organic compounds
Powder study of 3-azabicyclo[3.3.1]nonane-2,4-dione 1-methylnaphthalene hemisolvate
aChristopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England, bSolid-State Research Group, Department of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and cISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, England
*Correspondence e-mail: alastair.florence@strath.ac.uk
The 8H11N1O2·0.5C11H10, was solved by simulated annealing from laboratory X-ray powder diffraction data, collected at room temperature. Subsequent using data collected to 1.51 Å resolution, yielded an Rwp value of 0.057. The compound crystallizes with two molecules of 3-azabicyclononane-2,4-dione and one molecule of 1-methylnaphthalene in the asymmetric unit.
of the title compound, CComment
The title compound, (I), was crystallized from 1-methylnaphthalene during a preliminary solvent screen in preparation for an automated parallel crystallization study of 3-azabicyclo[3.3.1]nonane-2,4-dione. The sample was identified as a new form using multi-sample foil transmission X-ray powder (Florence et al., 2003).
The was solved by simulated annealing using laboratory X-ray powder diffraction data. The compound crystallizes in P21/c with two molecules of 3-azabicyclononane-2,4-dione and one molecule of 1-methylnaphthalene in the (Fig. 1). In the intermolecular N—H⋯O hydrogen bonds (Table 1) link two independent 3-azabicyclononane-2,4-dione molecules into a chain (Fig. 1) running along the b axis. The structure of this chain is very similar to that found in the un-solvated form 1 of 3-azabicyclononane-2,4-dione (Howie & Skakle, 2001). However, in form 1 the chain is propagated by a glide whereas in (I) it propagates via a 21 screw axis. The paired hydrogen-bonded chains in (I) constitute a pseudo-layer parallel to the bc plane. Between two pseudo-layers related by translation along the a axis, channels parallel to the b axis are observed. These channels are filled by stacks of 1-methylnaphthalene solvent molecules, which are oriented nearly perpendicular to the b axis (Fig. 2).
of (I)Experimental
A polycrystalline sample of (I) was recrystallized by cooling a saturated 1-methylnaphthalene solution from 313 to 283 K. The sample was loaded into a 0.7 mm borosilicate glass capillary and rotated throughout the data collection to minimize effects. Data were collected using a variable count time (VCT) scheme in which the step time is increased with 2θ (Shankland et al., 1997; Hill & Madsen, 2002).
Crystal data
|
Data collection
|
Refinement
The diffraction pattern indexed to a monoclinic cell [M(20) = 44.5, F(20) = 146.5; DICVOL91; Boultif & Louer, 1991] and the P21/c was assigned from volume considerations and a statistical consideration of the (Markvardsen et al., 2001). The data set was background subtracted and truncated to 51.8° 2θ for Pawley fitting (Pawley, 1981; χ2Pawley = 15.77) and the structure solved using the simulated annealing (SA) global optimization procedure, described previously (David et al., 1998), that is now implemented in the DASH computer program (David et al., 2001). The SA structure solution used 453 reflections and involved the optimization of three fragments totaling 18 (six positional and orientational for each fragment present in the asymmetric unit). All were assigned random values at the start of the simulated annealing. The best SA solution had a favourable χ2SA/χ2Pawley ratio of 3.47 and a chemically reasonable lattice packing arrangement, with no significant misfit to the diffraction data.
The solved structure was then refined against the data in the range 4–61.4° 2θ using a restrained Rietveld (1969) method as implemented in TOPAS (Coelho, 2003), with Rwp falling to 0.0566 during the All atomic positions (including H atoms) for the structure of (I) were refined, subject to a series of restraints on bond lengths, bond angles and planarity.
The restraints were set such that bonds and angles did not deviate more than 0.01 Å and 0.8°, respectively, from their initial values during the ). The observed and calculated diffraction patterns for the refined are shown in Fig. 3. Uiso(H) values were fixed at 0.076 Å2.
Atoms C12, C13, C15, C16, O1, N1, O2 and H1 (first molecule) and atoms C20, C21, C23, C24, O3, N2, O4 and H22 (second molecule) of 3-azabicyclo[3.3.1]nonane-2,4-dione were restrained to be coplanar. Restraints were also applied to the methylnaphthalene molecule, for planarity purposes. A spherical harmonics (4th order) correction of intensities for was applied in the final (Järvinen, 1993Data collection: DIFFRAC plus XRD Commander (Kienle & Jacob, 2003); cell TOPAS (Coelho, 2003); data reduction: DASH (David et al., 2001); program(s) used to solve structure: DASH; program(s) used to refine structure: TOPAS; molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON, enCIFer (Allen et al., 2004) and SHELXL97 (Sheldrick, 1997).
Supporting information
https://doi.org/10.1107/S1600536806030078/cv2076sup1.cif
contains datablocks global, I. DOI:Rietveld powder data: contains datablock I. DOI: https://doi.org/10.1107/S1600536806030078/cv2076Isup2.rtv
Data collection: DIFFRAC plus XRD Commander (Kienle & Jacob, 2003); data reduction: DASH (David et al., 2001); program(s) used to solve structure: DASH; program(s) used to refine structure: Topas (Coelho, 2003); software used to prepare material for publication: CAMERON (Watkin et al., 1996), enCIFer (Allen et al., 2004) and SHELXL97 (Sheldrick, 1997).
C8H11NO2·0.5C11H10 | Z = 8 |
Mr = 224.28 | F(000) = 960 |
Monoclinic, P21/c | Dx = 1.251 Mg m−3 |
Hall symbol: -P 2ybc | Cu Kα1 radiation, λ = 1.54056 Å |
a = 15.02360 (18) Å | µ = 0.67 mm−1 |
b = 7.32295 (12) Å | T = 295 K |
c = 22.5164 (3) Å | white |
β = 106.0201 (6)° | cylinder, 12 × 0.7 mm |
V = 2380.99 (6) Å3 | Specimen preparation: Prepared at 298 K |
Bruker AXS D8 Advance diffractometer | Data collection mode: transmission |
Radiation source: sealed X-ray tube, Bruker-AXS D8 | Scan method: step |
Primary focussing, Ge 111 monochromator | 2θmin = 4.0°, 2θmax = 62.5°, 2θstep = 0.017° |
Specimen mounting: 0.7 mm borosilicate capillary |
Least-squares matrix: selected elements only | 201 restraints |
Rp = 0.046 | 1 constraint |
Rwp = 0.057 | Only H-atom coordinates refined |
Rexp = 0.013 | Weighting scheme based on measured s.u.'s 1/σ(Yobs)2 |
RBragg = 3.499 | (Δ/σ)max = 0.01 |
3387 data points | Background function: Chebyshev polynomial |
Profile function: Fundamental parameters with axial divergence correction. | Preferred orientation correction: A spherical harmonics-based preferred orientation correction (Järvinen, 1993) was applied with Topas during the Rietveld refinement. |
211 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
x | y | z | Uiso*/Ueq | ||
C1 | 0.54315 (6) | 0.4443 (3) | 0.76875 (4) | 0.0321 (8)* | |
C2 | 0.51206 (6) | 0.4415 (5) | 0.70448 (4) | 0.0321 (8)* | |
C3 | 0.57567 (6) | 0.4424 (5) | 0.66958 (4) | 0.0321 (8)* | |
C4 | 0.67010 (6) | 0.4485 (4) | 0.69889 (4) | 0.0321 (8)* | |
C5 | 0.70105 (6) | 0.4487 (4) | 0.76294 (4) | 0.0321 (8)* | |
C6 | 0.63774 (5) | 0.4471 (4) | 0.79780 (4) | 0.0321 (8)* | |
C7 | 0.54443 (6) | 0.4412 (4) | 0.60537 (4) | 0.0321 (8)* | |
C8 | 0.45010 (6) | 0.4434 (4) | 0.57598 (4) | 0.0321 (8)* | |
C9 | 0.38669 (6) | 0.4450 (4) | 0.61066 (4) | 0.0321 (8)* | |
C10 | 0.41743 (6) | 0.4445 (4) | 0.67475 (4) | 0.0321 (8)* | |
H1 | 0.6592 (2) | 0.4473 (9) | 0.84165 (15) | 0.0760* | |
H2 | 0.7135 (2) | 0.4490 (9) | 0.67509 (16) | 0.0760* | |
H3 | 0.7657 (2) | 0.4497 (9) | 0.78299 (16) | 0.0760* | |
H4 | 0.5877 (2) | 0.4411 (9) | 0.58152 (16) | 0.0760* | |
H5 | 0.4290 (2) | 0.4438 (9) | 0.53217 (15) | 0.0760* | |
H6 | 0.3222 (2) | 0.4450 (9) | 0.59045 (17) | 0.0760* | |
H7 | 0.3738 (2) | 0.4450 (9) | 0.69837 (18) | 0.0760* | |
C11 | 0.47485 (6) | 0.44543 (14) | 0.80686 (4) | 0.0321 (8)* | |
H8 | 0.5076 (2) | 0.4393 (8) | 0.84951 (16) | 0.0760* | |
H9 | 0.4346 (2) | 0.3432 (7) | 0.79622 (16) | 0.0760* | |
H10 | 0.4393 (3) | 0.5547 (7) | 0.79910 (17) | 0.0760* | |
N1 | 0.17867 (8) | 0.20902 (12) | 0.47851 (5) | 0.0321 (8)* | |
H11 | 0.1574 (2) | 0.3045 (8) | 0.49575 (17) | 0.0760* | |
C12 | 0.22707 (9) | 0.2494 (13) | 0.43608 (5) | 0.0321 (8)* | |
O1 | 0.23991 (19) | 0.4086 (2) | 0.42479 (10) | 0.0321 (8)* | |
C13 | 0.26293 (6) | 0.09128 (13) | 0.40697 (5) | 0.0321 (8)* | |
H12 | 0.2652 (2) | 0.1316 (8) | 0.36728 (16) | 0.0760* | |
C14 | 0.20052 (6) | −0.07379 (13) | 0.40282 (5) | 0.0321 (8)* | |
H13 | 0.2243 (2) | −0.1756 (8) | 0.38588 (17) | 0.0760* | |
H14 | 0.1404 (2) | −0.051 (8) | 0.3763 (16) | 0.0760* | |
C15 | 0.19727 (6) | −0.12209 (13) | 0.46805 (4) | 0.0321 (8)* | |
H15 | 0.156 (2) | −0.2206 (8) | 0.46813 (17) | 0.0760* | |
C16 | 0.15968 (9) | 0.03559 (14) | 0.49644 (5) | 0.0321 (8)* | |
O2 | 0.1167 (12) | 0.0194 (3) | 0.53435 (8) | 0.0321 (8)* | |
C17 | 0.29412 (6) | −0.17195 (12) | 0.50824 (4) | 0.0321 (8)* | |
H16 | 0.3104 (2) | −0.2788 (8) | 0.48964 (17) | 0.0760* | |
H17 | 0.288 (2) | −0.2007 (8) | 0.54817 (18) | 0.0760* | |
C18 | 0.36461 (6) | −0.02279 (13) | 0.50985 (4) | 0.0321 (8)* | |
H18 | 0.3513 (2) | 0.0791 (8) | 0.53214 (15) | 0.0760* | |
H19 | 0.4252 (2) | −0.0652 (8) | 0.53002 (16) | 0.0760* | |
C19 | 0.36203 (6) | 0.04481 (13) | 0.44539 (4) | 0.0321 (8)* | |
H20 | 0.3999 (2) | 0.1491 (8) | 0.44618 (17) | 0.0760* | |
H21 | 0.3852 (2) | −0.0438 (9) | 0.42271 (16) | 0.0760* | |
N2 | 0.06436 (9) | 0.71279 (13) | 0.59201 (4) | 0.0321 (8)* | |
H22 | 0.0757 (3) | 0.8074 (8) | 0.56961 (17) | 0.0760* | |
C20 | 0.08087 (10) | 0.53992 (14) | 0.57266 (5) | 0.0321 (8)* | |
O3 | 0.11144 (19) | 0.5238 (3) | 0.52816 (7) | 0.0321 (8)* | |
C21 | 0.05876 (7) | 0.38030 (13) | 0.60806 (4) | 0.0321 (8)* | |
H23 | 0.0424 (3) | 0.2824 (8) | 0.57937 (15) | 0.0760* | |
C22 | −0.01946 (6) | 0.42824 (13) | 0.63579 (4) | 0.0321 (8)* | |
H24 | −0.0324 (2) | 0.3294 (7) | 0.65950 (16) | 0.0760* | |
H25 | −0.0752 (2) | 0.4521 (8) | 0.60452 (15) | 0.0760* | |
C23 | 0.01063 (7) | 0.59259 (13) | 0.67805 (4) | 0.0321 (8)* | |
H26 | −0.0373 (3) | 0.6329 (8) | 0.69504 (16) | 0.0760* | |
C24 | 0.03020 (10) | 0.75294 (13) | 0.64179 (5) | 0.0321 (8)* | |
O4 | 0.0208 (2) | 0.9113 (2) | 0.65479 (10) | 0.0321 (8)* | |
C25 | 0.09695 (6) | 0.54694 (13) | 0.73074 (4) | 0.0321 (8)* | |
H27 | 0.0770 (2) | 0.4561 (7) | 0.75432 (17) | 0.0760* | |
H28 | 0.1135 (2) | 0.6545 (7) | 0.75490 (17) | 0.0760* | |
C26 | 0.17607 (6) | 0.47383 (13) | 0.70790 (4) | 0.0321 (8)* | |
H29 | 0.2010 (2) | 0.5698 (8) | 0.68908 (16) | 0.0760* | |
H30 | 0.2239 (2) | 0.4276 (8) | 0.74153 (16) | 0.0760* | |
C27 | 0.14519 (7) | 0.32465 (12) | 0.65954 (4) | 0.0321 (8)* | |
H31 | 0.1923 (2) | 0.2904 (8) | 0.64094 (17) | 0.0760* | |
H32 | 0.1301 (2) | 0.2148 (8) | 0.67711 (17) | 0.0760* |
O1—C12 | 1.220 (9) | C25—C26 | 1.5171 (13) |
O2—C16 | 1.210 (13) | C26—C27 | 1.5217 (13) |
O3—C20 | 1.218 (2) | C21—H23 | 0.951 (5) |
O4—C24 | 1.2138 (19) | C22—H24 | 0.951 (5) |
N1—C16 | 1.3860 (14) | C22—H25 | 0.950 (3) |
N1—C12 | 1.383 (3) | C23—H26 | 0.951 (5) |
N1—H11 | 0.900 (5) | C25—H27 | 0.950 (4) |
N2—C24 | 1.3870 (17) | C25—H28 | 0.951 (5) |
N2—C20 | 1.3833 (15) | C26—H29 | 0.949 (5) |
N2—H22 | 0.901 (5) | C26—H30 | 0.951 (4) |
C12—C13 | 1.502 (7) | C27—H31 | 0.950 (4) |
C13—C14 | 1.5168 (13) | C27—H32 | 0.951 (5) |
C13—C19 | 1.5395 (14) | C1—C2 | 1.3927 (12) |
C14—C15 | 1.5246 (14) | C1—C6 | 1.3909 (12) |
C15—C17 | 1.5306 (13) | C1—C11 | 1.5084 (13) |
C15—C16 | 1.5034 (15) | C2—C3 | 1.3948 (13) |
C17—C18 | 1.5148 (13) | C2—C10 | 1.3945 (13) |
C18—C19 | 1.5238 (12) | C3—C4 | 1.3905 (13) |
C13—H12 | 0.951 (4) | C3—C7 | 1.3914 (12) |
C14—H14 | 0.95 (3) | C4—C5 | 1.3878 (12) |
C14—H13 | 0.951 (5) | C5—C6 | 1.3903 (12) |
C15—H15 | 0.95 (2) | C7—C8 | 1.3889 (13) |
C17—H16 | 0.951 (5) | C8—C9 | 1.3885 (13) |
C17—H17 | 0.952 (11) | C9—C10 | 1.3885 (12) |
C18—H19 | 0.950 (4) | C4—H2 | 0.951 (3) |
C18—H18 | 0.951 (5) | C5—H3 | 0.951 (3) |
C19—H21 | 0.949 (5) | C6—H1 | 0.950 (3) |
C19—H20 | 0.950 (5) | C7—H4 | 0.951 (3) |
C20—C21 | 1.5027 (15) | C8—H5 | 0.949 (3) |
C21—C27 | 1.5379 (14) | C9—H6 | 0.950 (3) |
C21—C22 | 1.5163 (14) | C10—H7 | 0.951 (4) |
C22—C23 | 1.5234 (13) | C11—H8 | 0.952 (4) |
C23—C24 | 1.5048 (14) | C11—H9 | 0.951 (5) |
C23—C25 | 1.5336 (13) | C11—H10 | 0.951 (5) |
C12—N1—C16 | 125.9 (4) | C21—C27—C26 | 112.11 (8) |
C12—N1—H11 | 116.7 (5) | C20—C21—H23 | 106.2 (3) |
C16—N1—H11 | 117.4 (3) | C22—C21—H23 | 111.7 (3) |
C20—N2—C24 | 125.95 (10) | C27—C21—H23 | 108.6 (3) |
C24—N2—H22 | 117.3 (3) | C21—C22—H24 | 110.9 (2) |
C20—N2—H22 | 116.7 (3) | C21—C22—H25 | 111.2 (2) |
O1—C12—N1 | 119.5 (5) | C23—C22—H24 | 108.8 (3) |
N1—C12—C13 | 117.2 (6) | C23—C22—H25 | 111.5 (3) |
O1—C12—C13 | 123.33 (18) | H24—C22—H25 | 106.3 (4) |
C12—C13—C19 | 109.45 (9) | C22—C23—H26 | 111.7 (3) |
C14—C13—C19 | 110.12 (8) | C24—C23—H26 | 105.0 (3) |
C12—C13—C14 | 110.6 (2) | C25—C23—H26 | 109.2 (2) |
C13—C14—C15 | 108.01 (8) | C23—C25—H27 | 104.8 (2) |
C14—C15—C17 | 110.30 (8) | C23—C25—H28 | 107.1 (2) |
C14—C15—C16 | 110.31 (8) | C26—C25—H27 | 109.9 (3) |
C16—C15—C17 | 109.83 (8) | C26—C25—H28 | 112.4 (2) |
O2—C16—C15 | 124.12 (16) | H27—C25—H28 | 109.5 (4) |
N1—C16—C15 | 116.63 (10) | C25—C26—H29 | 109.4 (3) |
O2—C16—N1 | 119.22 (16) | C25—C26—H30 | 110.3 (2) |
C15—C17—C18 | 112.73 (7) | C27—C26—H29 | 107.0 (3) |
C17—C18—C19 | 112.19 (7) | C27—C26—H30 | 109.2 (3) |
C13—C19—C18 | 111.93 (8) | H29—C26—H30 | 108.3 (4) |
C12—C13—H12 | 106.3 (4) | C21—C27—H31 | 108.3 (2) |
C14—C13—H12 | 111.8 (3) | C21—C27—H32 | 106.8 (2) |
C19—C13—H12 | 108.5 (2) | C26—C27—H31 | 112.8 (3) |
C13—C14—H13 | 110.8 (3) | C26—C27—H32 | 111.7 (3) |
H13—C14—H14 | 106 (3) | H31—C27—H32 | 104.6 (4) |
C13—C14—H14 | 111 (3) | C2—C1—C6 | 119.67 (8) |
C15—C14—H13 | 108.7 (3) | C2—C1—C11 | 120.36 (8) |
C15—C14—H14 | 111.6 (18) | C6—C1—C11 | 119.97 (8) |
C14—C15—H15 | 111.8 (3) | C1—C2—C3 | 119.99 (8) |
C16—C15—H15 | 105.1 (13) | C1—C2—C10 | 120.25 (8) |
C17—C15—H15 | 109.4 (11) | C3—C2—C10 | 119.72 (8) |
C18—C17—H17 | 112.7 (11) | C2—C3—C4 | 120.05 (8) |
H16—C17—H17 | 109.7 (7) | C2—C3—C7 | 119.89 (8) |
C15—C17—H16 | 104.7 (2) | C4—C3—C7 | 120.05 (8) |
C15—C17—H17 | 106.7 (17) | C3—C4—C5 | 119.91 (8) |
C18—C17—H16 | 109.9 (3) | C4—C5—C6 | 120.10 (8) |
C17—C18—H19 | 110.3 (3) | C1—C6—C5 | 120.26 (8) |
H18—C18—H19 | 108.5 (4) | C3—C7—C8 | 120.15 (8) |
C19—C18—H18 | 107.1 (3) | C7—C8—C9 | 120.02 (8) |
C17—C18—H18 | 109.3 (3) | C8—C9—C10 | 120.09 (8) |
C19—C18—H19 | 109.3 (2) | C2—C10—C9 | 120.11 (8) |
C18—C19—H21 | 111.9 (3) | C3—C4—H2 | 120.1 (2) |
H20—C19—H21 | 104.7 (4) | C5—C4—H2 | 120.0 (2) |
C18—C19—H20 | 112.7 (2) | C4—C5—H3 | 119.9 (2) |
C13—C19—H20 | 108.3 (3) | C6—C5—H3 | 120.0 (2) |
C13—C19—H21 | 106.9 (2) | C1—C6—H1 | 119.9 (2) |
O3—C20—N2 | 119.28 (14) | C5—C6—H1 | 119.9 (2) |
N2—C20—C21 | 117.37 (10) | C3—C7—H4 | 120.0 (2) |
O3—C20—C21 | 123.36 (14) | C8—C7—H4 | 119.9 (2) |
C20—C21—C27 | 109.98 (9) | C7—C8—H5 | 120.0 (2) |
C22—C21—C27 | 109.88 (7) | C9—C8—H5 | 120.0 (2) |
C20—C21—C22 | 110.38 (9) | C8—C9—H6 | 119.9 (2) |
C21—C22—C23 | 108.06 (8) | C10—C9—H6 | 120.0 (2) |
C22—C23—C25 | 110.66 (8) | C2—C10—H7 | 120.0 (2) |
C22—C23—C24 | 110.26 (8) | C9—C10—H7 | 119.9 (2) |
C24—C23—C25 | 109.86 (9) | C1—C11—H8 | 109.3 (2) |
O4—C24—C23 | 124.16 (15) | C1—C11—H9 | 109.7 (2) |
N2—C24—C23 | 116.38 (9) | C1—C11—H10 | 109.6 (3) |
O4—C24—N2 | 119.41 (15) | H8—C11—H9 | 109.5 (4) |
C23—C25—C26 | 112.90 (7) | H8—C11—H10 | 109.4 (4) |
C25—C26—C27 | 112.54 (8) | H9—C11—H10 | 109.3 (4) |
C16—N1—C12—O1 | −179.26 (18) | C22—C21—C27—C26 | −57.27 (10) |
C16—N1—C12—C13 | −0.40 (18) | C21—C22—C23—C24 | 60.46 (11) |
C12—N1—C16—O2 | 179.8 (7) | C21—C22—C23—C25 | −61.29 (10) |
C12—N1—C16—C15 | 1.51 (18) | C22—C23—C24—N2 | −31.85 (15) |
C20—N2—C24—O4 | 178.34 (19) | C25—C23—C24—O4 | −87.1 (2) |
C24—N2—C20—C21 | 0.9 (2) | C22—C23—C25—C26 | 54.33 (10) |
C24—N2—C20—O3 | −179.72 (18) | C24—C23—C25—C26 | −67.65 (10) |
C20—N2—C24—C23 | 0.7 (2) | C25—C23—C24—N2 | 90.38 (12) |
O1—C12—C13—C14 | −151.34 (18) | C22—C23—C24—O4 | 150.67 (19) |
N1—C12—C13—C19 | −91.62 (15) | C23—C25—C26—C27 | −47.76 (10) |
N1—C12—C13—C14 | 29.85 (14) | C25—C26—C27—C21 | 49.14 (10) |
O1—C12—C13—C19 | 87.2 (2) | C6—C1—C2—C3 | −0.3 (5) |
C12—C13—C14—C15 | −58.83 (16) | C6—C1—C2—C10 | −178.0 (3) |
C12—C13—C19—C18 | 64.9 (3) | C11—C1—C2—C3 | 179.3 (3) |
C19—C13—C14—C15 | 62.25 (10) | C11—C1—C2—C10 | 1.7 (4) |
C14—C13—C19—C18 | −56.88 (11) | C2—C1—C6—C5 | 0.6 (4) |
C13—C14—C15—C16 | 59.90 (10) | C11—C1—C6—C5 | −179.1 (2) |
C13—C14—C15—C17 | −61.60 (10) | C1—C2—C3—C4 | −0.8 (5) |
C17—C15—C16—O2 | −88.1 (7) | C1—C2—C3—C7 | −179.4 (3) |
C16—C15—C17—C18 | −66.00 (10) | C10—C2—C3—C4 | 176.8 (3) |
C14—C15—C17—C18 | 55.79 (10) | C10—C2—C3—C7 | −1.8 (5) |
C14—C15—C16—N1 | −31.77 (13) | C1—C2—C10—C9 | 178.9 (3) |
C14—C15—C16—O2 | 150.1 (7) | C3—C2—C10—C9 | 1.2 (5) |
C17—C15—C16—N1 | 90.02 (11) | C2—C3—C4—C5 | 1.7 (5) |
C15—C17—C18—C19 | −49.32 (10) | C7—C3—C4—C5 | −179.7 (3) |
C17—C18—C19—C13 | 49.63 (10) | C2—C3—C7—C8 | 1.5 (5) |
O3—C20—C21—C22 | −150.43 (18) | C4—C3—C7—C8 | −177.1 (3) |
N2—C20—C21—C27 | −92.44 (13) | C3—C4—C5—C6 | −1.5 (5) |
N2—C20—C21—C22 | 28.97 (14) | C4—C5—C6—C1 | 0.4 (4) |
O3—C20—C21—C27 | 88.17 (19) | C3—C7—C8—C9 | −0.6 (5) |
C27—C21—C22—C23 | 62.69 (9) | C7—C8—C9—C10 | 0.0 (4) |
C20—C21—C22—C23 | −58.77 (10) | C8—C9—C10—C2 | −0.3 (5) |
C20—C21—C27—C26 | 64.43 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···O3 | 0.90 (1) | 1.97 (1) | 2.865 (2) | 176 (1) |
N2—H22···O2i | 0.90 (1) | 1.92 (1) | 2.812 (8) | 170 (1) |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
We thank the Basic Technology Programme of the UK Research Councils for funding under the project Control and Prediction of the Organic Solid State (www.cposs.org.uk). We also thank the EPSRC for grant GR/N07462/01.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Boultif, A. & Louër, D. (1991). J. Appl. Cryst. 24, 987–993. CrossRef CAS Web of Science IUCr Journals Google Scholar
Coelho, A. A. (2003). TOPAS User Manual. Version 3.1. Bruker AXS GmbH, Karlsruhe, Germany. Google Scholar
David, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH. Version 3.0 User Manual. Cambridge Crystallographic Data Centre, Cambridge, England. Google Scholar
David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931–932. Web of Science CSD CrossRef Google Scholar
Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hill, R. J. & Madsen, I. C. (2002). Structure Determination from Powder Diffraction Data, edited by W. I. F. David, K. Shankland, L. B. McCusker and Ch. Baerlocher, pp.114–116. Oxford University Press. Google Scholar
Howie, R. A. & Skakle, J. M. S. (2001). Acta Cryst. E57, o822–o824. Web of Science CSD CrossRef IUCr Journals Google Scholar
Järvinen, M. (1993). J. Appl. Cryst. 26, 525–531. CrossRef Web of Science IUCr Journals Google Scholar
Kienle, M. & Jacob, M. (2003). DIFFRAC plus XRD Commander. Version 2.3. Bruker AXS GmbH, Karlsruhe, Germany. Google Scholar
Markvardsen, A. J., David, W. I. F., Johnson, J. C. & Shankland, K. (2001). Acta Cryst. A57, 47–54. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pawley, G. S. (1981). J. Appl. Cryst. 14, 357–361. CrossRef CAS Web of Science IUCr Journals Google Scholar
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71. CrossRef CAS IUCr Journals Web of Science Google Scholar
Shankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem. 7, 569–572. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.