organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(–)-(4R,5S)-4-Methyl-3-[2(S)-phen­oxy­propion­yl]-5-phenyl­oxazolidin-2-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Queen Mary, University of London, Mile End Road, London E1 4NS, England, bDepartment of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England, and cDepartment of Chemistry, J. J. Strossmayer University of Osijek, Trg Sv. Trojstva 3, Osijek 31000, Croatia
*Correspondence e-mail: j.eames@hull.ac.uk

(Received 27 June 2006; accepted 12 August 2006; online 23 August 2006)

The title compound, C19H19NO4, formed from enanti­o­merically pure (+)-(4R,5S)-4-methyl-5-phenyl-2-oxazolidin­one and racemic 2-phenoxy­propanoyl chloride, crystallises with Z′ = 2. The two carbonyl groups in each mol­ecule are oriented anti to each other, while the two methyl groups are oriented syn to each other.

Comment

The title compound, (I)[link], is the sixth in a series of structurally related compounds, introduced in our earlier report (Coumbarides, Eames et al., 2006a[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006a). Acta Cryst. E62, o4032-o4034.]). With R1 = C6H5O, the reaction shown in that report yielded the antisyn and synsyn diastereomers in 44 and 45% yields, respectively. The synsyn diastereomer was described previously (Coumbarides, Eames et al., 2006b[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006b). Acta Cryst. E62, o4041-o4042.]). The title compound, (I)[link], is the antisyn diastereomer.

[Scheme 1]

Compound (I)[link] contains two mol­ecules in the asymmetric unit in the space group P21, displaying closely comparable conformations (Fig. 1[link]). In line with our previous reports (Coumbarides, Eames et al., 2006a[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006a). Acta Cryst. E62, o4032-o4034.],b[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006b). Acta Cryst. E62, o4041-o4042.]; Coumbarides, Dingjan et al., 2006[Coumbarides, G. S., Dingjan, M., Eames, J., Motevalli, M. & Malatesti, N. (2006). Acta Cryst. E62, o4035-o4036.]; Chavda et al., 2006a[Chavda, S., Eames, J., Flinn, A., Motevalli, M. & Malatesti, N. (2006a). Acta Cryst. E62, o4037-o4038.],b[Chavda, S., Eames, J., Flinn, A., Motevalli, M. & Malatesti, N. (2006b). Acta Cryst. E62, o4039-o4041.]), the carbonyl groups (C3A=O2A/C11A=O3A and C3B=O2B/C11B=O3B) are oriented anti to each other, with torsion angles O3—C11—N1—C3 = 176.5 (2) and 175.9 (2)° for mol­ecules A and B, respectively. The two methyl groups (C4A/C19A and C4B/C19B) lie to the same side of the mol­ecule. The principal distinction between the two independent mol­ecules of (I)[link] lies in the orientations of the phenoxy­propionyl substituent with respect to the central portion of the mol­ecule, with torsion angles O3—C11—C12—O4 = −25.6 (3) and −14.6 (3)° for mol­ecules A and B, respectively. This subtle difference can be attributed to the influence of inter­molecular inter­actions in the solid state. As observed in the phenyl­propionyl derivative (Coumbarides, Eames et al., 2006a[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006a). Acta Cryst. E62, o4032-o4034.]), adjacent mol­ecules approach each other in a `side-on' manner (Fig. 2[link]), and the shortest inter­molecular contacts are C—H⋯O inter­actions (Table 1[link]).

[Figure 1]
Figure 1
Two mol­ecules in the asymmetric unit of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.
[Figure 2]
Figure 2
The crystal packing of (I)[link] viewed along the b axis. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.

Experimental

The title compound was obtained from the same synthesis as the synsyn diastereomer, as reported previously (Coumbarides, Eames et al., 2006b[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006b). Acta Cryst. E62, o4041-o4042.]). The antisyn diastereomer, (I)[link], was obtained as colourless crystals {4.03 g, 44% yield, m.p. 362–365 K, RF 0.61 [light petroleum (b.p 313–333 K)/diethyl ether, 1:1]}. Spectroscopic analysis: [α]22D = −35.5 (CHCl3, 293 K, concentration 2.0 g per 100 ml); IR (CHCl3, νmax, cm−1): 1776 (C=O), 1714 (C=O); 1H NMR (270 MHz, CDCl3): δ 7.45–7.21 (7H, m, 7 × CH; Pha and Phb), 6.97–6.86 (3H, m, 3 × CH; Pha or Phb), 5.94 (1H, q, J = 6.7 Hz, PhOCH), 5.75 (1H, d, J = 7.4 Hz, PhCHO), 4.81 (1H, m, CHN), 1.66 (3H, d, J = 6.7 Hz, CH3CHCO), 0.89 (3H, d, J = 6.6 Hz, CH3CHN); 13C NMR (67.9 MHz, CDCl3, δ, p.p.m.): 172.0 (NC=O), 157.4 (i-CO; Ph), 152.8 (OC=O), 133.1 (i-C; Ph), 129.7, 129.0, 128.9, 125.7, 121.6, 115.1 (6 × CH; Pha and Phb), 79.8 (PhCHO), 71.8 (PhOCH), 54.7 (CHN), 18.3 (CH3), 14.5 (CH3); found: MH+ 326.1393; C19H20NO4 requires 326.1392.

Crystal data
  • C19H19NO4

  • Mr = 325.35

  • Monoclinic, P 21

  • a = 11.268 (7) Å

  • b = 10.493 (5) Å

  • c = 15.008 (9) Å

  • β = 102.96 (4)°

  • V = 1729.3 (17) Å3

  • Z = 4

  • Dx = 1.250 Mg m−3

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 160 (2) K

  • Block, colourless

  • 0.44 × 0.22 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • ω/2θ scans

  • Absorption correction: none

  • 8490 measured reflections

  • 3223 independent reflections

  • 2662 reflections with I > 2σ(I)

  • Rint = 0.020

  • θmax = 25.0°

  • 2 standard reflections every 100 reflections intensity decay: 2%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.067

  • S = 1.01

  • 3223 reflections

  • 438 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0293P)2 + 0.3025P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0167 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1A—H1A⋯O3B 1.00 2.61 3.373 (3) 133
C1B—H1B⋯O3A 1.00 2.57 3.568 (3) 174
C18A—H18A⋯O4Bi 0.95 2.52 3.445 (4) 165
C18B—H18B⋯O4Aii 0.95 2.69 3.564 (4) 154
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

H atoms were placed in geometrically idealised positions and constrained to ride on their parent atoms, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate about their local threefold axes. In the absence of significant anomalous scattering effects, the few measured Friedel pairs have been merged. The absolute configuration is assigned on the basis of the known configuration of the starting material (Coumbarides, Eames et al., 2006a[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006a). Acta Cryst. E62, o4032-o4034.]).

Data collection: CAD-4-PC Software (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: CAD-4-PC Software (Enraf–Nonius, 1994); cell refinement: CAD-4-PC Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

(-)-(4R,5S)-4-Methyl-3-[2(S)-phenoxypropionyl]- 5-phenyloxazolidin-2-one top
Crystal data top
C19H19NO4F(000) = 688
Mr = 325.35Dx = 1.250 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 11.268 (7) Åθ = 9.3–12.1°
b = 10.493 (5) ŵ = 0.09 mm1
c = 15.008 (9) ÅT = 160 K
β = 102.96 (4)°Block, colourless
V = 1729.3 (17) Å30.44 × 0.22 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.020
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.9°
Graphite monochromatorh = 1313
ω/2θ scansk = 1210
8490 measured reflectionsl = 1717
3223 independent reflections2 standard reflections every 100 reflections
2662 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0293P)2 + 0.3025P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.13 e Å3
3223 reflectionsΔρmin = 0.14 e Å3
438 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0167 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: assigned on the basis of known starting material
Secondary atom site location: difference Fourier map
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.8590 (2)0.7252 (2)0.54614 (16)0.0319 (6)
H1A0.85150.63630.56820.038*
C2A0.7607 (2)0.8113 (2)0.56925 (17)0.0316 (6)
H2A0.74330.78240.62850.038*
C3A0.9406 (2)0.9171 (3)0.61434 (17)0.0331 (6)
C4A0.8647 (3)0.7257 (3)0.44639 (17)0.0457 (7)
H4A0.79370.68060.41040.069*
H4B0.93930.68280.43930.069*
H4C0.86470.81380.42480.069*
C5A0.6427 (2)0.8218 (3)0.49987 (17)0.0335 (6)
C6A0.6187 (3)0.9201 (3)0.43665 (18)0.0418 (7)
H6A0.67860.98330.43520.050*
C7A0.5059 (3)0.9253 (3)0.37521 (19)0.0495 (8)
H7A0.48840.99330.33250.059*
C8A0.4199 (3)0.8328 (3)0.3761 (2)0.0513 (8)
H8A0.34280.83790.33460.062*
C9A0.4449 (3)0.7325 (3)0.4367 (2)0.0499 (8)
H9A0.38620.66720.43570.060*
C10A0.5557 (2)0.7274 (3)0.49909 (17)0.0417 (7)
H10A0.57250.65910.54160.050*
C11A1.0786 (2)0.7267 (3)0.62787 (17)0.0350 (6)
C12A1.1896 (2)0.8077 (3)0.66833 (18)0.0385 (7)
H12A1.16710.87960.70500.046*
C13A1.2699 (2)0.7019 (2)0.81044 (18)0.0356 (6)
C14A1.1665 (2)0.7249 (3)0.84300 (18)0.0357 (6)
H14A1.09640.76170.80440.043*
C15A1.1664 (3)0.6934 (3)0.93299 (19)0.0419 (7)
H15A1.09580.70940.95600.050*
C16A1.2674 (3)0.6392 (3)0.98927 (19)0.0481 (8)
H16A1.26650.61741.05060.058*
C17A1.3694 (3)0.6170 (3)0.9555 (2)0.0509 (8)
H17A1.43930.58000.99410.061*
C18A1.3717 (2)0.6475 (3)0.8669 (2)0.0438 (7)
H18A1.44270.63130.84440.053*
C19A1.2426 (3)0.8579 (4)0.5903 (2)0.0593 (9)
H19A1.31560.90840.61530.089*
H19B1.18210.91140.55010.089*
H19C1.26420.78600.55530.089*
N1A0.96725 (18)0.78883 (19)0.60150 (13)0.0305 (5)
O1A0.82054 (15)0.93517 (17)0.58309 (11)0.0348 (4)
O2A1.00899 (18)1.00028 (19)0.64643 (14)0.0451 (5)
O3A1.08465 (17)0.61293 (19)0.61517 (14)0.0444 (5)
O4A1.28192 (15)0.73015 (19)0.72346 (13)0.0426 (5)
C1B1.0157 (2)0.3999 (2)0.78187 (16)0.0285 (5)
H1B1.02820.45970.73290.034*
C2B1.1357 (2)0.3824 (2)0.85379 (16)0.0271 (5)
H2B1.18610.46110.85470.033*
C3B0.9894 (2)0.4373 (2)0.93148 (16)0.0272 (5)
C4B0.9561 (2)0.2784 (3)0.73972 (18)0.0382 (6)
H4D0.94240.22140.78820.057*
H4E1.00940.23630.70530.057*
H4F0.87800.29870.69840.057*
C5B1.2131 (2)0.2691 (2)0.84494 (16)0.0268 (5)
C6B1.1944 (2)0.1511 (2)0.88184 (17)0.0323 (6)
H6B1.13070.14040.91330.039*
C7B1.2689 (2)0.0491 (3)0.87271 (18)0.0389 (6)
H7B1.25670.03100.89870.047*
C8B1.3605 (3)0.0633 (3)0.82617 (19)0.0416 (7)
H8B1.41090.00720.81970.050*
C9B1.3792 (3)0.1801 (3)0.7888 (2)0.0444 (7)
H9B1.44200.19000.75640.053*
C10B1.3060 (2)0.2825 (3)0.79896 (18)0.0364 (6)
H10B1.31960.36300.77400.044*
C11B0.8321 (2)0.5233 (2)0.79965 (16)0.0274 (5)
C12B0.7449 (2)0.5565 (3)0.86101 (17)0.0311 (6)
H12B0.78970.59790.91880.037*
C13B0.6818 (2)0.7632 (2)0.79734 (16)0.0285 (6)
C14B0.7941 (2)0.8189 (3)0.83231 (17)0.0354 (6)
H14B0.85790.77100.86960.043*
C15B0.8120 (2)0.9456 (3)0.81206 (18)0.0401 (7)
H15B0.88870.98460.83580.048*
C16B0.7199 (2)1.0154 (3)0.75805 (17)0.0393 (7)
H16B0.73301.10190.74430.047*
C17B0.6082 (2)0.9585 (3)0.72391 (18)0.0365 (6)
H17B0.54441.00660.68680.044*
C18B0.5883 (2)0.8326 (3)0.74319 (17)0.0339 (6)
H18B0.51140.79410.71960.041*
C19B0.6798 (2)0.4372 (3)0.88171 (19)0.0416 (7)
H19D0.62530.45890.92190.062*
H19E0.73990.37450.91200.062*
H19F0.63220.40120.82450.062*
N1B0.94126 (17)0.46148 (19)0.83903 (12)0.0266 (5)
O1B1.09520 (14)0.37535 (16)0.93983 (10)0.0299 (4)
O2B0.94664 (15)0.46410 (18)0.99534 (11)0.0359 (4)
O3B0.80738 (16)0.54245 (18)0.71840 (11)0.0367 (4)
O4B0.65259 (14)0.63842 (17)0.81217 (12)0.0336 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0374 (13)0.0248 (14)0.0319 (13)0.0009 (11)0.0041 (11)0.0011 (11)
C2A0.0384 (14)0.0294 (15)0.0275 (13)0.0002 (12)0.0083 (10)0.0005 (11)
C3A0.0399 (15)0.0279 (15)0.0323 (13)0.0002 (13)0.0101 (12)0.0003 (11)
C4A0.0543 (17)0.0488 (19)0.0348 (15)0.0156 (15)0.0118 (13)0.0043 (14)
C5A0.0371 (14)0.0350 (15)0.0296 (13)0.0077 (12)0.0102 (11)0.0040 (11)
C6A0.0489 (16)0.0362 (17)0.0392 (15)0.0063 (14)0.0074 (13)0.0031 (13)
C7A0.0586 (18)0.0431 (18)0.0402 (16)0.0163 (16)0.0027 (13)0.0040 (14)
C8A0.0396 (16)0.063 (2)0.0456 (17)0.0103 (16)0.0024 (13)0.0122 (16)
C9A0.0392 (16)0.062 (2)0.0486 (17)0.0055 (15)0.0110 (14)0.0136 (17)
C10A0.0449 (16)0.0462 (18)0.0354 (14)0.0016 (14)0.0120 (12)0.0003 (13)
C11A0.0405 (15)0.0345 (18)0.0332 (14)0.0039 (13)0.0154 (11)0.0094 (12)
C12A0.0340 (14)0.0377 (17)0.0433 (15)0.0011 (12)0.0080 (12)0.0137 (13)
C13A0.0354 (14)0.0266 (15)0.0443 (16)0.0061 (12)0.0077 (12)0.0028 (12)
C14A0.0368 (15)0.0269 (14)0.0431 (15)0.0036 (12)0.0086 (12)0.0018 (12)
C15A0.0534 (17)0.0281 (16)0.0466 (17)0.0082 (13)0.0164 (14)0.0132 (13)
C16A0.066 (2)0.0400 (19)0.0352 (15)0.0138 (16)0.0052 (14)0.0049 (13)
C17A0.0505 (18)0.048 (2)0.0459 (18)0.0082 (16)0.0063 (14)0.0062 (15)
C18A0.0317 (14)0.0439 (18)0.0532 (18)0.0043 (13)0.0037 (13)0.0060 (14)
C19A0.0462 (18)0.070 (2)0.063 (2)0.0015 (16)0.0161 (16)0.0254 (18)
N1A0.0323 (11)0.0244 (12)0.0354 (11)0.0024 (9)0.0086 (9)0.0018 (9)
O1A0.0389 (10)0.0283 (10)0.0368 (10)0.0029 (8)0.0075 (8)0.0058 (8)
O2A0.0461 (11)0.0287 (11)0.0581 (12)0.0046 (9)0.0067 (9)0.0042 (9)
O3A0.0464 (11)0.0314 (12)0.0556 (12)0.0092 (9)0.0119 (9)0.0022 (9)
O4A0.0321 (9)0.0500 (13)0.0469 (11)0.0053 (9)0.0113 (8)0.0172 (9)
C1B0.0321 (13)0.0260 (14)0.0297 (12)0.0025 (11)0.0119 (10)0.0006 (10)
C2B0.0289 (13)0.0255 (14)0.0286 (12)0.0026 (10)0.0102 (10)0.0006 (10)
C3B0.0282 (12)0.0232 (13)0.0298 (13)0.0006 (11)0.0058 (10)0.0000 (10)
C4B0.0368 (14)0.0369 (16)0.0386 (14)0.0012 (12)0.0035 (11)0.0094 (12)
C5B0.0251 (12)0.0261 (14)0.0290 (12)0.0016 (10)0.0052 (10)0.0021 (10)
C6B0.0354 (14)0.0296 (15)0.0335 (14)0.0027 (12)0.0111 (11)0.0003 (11)
C7B0.0486 (16)0.0257 (15)0.0407 (15)0.0041 (13)0.0065 (12)0.0004 (12)
C8B0.0420 (15)0.0344 (17)0.0476 (16)0.0128 (13)0.0085 (13)0.0068 (13)
C9B0.0395 (16)0.0451 (19)0.0546 (17)0.0038 (13)0.0231 (13)0.0010 (14)
C10B0.0377 (15)0.0302 (15)0.0447 (15)0.0004 (12)0.0165 (12)0.0011 (12)
C11B0.0294 (13)0.0229 (14)0.0286 (13)0.0008 (10)0.0036 (10)0.0016 (10)
C12B0.0302 (13)0.0310 (15)0.0314 (13)0.0073 (11)0.0058 (10)0.0050 (11)
C13B0.0302 (13)0.0290 (15)0.0288 (12)0.0045 (11)0.0121 (10)0.0001 (11)
C14B0.0357 (14)0.0390 (17)0.0295 (13)0.0041 (13)0.0029 (11)0.0006 (12)
C15B0.0423 (15)0.0375 (17)0.0388 (15)0.0037 (14)0.0052 (12)0.0044 (13)
C16B0.0507 (17)0.0329 (16)0.0368 (15)0.0036 (13)0.0148 (13)0.0011 (12)
C17B0.0350 (14)0.0352 (17)0.0431 (15)0.0122 (13)0.0165 (11)0.0092 (13)
C18B0.0270 (13)0.0380 (17)0.0384 (14)0.0086 (12)0.0109 (11)0.0053 (12)
C19B0.0380 (15)0.0421 (18)0.0454 (16)0.0046 (14)0.0111 (12)0.0152 (14)
N1B0.0298 (10)0.0259 (12)0.0247 (10)0.0025 (9)0.0073 (8)0.0012 (8)
O1B0.0310 (9)0.0327 (10)0.0268 (9)0.0056 (8)0.0083 (7)0.0004 (7)
O2B0.0396 (10)0.0432 (11)0.0272 (9)0.0085 (9)0.0121 (8)0.0003 (8)
O3B0.0414 (10)0.0384 (11)0.0293 (10)0.0078 (9)0.0059 (8)0.0060 (8)
O4B0.0281 (9)0.0305 (10)0.0417 (10)0.0045 (8)0.0069 (8)0.0081 (8)
Geometric parameters (Å, º) top
C1A—N1A1.472 (3)C1B—N1B1.476 (3)
C1A—C4A1.513 (4)C1B—C4B1.512 (4)
C1A—C2A1.528 (4)C1B—C2B1.540 (3)
C1A—H1A1.000C1B—H1B1.000
C2A—O1A1.457 (3)C2B—O1B1.465 (3)
C2A—C5A1.498 (4)C2B—C5B1.498 (3)
C2A—H2A1.000C2B—H2B1.0000
C3A—O2A1.192 (3)C3B—O2B1.199 (3)
C3A—O1A1.343 (3)C3B—O1B1.339 (3)
C3A—N1A1.401 (4)C3B—N1B1.395 (3)
C4A—H4A0.980C4B—H4D0.980
C4A—H4B0.980C4B—H4E0.980
C4A—H4C0.980C4B—H4F0.980
C5A—C6A1.387 (4)C5B—C10B1.384 (4)
C5A—C10A1.392 (4)C5B—C6B1.391 (4)
C6A—C7A1.394 (4)C6B—C7B1.385 (4)
C6A—H6A0.950C6B—H6B0.9500
C7A—C8A1.374 (5)C7B—C8B1.378 (4)
C7A—H7A0.950C7B—H7B0.950
C8A—C9A1.378 (5)C8B—C9B1.384 (4)
C8A—H8A0.950C8B—H8B0.950
C9A—C10A1.384 (4)C9B—C10B1.383 (4)
C9A—H9A0.950C9B—H9B0.950
C10A—H10A0.950C10B—H10B0.950
C11A—O3A1.213 (3)C11B—O3B1.205 (3)
C11A—N1A1.390 (3)C11B—N1B1.399 (3)
C11A—C12A1.522 (4)C11B—C12B1.529 (3)
C12A—O4A1.429 (3)C12B—O4B1.420 (3)
C12A—C19A1.522 (4)C12B—C19B1.518 (4)
C12A—H12A1.000C12B—H12B1.000
C13A—O4A1.375 (3)C13B—O4B1.380 (3)
C13A—C14A1.382 (4)C13B—C14B1.386 (4)
C13A—C18A1.387 (4)C13B—C18B1.384 (3)
C14A—C15A1.391 (4)C14B—C15B1.389 (4)
C14A—H14A0.950C14B—H14B0.950
C15A—C16A1.379 (4)C15B—C16B1.375 (4)
C15A—H15A0.950C15B—H15B0.950
C16A—C17A1.376 (4)C16B—C17B1.384 (4)
C16A—H16A0.950C16B—H16B0.950
C17A—C18A1.374 (4)C17B—C18B1.381 (4)
C17A—H17A0.950C17B—H17B0.950
C18A—H18A0.950C18B—H18B0.950
C19A—H19A0.980C19B—H19D0.980
C19A—H19B0.980C19B—H19E0.980
C19A—H19C0.980C19B—H19F0.980
N1A—C1A—C4A110.1 (2)N1B—C1B—C4B110.8 (2)
N1A—C1A—C2A98.90 (19)N1B—C1B—C2B99.74 (18)
C4A—C1A—C2A114.6 (2)C4B—C1B—C2B115.5 (2)
N1A—C1A—H1A110.9N1B—C1B—H1B110.1
C4A—C1A—H1A110.9C4B—C1B—H1B110.1
C2A—C1A—H1A110.9C2B—C1B—H1B110.1
O1A—C2A—C5A110.1 (2)O1B—C2B—C5B109.91 (19)
O1A—C2A—C1A102.94 (19)O1B—C2B—C1B103.03 (18)
C5A—C2A—C1A117.5 (2)C5B—C2B—C1B118.0 (2)
O1A—C2A—H2A108.7O1B—C2B—H2B108.5
C5A—C2A—H2A108.7C5B—C2B—H2B108.5
C1A—C2A—H2A108.7C1B—C2B—H2B108.5
O2A—C3A—O1A123.2 (3)O2B—C3B—O1B123.2 (2)
O2A—C3A—N1A128.3 (2)O2B—C3B—N1B128.0 (2)
O1A—C3A—N1A108.5 (2)O1B—C3B—N1B108.71 (19)
C1A—C4A—H4A109.5C1B—C4B—H4D109.5
C1A—C4A—H4B109.5C1B—C4B—H4E109.5
H4A—C4A—H4B109.5H4D—C4B—H4E109.5
C1A—C4A—H4C109.5C1B—C4B—H4F109.5
H4A—C4A—H4C109.5H4D—C4B—H4F109.5
H4B—C4A—H4C109.5H4E—C4B—H4F109.5
C6A—C5A—C10A119.7 (2)C10B—C5B—C6B119.2 (2)
C6A—C5A—C2A122.4 (2)C10B—C5B—C2B118.9 (2)
C10A—C5A—C2A117.9 (2)C6B—C5B—C2B121.9 (2)
C5A—C6A—C7A119.4 (3)C7B—C6B—C5B119.9 (2)
C5A—C6A—H6A120.3C7B—C6B—H6B120.0
C7A—C6A—H6A120.3C5B—C6B—H6B120.0
C8A—C7A—C6A120.4 (3)C8B—C7B—C6B120.4 (3)
C8A—C7A—H7A119.8C8B—C7B—H7B119.8
C6A—C7A—H7A119.8C6B—C7B—H7B119.8
C7A—C8A—C9A120.4 (3)C7B—C8B—C9B120.0 (3)
C7A—C8A—H8A119.8C7B—C8B—H8B120.0
C9A—C8A—H8A119.8C9B—C8B—H8B120.0
C8A—C9A—C10A119.7 (3)C8B—C9B—C10B119.6 (3)
C8A—C9A—H9A120.1C8B—C9B—H9B120.2
C10A—C9A—H9A120.1C10B—C9B—H9B120.2
C9A—C10A—C5A120.3 (3)C5B—C10B—C9B120.8 (3)
C9A—C10A—H10A119.8C5B—C10B—H10B119.6
C5A—C10A—H10A119.8C9B—C10B—H10B119.6
O3A—C11A—N1A119.7 (3)O3B—C11B—N1B119.1 (2)
O3A—C11A—C12A122.8 (2)O3B—C11B—C12B122.5 (2)
N1A—C11A—C12A117.4 (2)N1B—C11B—C12B118.3 (2)
O4A—C12A—C11A109.9 (2)O4B—C12B—C19B105.83 (19)
O4A—C12A—C19A106.4 (2)O4B—C12B—C11B108.79 (19)
C11A—C12A—C19A108.4 (2)C19B—C12B—C11B109.9 (2)
O4A—C12A—H12A110.7O4B—C12B—H12B110.7
C11A—C12A—H12A110.7C19B—C12B—H12B110.7
C19A—C12A—H12A110.7C11B—C12B—H12B110.7
O4A—C13A—C14A124.6 (2)O4B—C13B—C14B124.7 (2)
O4A—C13A—C18A115.1 (2)O4B—C13B—C18B114.6 (2)
C14A—C13A—C18A120.2 (3)C14B—C13B—C18B120.7 (2)
C13A—C14A—C15A119.1 (3)C13B—C14B—C15B119.1 (3)
C13A—C14A—H14A120.5C13B—C14B—H14B120.5
C15A—C14A—H14A120.5C15B—C14B—H14B120.5
C16A—C15A—C14A120.9 (3)C16B—C15B—C14B120.8 (3)
C16A—C15A—H15A119.6C16B—C15B—H15B119.6
C14A—C15A—H15A119.6C14B—C15B—H15B119.6
C17A—C16A—C15A119.1 (3)C15B—C16B—C17B119.4 (3)
C17A—C16A—H16A120.4C15B—C16B—H16B120.3
C15A—C16A—H16A120.4C17B—C16B—H16B120.3
C18A—C17A—C16A121.1 (3)C18B—C17B—C16B120.8 (2)
C18A—C17A—H17A119.5C18B—C17B—H17B119.6
C16A—C17A—H17A119.5C16B—C17B—H17B119.6
C17A—C18A—C13A119.6 (3)C17B—C18B—C13B119.2 (3)
C17A—C18A—H18A120.2C17B—C18B—H18B120.4
C13A—C18A—H18A120.2C13B—C18B—H18B120.4
C12A—C19A—H19A109.5C12B—C19B—H19D109.5
C12A—C19A—H19B109.5C12B—C19B—H19E109.5
H19A—C19A—H19B109.5H19D—C19B—H19E109.5
C12A—C19A—H19C109.5C12B—C19B—H19F109.5
H19A—C19A—H19C109.5H19D—C19B—H19F109.5
H19B—C19A—H19C109.5H19E—C19B—H19F109.5
C11A—N1A—C3A128.2 (2)C3B—N1B—C11B127.83 (19)
C11A—N1A—C1A121.9 (2)C3B—N1B—C1B110.69 (18)
C3A—N1A—C1A109.7 (2)C11B—N1B—C1B121.20 (19)
C3A—O1A—C2A108.74 (19)C3B—O1B—C2B109.88 (18)
C13A—O4A—C12A117.3 (2)C13B—O4B—C12B118.93 (19)
N1A—C1A—C2A—O1A31.9 (2)N1B—C1B—C2B—O1B26.6 (2)
C4A—C1A—C2A—O1A85.1 (3)C4B—C1B—C2B—O1B92.1 (2)
N1A—C1A—C2A—C5A153.1 (2)N1B—C1B—C2B—C5B147.9 (2)
C4A—C1A—C2A—C5A36.0 (3)C4B—C1B—C2B—C5B29.2 (3)
O1A—C2A—C5A—C6A21.5 (3)O1B—C2B—C5B—C10B148.3 (2)
C1A—C2A—C5A—C6A95.9 (3)C1B—C2B—C5B—C10B94.1 (3)
O1A—C2A—C5A—C10A159.5 (2)O1B—C2B—C5B—C6B31.5 (3)
C1A—C2A—C5A—C10A83.2 (3)C1B—C2B—C5B—C6B86.2 (3)
C10A—C5A—C6A—C7A2.2 (4)C10B—C5B—C6B—C7B0.4 (4)
C2A—C5A—C6A—C7A178.7 (2)C2B—C5B—C6B—C7B179.4 (2)
C5A—C6A—C7A—C8A1.2 (4)C5B—C6B—C7B—C8B0.9 (4)
C6A—C7A—C8A—C9A1.1 (5)C6B—C7B—C8B—C9B0.5 (4)
C7A—C8A—C9A—C10A2.2 (4)C7B—C8B—C9B—C10B0.4 (4)
C8A—C9A—C10A—C5A1.1 (4)C6B—C5B—C10B—C9B0.5 (4)
C6A—C5A—C10A—C9A1.1 (4)C2B—C5B—C10B—C9B179.7 (2)
C2A—C5A—C10A—C9A179.8 (2)C8B—C9B—C10B—C5B0.9 (4)
O3A—C11A—C12A—O4A25.6 (3)O3B—C11B—C12B—O4B14.6 (3)
N1A—C11A—C12A—O4A157.0 (2)N1B—C11B—C12B—O4B169.3 (2)
O3A—C11A—C12A—C19A90.2 (3)O3B—C11B—C12B—C19B100.8 (3)
N1A—C11A—C12A—C19A87.1 (3)N1B—C11B—C12B—C19B75.3 (3)
O4A—C13A—C14A—C15A179.2 (2)O4B—C13B—C14B—C15B179.8 (2)
C18A—C13A—C14A—C15A0.4 (4)C18B—C13B—C14B—C15B0.2 (4)
C13A—C14A—C15A—C16A0.4 (4)C13B—C14B—C15B—C16B0.0 (4)
C14A—C15A—C16A—C17A0.4 (4)C14B—C15B—C16B—C17B0.2 (4)
C15A—C16A—C17A—C18A0.3 (5)C15B—C16B—C17B—C18B0.2 (4)
C16A—C17A—C18A—C13A0.2 (5)C16B—C17B—C18B—C13B0.0 (4)
O4A—C13A—C18A—C17A179.3 (3)O4B—C13B—C18B—C17B179.8 (2)
C14A—C13A—C18A—C17A0.3 (4)C14B—C13B—C18B—C17B0.2 (4)
O3A—C11A—N1A—C3A176.5 (2)O2B—C3B—N1B—C11B0.3 (4)
C12A—C11A—N1A—C3A6.0 (4)O1B—C3B—N1B—C11B179.7 (2)
O3A—C11A—N1A—C1A9.3 (3)O2B—C3B—N1B—C1B173.6 (3)
C12A—C11A—N1A—C1A168.2 (2)O1B—C3B—N1B—C1B5.8 (3)
O2A—C3A—N1A—C11A4.0 (4)O3B—C11B—N1B—C3B175.9 (2)
O1A—C3A—N1A—C11A176.5 (2)C12B—C11B—N1B—C3B7.8 (4)
O2A—C3A—N1A—C1A170.8 (3)O3B—C11B—N1B—C1B10.8 (3)
O1A—C3A—N1A—C1A8.7 (3)C12B—C11B—N1B—C1B165.5 (2)
C4A—C1A—N1A—C11A80.3 (3)C4B—C1B—N1B—C3B101.5 (2)
C2A—C1A—N1A—C11A159.3 (2)C2B—C1B—N1B—C3B20.7 (2)
C4A—C1A—N1A—C3A94.9 (2)C4B—C1B—N1B—C11B72.9 (3)
C2A—C1A—N1A—C3A25.5 (2)C2B—C1B—N1B—C11B165.0 (2)
O2A—C3A—O1A—C2A166.6 (2)O2B—C3B—O1B—C2B167.2 (2)
N1A—C3A—O1A—C2A13.9 (3)N1B—C3B—O1B—C2B13.4 (3)
C5A—C2A—O1A—C3A155.78 (19)C5B—C2B—O1B—C3B152.58 (19)
C1A—C2A—O1A—C3A29.7 (2)C1B—C2B—O1B—C3B26.0 (2)
C14A—C13A—O4A—C12A11.1 (4)C14B—C13B—O4B—C12B4.8 (3)
C18A—C13A—O4A—C12A168.4 (2)C18B—C13B—O4B—C12B175.3 (2)
C11A—C12A—O4A—C13A80.0 (3)C19B—C12B—O4B—C13B169.2 (2)
C19A—C12A—O4A—C13A162.8 (2)C11B—C12B—O4B—C13B72.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1A···O3B1.002.613.373 (3)133
C1B—H1B···O3A1.002.573.568 (3)174
C18A—H18A···O4Bi0.952.523.445 (4)165
C18B—H18B···O4Aii0.952.693.564 (4)154
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

We are grateful to the Royal Society and the University of London Central Research Fund for their financial support to JE, and the EPSRC National Mass Spectrometry Service (Swansea) for accurate mass determination.

References

First citationChavda, S., Eames, J., Flinn, A., Motevalli, M. & Malatesti, N. (2006a). Acta Cryst. E62, o4037–o4038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChavda, S., Eames, J., Flinn, A., Motevalli, M. & Malatesti, N. (2006b). Acta Cryst. E62, o4039–o4041.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCoumbarides, G. S., Dingjan, M., Eames, J., Motevalli, M. & Malatesti, N. (2006). Acta Cryst. E62, o4035–o4036.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCoumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006a). Acta Cryst. E62, o4032–o4034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCoumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006b). Acta Cryst. E62, o4041–o4042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4-PC Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds