6—C7—C80.8 (7)C16—C20—C21—C2367.2 (5)
C6—C7—C8—C90.6 (7)O3—C11—N1—C3179.6 (3)
C7—C8—C9—C101.1 (6)C12—C11—N1—C30.2 (5)
C8—C9—C10—C51.6 (6)O3—C11—N1—C13.3 (5)
C6—C5—C10—C91.8 (6)C12—C11—N1—C1176.9 (3)
C2—C5—C10—C9179.0 (4)O2—C3—N1—C119.7 (6)
O3—C11—C12—C1389.6 (4)O1—C3—N1—C11170.3 (3)
N1—C11—C12—C1390.2 (4)O2—C3—N1—C1172.9 (4)
O3—C11—C12—C1932.5 (4)O1—C3—N1—C17.1 (4)
N1—C11—C12—C19147.7 (3)C4—C1—N1—C1181.4 (4)
C11—C12—C13—C18146.6 (4)C2—C1—N1—C11155.8 (3)
C19—C12—C13—C1892.1 (4)C4—C1—N1—C3101.0 (4)
C11—C12—C13—C1439.3 (5)C2—C1—N1—C321.8 (3)
C19—C12—C13—C1482.0 (4)O2—C3—O1—C2167.4 (4)
C18—C13—C14—C150.9 (6)N1—C3—O1—C212.6 (4)
C12—C13—C14—C15175.1 (3)C5—C2—O1—C3151.4 (3)
C13—C14—C15—C161.3 (6)C1—C2—O1—C326.0 (4)
 

Acknowledgements

We are grateful to Onyx Scientific Limited (Drs Tony Flinn and Julian Northen) and Queen Mary, University of London for a studentship to MD, the Royal Society and the University of London Central Research Fund for financial support to JE, and the EPSRC National Mass Spectrometry Service (Swansea) for accurate mass determination.

References

First citationCoumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4032–o4034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds