organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(+)-(4R,5S)-4-Methyl-3-[2(R)-phen­oxy­propion­yl]-5-phenyl­oxazolidin-2-one

aDepartment of Chemistry, Queen Mary, University of London, Mile End Road, London E1 4NS, England, bDepartment of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England, and cDepartment of Chemistry, J. J. Strossmayer University of Osijek, Trg Sv. Trojstva 3, Osijek 31000, Croatia
*Correspondence e-mail: j.eames@hull.ac.uk

(Received 27 June 2006; accepted 12 August 2006; online 23 August 2006)

In the title compound, C19H19NO4, formed from enanti­omerically pure (+)-(4R,5S)-4-methyl-5-phenyl-2-oxazolidinone and racemic 2-phenoxy­propanoyl chloride, the two carbonyl groups are oriented anti to each other, and the two methyl groups are oriented anti to each other.

Comment

The title compound, (I)[link], is the fifth in a series of structurally related compounds, introduced in our earlier report (Coumbarides et al., 2006[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4032-o4034.]). With R1 = C6H5O, the reaction shown in that report yielded the antisyn and synsyn diastereomers in 44 and 45% yields, respectively. The title compound, (I)[link], is the synsyn diastereomer.

[Scheme 1]

The conformation of (I)[link] (Fig. 1[link]) is closely comparable with that of the phenyl­propionyl derivative (Coumbarides et al., 2006[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4032-o4034.]). The five-membered ring displays a twist conformation in which atoms C1 and C2 lie, respectively, 0.286 (5) Å above and 0.291 (5) Å below the plane defined by atoms O1, O2, N1 and C3. The two methyl groups (C4 and C19) lie anti to each other, on either side of the five-membered ring. The carbonyl groups (C3=O2 and C11=O3) are also oriented anti to each other [torsion angle O3—C11—N1—C3 = −171.2 (3)°], avoiding electrostatic repulsion between the two O atoms. The shortest inter­molecular contacts (Fig. 2[link]) are C—H⋯O inter­actions [H16⋯O2i = 2.66 Å; symmetry code: (i) [{1\over 2}] − x, 2 − y, [{1\over 2}] + z] and edge-to-face C—H⋯π inter­actions [H9⋯centroid(C13–C18) = 2.92 Å; symmetry code: (ii) 1 − x, [{1\over 2}] + y, [{3\over 2}] − z].

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.
[Figure 2]
Figure 2
A view of (I)[link] along the b-axis direction. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.

Experimental

The experimental procedure is comparable with that reported previously (Coumbarides et al., 2006[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4032-o4034.]). The actual quanti­ties used for preparation of (I)[link] were: n-butyl­lithium (12.42 ml, 2.5 M in hexa­nes, 31.0 mmol) and (R,S)-oxazolidinone (5.00 g, 28.2 mmol) in 60 ml tetrahydrofuran (THF), combined with a solution of (rac)-2-phenoxy­propanoyl chloride (5.71 g, 31.0 mmol) in 10 ml THF. The crude residue was purified by flash column chromatography on silica gel, eluting with light petroleum (b.p. 313–333 K)/diethyl ether (1:1) to give a separable diastereoisomeric mixture in the approximate ratio antisyn:synsyn 50:50. The synsyn diastereomer was isolated as colourless crystals {4.13 g, 45% yield, m.p. 403–404 K, RF 0.42 [light petroleum b.p 313–333 K/diethyl ether, 1:1]}. Spectroscopic analysis: [α]22D = +69.8 (CHCl3, 295 K, concentration 1.9 g per 100 ml); IR (CHCl3, νmax, cm−1): 1770 (C=O), 1712 (C=O); 1H NMR (250 MHz; CDCl3): δ 7.44–7.21 (7H, m, 7 × CH; Pha and Phb), 6.99–6.84 (3H, t, J = 7.3 Hz, 3 × CH; Pha and/or Phb), 6.02 (1H, q, J = 6.6 Hz, PhCH), 5.75 (1H, d, J = 7.2 Hz, PhCHO), 5.69 (1H, m, CHN), 1.68 (3H, d, J = 6.6 Hz, CH3CHCO), 0.90 (3H, d, J = 6.8 Hz, CH3CHN); 13C NMR (67.9 MHz; CDCl3): δ 172.2 (NC=O), 157.3 (i-CO; Ph), 152.9 (OC=O), 132.9 (i-C; Ph), 129.7, 129.1, 128.9, 125.7, 121.6, 115.0 (6 × CH; Pha and Phb), 80.8 (PhCHO), 71.7 (PhCH), 55.2 (CHN), 18.6 (CH3), 14.5 (CH3); found: MH+ 326.1393; C19H20NO4 requires 326.1392.

Crystal data
  • C19H19NO4

  • Mr = 325.35

  • Orthorhombic, P 21 21 21

  • a = 16.915 (12) Å

  • b = 10.634 (5) Å

  • c = 9.226 (6) Å

  • V = 1659.5 (18) Å3

  • Z = 4

  • Dx = 1.302 Mg m−3

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • Prism, colourless

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • ω/2θ scans

  • Absorption correction: none

  • 3072 measured reflections

  • 1681 independent reflections

  • 1115 reflections with I > 2σ(I)

  • Rint = 0.032

  • θmax = 25.0°

  • 2 standard reflections every 100 reflections intensity decay: 3%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.089

  • S = 1.01

  • 1681 reflections

  • 220 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0441P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.017 (2)

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate about their local threefold axes. In the absence of significant anomalous scattering effects, the few measured Friedel pairs have been merged. The absolute configuration is assigned on the basis of the known configuration of the starting material (Coumbarides et al., 2006[Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4032-o4034.]).

Data collection: CAD-4-PC Software (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: CAD-4-PC Software (Enraf–Nonius, 1994); cell refinement: CAD-4-PC Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

(+)-(4R,5S)-4-Methyl-3-[2(R)-phenoxypropionyl]- 5-phenyloxazolidin-2-one top
Crystal data top
C19H19NO4F(000) = 688
Mr = 325.35Dx = 1.302 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 16.915 (12) Åθ = 10.1–12.0°
b = 10.634 (5) ŵ = 0.09 mm1
c = 9.226 (6) ÅT = 293 K
V = 1659.5 (18) Å3Prism, colourless
Z = 40.40 × 0.30 × 0.30 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.032
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.3°
Graphite monochromatorh = 1320
ω/2θ scansk = 1212
3072 measured reflectionsl = 1010
1681 independent reflections2 standard reflections every 100 reflections
1115 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0441P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.14 e Å3
1681 reflectionsΔρmin = 0.14 e Å3
220 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.017 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: assigned on the basis of known starting material
Secondary atom site location: difference Fourier map
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 7.0724 (0.0216) x + 9.3149 (0.0101) y - 2.2196 (0.0144) z = 2.7468 (0.0234)

* 0.0012 (0.0008) O1 * 0.0017 (0.0011) O2 * 0.0013 (0.0008) N1 * -0.0042 (0.0027) C3 0.2866 (0.0047) C1 - 0.2905 (0.0047) C2

Rms deviation of fitted atoms = 0.0024

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60109 (17)1.0289 (3)1.0360 (4)0.0451 (8)
H10.61801.01001.13530.054*
C20.66484 (18)0.9896 (3)0.9279 (3)0.0433 (8)
H20.69000.91300.96480.052*
C30.54789 (19)0.9118 (3)0.8452 (4)0.0480 (8)
C40.5737 (2)1.1638 (3)1.0245 (4)0.0612 (10)
H4A0.55861.18150.92630.092*
H4B0.61591.21901.05280.092*
H4C0.52911.17661.08730.092*
C50.72911 (18)1.0811 (3)0.8882 (3)0.0411 (8)
C60.79914 (19)1.0795 (3)0.9648 (4)0.0557 (10)
H60.80541.02221.04010.067*
C70.8600 (2)1.1609 (4)0.9322 (4)0.0644 (11)
H70.90621.15960.98660.077*
C80.8522 (2)1.2433 (4)0.8204 (4)0.0616 (10)
H80.89331.29780.79750.074*
C90.7834 (2)1.2456 (3)0.7413 (4)0.0651 (11)
H90.77821.30170.66460.078*
C100.7218 (2)1.1650 (3)0.7748 (4)0.0538 (9)
H100.67541.16730.72080.065*
C110.47944 (19)0.8982 (3)1.0836 (4)0.0497 (9)
C120.42713 (19)0.7910 (3)1.0310 (4)0.0531 (9)
H120.40520.81070.93530.064*
C130.2992 (2)0.8435 (3)1.1255 (4)0.0525 (9)
C140.2365 (2)0.8044 (4)1.2099 (4)0.0633 (11)
H140.24150.73291.26730.076*
C150.1666 (2)0.8706 (4)1.2094 (5)0.0774 (13)
H150.12460.84361.26630.093*
C160.1586 (3)0.9763 (4)1.1254 (5)0.0811 (13)
H160.11121.02061.12450.097*
C170.2208 (2)1.0158 (4)1.0433 (4)0.0700 (11)
H170.21551.08760.98670.084*
C180.2916 (2)0.9507 (4)1.0429 (4)0.0591 (10)
H180.33370.97910.98710.071*
C190.4742 (2)0.6684 (3)1.0253 (4)0.0710 (11)
H19A0.48560.64091.12220.106*
H19B0.52280.68210.97400.106*
H19C0.44370.60530.97630.106*
N10.53871 (15)0.9397 (2)0.9892 (3)0.0462 (7)
O10.61905 (12)0.9558 (2)0.8006 (2)0.0493 (6)
O20.50324 (15)0.8593 (2)0.7646 (3)0.0645 (7)
O30.47462 (14)0.9432 (2)1.2024 (3)0.0683 (7)
O40.36534 (14)0.7686 (2)1.1322 (3)0.0626 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0422 (19)0.0472 (19)0.0460 (19)0.0033 (16)0.0029 (15)0.0047 (16)
C20.0408 (18)0.0457 (18)0.0435 (18)0.0051 (17)0.0025 (16)0.0019 (16)
C30.042 (2)0.051 (2)0.051 (2)0.0015 (18)0.0084 (18)0.0023 (19)
C40.057 (2)0.054 (2)0.073 (3)0.0023 (19)0.009 (2)0.012 (2)
C50.0383 (18)0.0417 (18)0.0433 (19)0.0068 (16)0.0022 (15)0.0071 (17)
C60.047 (2)0.058 (2)0.062 (2)0.0069 (19)0.0058 (19)0.014 (2)
C70.038 (2)0.075 (3)0.080 (3)0.005 (2)0.005 (2)0.003 (2)
C80.048 (2)0.061 (2)0.076 (3)0.0053 (19)0.010 (2)0.000 (2)
C90.082 (3)0.051 (2)0.062 (3)0.007 (2)0.001 (2)0.013 (2)
C100.052 (2)0.0544 (19)0.055 (2)0.0025 (19)0.0085 (19)0.005 (2)
C110.041 (2)0.057 (2)0.051 (2)0.0007 (17)0.0029 (18)0.0033 (19)
C120.042 (2)0.057 (2)0.060 (2)0.0032 (18)0.0020 (18)0.0000 (19)
C130.046 (2)0.058 (2)0.054 (2)0.0165 (19)0.0003 (18)0.007 (2)
C140.053 (2)0.068 (2)0.069 (3)0.021 (2)0.007 (2)0.000 (2)
C150.049 (2)0.099 (3)0.084 (3)0.024 (3)0.015 (2)0.021 (3)
C160.056 (3)0.078 (3)0.109 (4)0.001 (2)0.008 (3)0.025 (3)
C170.065 (3)0.060 (2)0.085 (3)0.003 (2)0.003 (2)0.005 (2)
C180.045 (2)0.061 (2)0.071 (3)0.009 (2)0.0103 (19)0.002 (2)
C190.058 (2)0.059 (2)0.096 (3)0.000 (2)0.001 (2)0.003 (2)
N10.0423 (16)0.0529 (17)0.0434 (17)0.0035 (14)0.0015 (13)0.0044 (14)
O10.0416 (13)0.0606 (13)0.0458 (12)0.0018 (12)0.0011 (11)0.0088 (12)
O20.0515 (14)0.0824 (16)0.0595 (15)0.0106 (15)0.0097 (12)0.0144 (15)
O30.0592 (17)0.0874 (18)0.0583 (16)0.0187 (15)0.0101 (13)0.0113 (16)
O40.0437 (14)0.0670 (16)0.0770 (18)0.0058 (13)0.0026 (14)0.0161 (14)
Geometric parameters (Å, º) top
C1—N11.483 (4)C10—H100.930
C1—C41.511 (5)C11—O31.198 (4)
C1—C21.527 (4)C11—N11.400 (4)
C1—H10.980C11—C121.522 (5)
C2—O11.452 (4)C12—O41.422 (4)
C2—C51.504 (4)C12—C191.528 (4)
C2—H20.980C12—H120.980
C3—O21.198 (4)C13—O41.375 (4)
C3—O11.355 (4)C13—C181.377 (5)
C3—N11.370 (4)C13—C141.379 (5)
C4—H4A0.960C14—C151.377 (5)
C4—H4B0.960C14—H140.930
C4—H4C0.960C15—C161.371 (6)
C5—C61.379 (5)C15—H150.930
C5—C101.380 (4)C16—C171.362 (6)
C6—C71.378 (5)C16—H160.930
C6—H60.930C17—C181.383 (5)
C7—C81.360 (5)C17—H170.930
C7—H70.930C18—H180.930
C8—C91.373 (5)C19—H19A0.960
C8—H80.930C19—H19B0.960
C9—C101.384 (5)C19—H19C0.960
C9—H90.930
N1—C1—C4111.6 (3)O3—C11—N1119.5 (3)
N1—C1—C297.9 (2)O3—C11—C12123.5 (3)
C4—C1—C2115.5 (3)N1—C11—C12117.0 (3)
N1—C1—H1110.4O4—C12—C11110.1 (3)
C4—C1—H1110.4O4—C12—C19105.2 (3)
C2—C1—H1110.4C11—C12—C19110.3 (3)
O1—C2—C5110.4 (3)O4—C12—H12110.4
O1—C2—C1102.7 (2)C11—C12—H12110.4
C5—C2—C1119.5 (3)C19—C12—H12110.4
O1—C2—H2107.9O4—C13—C18125.5 (3)
C5—C2—H2107.9O4—C13—C14115.2 (3)
C1—C2—H2107.9C18—C13—C14119.3 (4)
O2—C3—O1122.2 (3)C15—C14—C13120.3 (4)
O2—C3—N1129.2 (3)C15—C14—H14119.9
O1—C3—N1108.7 (3)C13—C14—H14119.9
C1—C4—H4A109.5C16—C15—C14120.4 (4)
C1—C4—H4B109.5C16—C15—H15119.8
H4A—C4—H4B109.5C14—C15—H15119.8
C1—C4—H4C109.5C17—C16—C15119.4 (4)
H4A—C4—H4C109.5C17—C16—H16120.3
H4B—C4—H4C109.5C15—C16—H16120.3
C6—C5—C10118.2 (3)C16—C17—C18121.0 (4)
C6—C5—C2119.2 (3)C16—C17—H17119.5
C10—C5—C2122.6 (3)C18—C17—H17119.5
C7—C6—C5121.4 (3)C13—C18—C17119.6 (3)
C7—C6—H6119.3C13—C18—H18120.2
C5—C6—H6119.3C17—C18—H18120.2
C8—C7—C6119.9 (3)C12—C19—H19A109.5
C8—C7—H7120.1C12—C19—H19B109.5
C6—C7—H7120.1H19A—C19—H19B109.5
C7—C8—C9119.8 (4)C12—C19—H19C109.5
C7—C8—H8120.1H19A—C19—H19C109.5
C9—C8—H8120.1H19B—C19—H19C109.5
C8—C9—C10120.5 (3)C3—N1—C11128.1 (3)
C8—C9—H9119.8C3—N1—C1109.9 (3)
C10—C9—H9119.8C11—N1—C1122.0 (3)
C5—C10—C9120.2 (3)C3—O1—C2108.3 (2)
C5—C10—H10119.9C13—O4—C12118.1 (3)
C9—C10—H10119.9
N1—C1—C2—O133.8 (3)C15—C16—C17—C180.3 (6)
C4—C1—C2—O184.8 (3)O4—C13—C18—C17178.3 (3)
N1—C1—C2—C5156.3 (3)C14—C13—C18—C171.4 (5)
C4—C1—C2—C537.7 (4)C16—C17—C18—C130.7 (6)
O1—C2—C5—C6148.7 (3)O2—C3—N1—C1110.0 (6)
C1—C2—C5—C692.6 (4)O1—C3—N1—C11170.9 (3)
O1—C2—C5—C1029.4 (4)O2—C3—N1—C1167.7 (3)
C1—C2—C5—C1089.2 (4)O1—C3—N1—C111.4 (3)
C10—C5—C6—C71.4 (5)O3—C11—N1—C3171.2 (3)
C2—C5—C6—C7179.7 (3)C12—C11—N1—C312.3 (5)
C5—C6—C7—C81.4 (6)O3—C11—N1—C16.2 (5)
C6—C7—C8—C90.6 (6)C12—C11—N1—C1170.2 (3)
C7—C8—C9—C100.2 (6)C4—C1—N1—C393.1 (3)
C6—C5—C10—C90.6 (5)C2—C1—N1—C328.4 (3)
C2—C5—C10—C9178.8 (3)C4—C1—N1—C1184.8 (4)
C8—C9—C10—C50.2 (5)C2—C1—N1—C11153.7 (3)
O3—C11—C12—O49.6 (5)O2—C3—O1—C2168.2 (3)
N1—C11—C12—O4174.1 (3)N1—C3—O1—C212.6 (3)
O3—C11—C12—C19106.0 (4)C5—C2—O1—C3158.8 (2)
N1—C11—C12—C1970.3 (4)C1—C2—O1—C330.3 (3)
O4—C13—C14—C15178.6 (3)C18—C13—O4—C129.8 (5)
C18—C13—C14—C151.1 (5)C14—C13—O4—C12169.9 (3)
C13—C14—C15—C160.1 (6)C11—C12—O4—C1382.5 (3)
C14—C15—C16—C170.6 (6)C19—C12—O4—C13158.7 (3)
 

Acknowledgements

We are grateful to the EPSRC and Queen Mary, University of London for a studentship to YY, the Royal Society and the University of London Central Research Fund for their financial support to JE, and the EPSRC National Mass Spectrometry Service (Swansea) for accurate mass determination.

References

First citationCoumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. & Yohannes, Y. (2006). Acta Cryst. E62, o4032–o4034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4-PC Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds