organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Powder study of 3-aza­bi­cyclo­[3.3.1]nonane-2,4-dione 1-methyl­naphthalene hemisolvate

CROSSMARK_Color_square_no_text.svg

aChristopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England, bSolid-State Research Group, Department of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and cISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, England
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 19 June 2006; accepted 1 August 2006; online 9 August 2006)

The crystal structure of the title compound, C8H11N1O2·0.5C11H10, was solved by simulated annealing from laboratory X-ray powder diffraction data, collected at room temperature. Subsequent Rietveld refinement, using data collected to 1.51 Å resolution, yielded an Rwp value of 0.057. The compound crystallizes with two mol­ecules of 3-aza­bicyclo­nonane-2,4-dione and one mol­ecule of 1-methyl­naphthalene in the asymmetric unit.

Comment

The title compound, (I)[link], was crystallized from 1-methyl­naphthalene during a preliminary solvent screen in preparation for an automated parallel crystallization study of 3-aza­bicyclo­[3.3.1]nonane-2,4-dione. The sample was identified as a new form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]).

[Scheme 1]

The crystal structure of (I)[link] was solved by simulated annealing using laboratory X-ray powder diffraction data. The compound crystallizes in space group P21/c with two mol­ecules of 3-aza­bicyclo­nonane-2,4-dione and one mol­ecule of 1-methyl­naphthalene in the asymmetric unit (Fig. 1[link]). In the crystal structure, inter­molecular N—H⋯O hydrogen bonds (Table 1[link]) link two independent 3-aza­bicyclo­nonane-2,4-dione mol­ecules into a chain (Fig. 1[link]) running along the b axis. The structure of this chain is very similar to that found in the un-solvated form 1 of 3-aza­bicyclo­nonane-2,4-dione (Howie & Skakle, 2001[Howie, R. A. & Skakle, J. M. S. (2001). Acta Cryst. E57, o822-o824.]). However, in form 1 the chain is propagated by a glide symmetry operation, whereas in (I)[link] it propagates via a 21 screw axis. The paired hydrogen-bonded chains in (I)[link] constitute a pseudo-layer parallel to the bc plane. Between two pseudo-layers related by translation along the a axis, channels parallel to the b axis are observed. These channels are filled by stacks of 1-methyl­naphthalene solvent mol­ecules, which are oriented nearly perpendicular to the b axis (Fig. 2[link]).

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], with the atom-numbering scheme. The dashed line indicates the N—H⋯O hydrogen bond between 3-aza­bicyclo­nonane-2,4-dione mol­ecules. Displacement spheres are shown at the 50% probability level.
[Figure 2]
Figure 2
The crystal packing of (I)[link] viewed down the b axis and showing the stacks of solvent mol­ecules situated between the pseudo-layers formed by 3-aza­bicyclo­nonane-2,4-dione mol­ecules. Illustrated using PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).
[Figure 3]
Figure 3
Final observed (points), calculated (line) and difference [(yobs-ycalc)/σ(yobs)] profiles for the Rietveld refinement of the title compound.

Experimental

A polycrystalline sample of (I)[link] was recrystallized by cooling a saturated 1-methyl­naphthalene solution from 313 to 283 K. The sample was loaded into a 0.7 mm borosilicate glass capillary and rotated throughout the data collection to minimize preferred orientation effects. Data were collected using a variable count time (VCT) scheme in which the step time is increased with 2θ (Shankland et al., 1997[Shankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem. 7, 569-572.]; Hill & Madsen, 2002[Hill, R. J. & Madsen, I. C. (2002). Structure Determination from Powder Diffraction Data, edited by W. I. F. David, K. Shankland, L. B. McCusker and Ch. Baerlocher, pp.114-116. Oxford University Press.]).

Crystal data
  • C8H11NO2·0.5C11H10

  • Mr = 224.28

  • Monoclinic, P 21 /c

  • a = 15.02360 (18) Å

  • b = 7.32295 (12) Å

  • c = 22.5164 (3) Å

  • β = 106.0201 (6)°

  • V = 2380.99 (6) Å3

  • Z = 8

  • Dx = 1.251 Mg m−3

  • Cu Kα1 radiation

  • μ = 0.67 mm−1

  • T = 295 K

  • Specimen shape: cylinder

  • 12 × 0.7 × 0.7 mm

  • Specimen prepared at 298 K

  • Particle morphology: needle, white

Data collection
  • Bruker AXS D8 Advance diffractometer

  • Specimen mounting: 0.7 mm borosilicate capillary

  • Specimen mounted in transmission mode

  • Scan method: step

  • Absorption correction: none

  • 2θmin = 4.0, 2θmax = 62.5°

  • Increment in 2θ = 0.017°

Refinement
  • Rp = 0.046

  • Rwp = 0.057

  • Rexp = 0.013

  • RB = 3.499

  • S = 2.00

  • Profile function: Fundamental parameters with axial divergence correction.

  • 211 parameters

  • Only H-atom coordinates refined

  • w = 1/σ(Yobs)2

  • (Δ/σ)max = 0.01

  • Preferred orientation correction: A spherical harmonics-based preferred orientation correction (Järvinen, 1993[Järvinen, M. (1993). J. Appl. Cryst. 26, 525-531.]) was applied with TOPAS (Coelho, 2003[Coelho, A. A. (2003). TOPAS User Manual. Version 3.1. Bruker AXS GmbH, Karlsruhe, Germany.]) during the Rietveld refinement

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O3 0.900 (5) 1.966 (6) 2.865 (2) 175.8 (4)
N2—H22⋯O2i 0.901 (5) 1.921 (10) 2.812 (8) 170.1 (5)
Symmetry code: (i) x, y+1, z.

The diffraction pattern indexed to a monoclinic cell [M(20) = 44.5, F(20) = 146.5; DICVOL91; Boultif & Louer, 1991[Boultif, A. & Louër, D. (1991). J. Appl. Cryst. 24, 987-993.]] and the space group P21/c was assigned from volume considerations and a statistical consideration of the systematic absences (Markvardsen et al., 2001[Markvardsen, A. J., David, W. I. F., Johnson, J. C. & Shankland, K. (2001). Acta Cryst. A57, 47-54.]). The data set was background subtracted and truncated to 51.8° 2θ for Pawley fitting (Pawley, 1981[Pawley, G. S. (1981). J. Appl. Cryst. 14, 357-361.]; χ2Pawley = 15.77) and the structure solved using the simulated annealing (SA) global optimization procedure, described previously (David et al., 1998[David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931-932.]), that is now implemented in the DASH computer program (David et al., 2001[David, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH. Version 3.0 User Manual. Cambridge Crystallographic Data Centre, Cambridge, England.]). The SA structure solution used 453 reflections and involved the optimization of three fragments totaling 18 degrees of freedom (six positional and orientational for each fragment present in the asymmetric unit). All degrees of freedom were assigned random values at the start of the simulated annealing. The best SA solution had a favourable χ2SA/χ2Pawley ratio of 3.47 and a chemically reasonable lattice packing arrangement, with no significant misfit to the diffraction data.

The solved structure was then refined against the data in the range 4–61.4° 2θ using a restrained Rietveld (1969[Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.]) method as implemented in TOPAS (Coelho, 2003[Coelho, A. A. (2003). TOPAS User Manual. Version 3.1. Bruker AXS GmbH, Karlsruhe, Germany.]), with Rwp falling to 0.0566 during the refinement. All atomic positions (including H atoms) for the structure of (I)[link] were refined, subject to a series of restraints on bond lengths, bond angles and planarity.

The restraints were set such that bonds and angles did not deviate more than 0.01 Å and 0.8°, respectively, from their initial values during the refinement. Atoms C12, C13, C15, C16, O1, N1, O2 and H1 (first mol­ecule) and atoms C20, C21, C23, C24, O3, N2, O4 and H22 (second mol­ecule) of 3-aza­bicyclo­[3.3.1]nonane-2,4-dione were restrained to be coplanar. Restraints were also applied to the methyl­naphthalene molecule, for planarity purposes. A spherical harmonics (4th order) correction of intensities for preferred orientation was applied in the final refinement (Järvinen, 1993[Järvinen, M. (1993). J. Appl. Cryst. 26, 525-531.]). The observed and calculated diffraction patterns for the refined crystal structure are shown in Fig. 3[link]. Uiso(H) values were fixed at 0.076 Å2.

Data collection: DIFFRAC plus XRD Commander (Kienle & Jacob, 2003[Kienle, M. & Jacob, M. (2003). DIFFRAC plus XRD Commander. Version 2.3. Bruker AXS GmbH, Karlsruhe, Germany.]); cell refinement: TOPAS (Coelho, 2003[Coelho, A. A. (2003). TOPAS User Manual. Version 3.1. Bruker AXS GmbH, Karlsruhe, Germany.]); data reduction: DASH (David et al., 2001[David, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH. Version 3.0 User Manual. Cambridge Crystallographic Data Centre, Cambridge, England.]); program(s) used to solve structure: DASH; program(s) used to refine structure: TOPAS; mol­ecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]).

Supporting information


Computing details top

Data collection: DIFFRAC plus XRD Commander (Kienle & Jacob, 2003); data reduction: DASH (David et al., 2001); program(s) used to solve structure: DASH; program(s) used to refine structure: Topas (Coelho, 2003); software used to prepare material for publication: CAMERON (Watkin et al., 1996), enCIFer (Allen et al., 2004) and SHELXL97 (Sheldrick, 1997).

3-azabicyclo[3.3.1]nonane-2,4-dione 1-methylnaphthalene hemisolvate top
Crystal data top
C8H11NO2·0.5C11H10Z = 8
Mr = 224.28F(000) = 960
Monoclinic, P21/cDx = 1.251 Mg m3
Hall symbol: -P 2ybcCu Kα1 radiation, λ = 1.54056 Å
a = 15.02360 (18) ŵ = 0.67 mm1
b = 7.32295 (12) ÅT = 295 K
c = 22.5164 (3) Åwhite
β = 106.0201 (6)°cylinder, 12 × 0.7 mm
V = 2380.99 (6) Å3Specimen preparation: Prepared at 298 K
Data collection top
Bruker AXS D8 Advance
diffractometer
Data collection mode: transmission
Radiation source: sealed X-ray tube, Bruker-AXS D8Scan method: step
Primary focussing, Ge 111 monochromator2θmin = 4.0°, 2θmax = 62.5°, 2θstep = 0.017°
Specimen mounting: 0.7 mm borosilicate capillary
Refinement top
Least-squares matrix: selected elements only201 restraints
Rp = 0.0461 constraint
Rwp = 0.057Only H-atom coordinates refined
Rexp = 0.013Weighting scheme based on measured s.u.'s 1/σ(Yobs)2
RBragg = 3.499(Δ/σ)max = 0.01
3387 data pointsBackground function: Chebyshev polynomial
Profile function: Fundamental parameters with axial divergence correction.Preferred orientation correction: A spherical harmonics-based preferred orientation correction (Järvinen, 1993) was applied with Topas during the Rietveld refinement.
211 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.54315 (6)0.4443 (3)0.76875 (4)0.0321 (8)*
C20.51206 (6)0.4415 (5)0.70448 (4)0.0321 (8)*
C30.57567 (6)0.4424 (5)0.66958 (4)0.0321 (8)*
C40.67010 (6)0.4485 (4)0.69889 (4)0.0321 (8)*
C50.70105 (6)0.4487 (4)0.76294 (4)0.0321 (8)*
C60.63774 (5)0.4471 (4)0.79780 (4)0.0321 (8)*
C70.54443 (6)0.4412 (4)0.60537 (4)0.0321 (8)*
C80.45010 (6)0.4434 (4)0.57598 (4)0.0321 (8)*
C90.38669 (6)0.4450 (4)0.61066 (4)0.0321 (8)*
C100.41743 (6)0.4445 (4)0.67475 (4)0.0321 (8)*
H10.6592 (2)0.4473 (9)0.84165 (15)0.0760*
H20.7135 (2)0.4490 (9)0.67509 (16)0.0760*
H30.7657 (2)0.4497 (9)0.78299 (16)0.0760*
H40.5877 (2)0.4411 (9)0.58152 (16)0.0760*
H50.4290 (2)0.4438 (9)0.53217 (15)0.0760*
H60.3222 (2)0.4450 (9)0.59045 (17)0.0760*
H70.3738 (2)0.4450 (9)0.69837 (18)0.0760*
C110.47485 (6)0.44543 (14)0.80686 (4)0.0321 (8)*
H80.5076 (2)0.4393 (8)0.84951 (16)0.0760*
H90.4346 (2)0.3432 (7)0.79622 (16)0.0760*
H100.4393 (3)0.5547 (7)0.79910 (17)0.0760*
N10.17867 (8)0.20902 (12)0.47851 (5)0.0321 (8)*
H110.1574 (2)0.3045 (8)0.49575 (17)0.0760*
C120.22707 (9)0.2494 (13)0.43608 (5)0.0321 (8)*
O10.23991 (19)0.4086 (2)0.42479 (10)0.0321 (8)*
C130.26293 (6)0.09128 (13)0.40697 (5)0.0321 (8)*
H120.2652 (2)0.1316 (8)0.36728 (16)0.0760*
C140.20052 (6)0.07379 (13)0.40282 (5)0.0321 (8)*
H130.2243 (2)0.1756 (8)0.38588 (17)0.0760*
H140.1404 (2)0.051 (8)0.3763 (16)0.0760*
C150.19727 (6)0.12209 (13)0.46805 (4)0.0321 (8)*
H150.156 (2)0.2206 (8)0.46813 (17)0.0760*
C160.15968 (9)0.03559 (14)0.49644 (5)0.0321 (8)*
O20.1167 (12)0.0194 (3)0.53435 (8)0.0321 (8)*
C170.29412 (6)0.17195 (12)0.50824 (4)0.0321 (8)*
H160.3104 (2)0.2788 (8)0.48964 (17)0.0760*
H170.288 (2)0.2007 (8)0.54817 (18)0.0760*
C180.36461 (6)0.02279 (13)0.50985 (4)0.0321 (8)*
H180.3513 (2)0.0791 (8)0.53214 (15)0.0760*
H190.4252 (2)0.0652 (8)0.53002 (16)0.0760*
C190.36203 (6)0.04481 (13)0.44539 (4)0.0321 (8)*
H200.3999 (2)0.1491 (8)0.44618 (17)0.0760*
H210.3852 (2)0.0438 (9)0.42271 (16)0.0760*
N20.06436 (9)0.71279 (13)0.59201 (4)0.0321 (8)*
H220.0757 (3)0.8074 (8)0.56961 (17)0.0760*
C200.08087 (10)0.53992 (14)0.57266 (5)0.0321 (8)*
O30.11144 (19)0.5238 (3)0.52816 (7)0.0321 (8)*
C210.05876 (7)0.38030 (13)0.60806 (4)0.0321 (8)*
H230.0424 (3)0.2824 (8)0.57937 (15)0.0760*
C220.01946 (6)0.42824 (13)0.63579 (4)0.0321 (8)*
H240.0324 (2)0.3294 (7)0.65950 (16)0.0760*
H250.0752 (2)0.4521 (8)0.60452 (15)0.0760*
C230.01063 (7)0.59259 (13)0.67805 (4)0.0321 (8)*
H260.0373 (3)0.6329 (8)0.69504 (16)0.0760*
C240.03020 (10)0.75294 (13)0.64179 (5)0.0321 (8)*
O40.0208 (2)0.9113 (2)0.65479 (10)0.0321 (8)*
C250.09695 (6)0.54694 (13)0.73074 (4)0.0321 (8)*
H270.0770 (2)0.4561 (7)0.75432 (17)0.0760*
H280.1135 (2)0.6545 (7)0.75490 (17)0.0760*
C260.17607 (6)0.47383 (13)0.70790 (4)0.0321 (8)*
H290.2010 (2)0.5698 (8)0.68908 (16)0.0760*
H300.2239 (2)0.4276 (8)0.74153 (16)0.0760*
C270.14519 (7)0.32465 (12)0.65954 (4)0.0321 (8)*
H310.1923 (2)0.2904 (8)0.64094 (17)0.0760*
H320.1301 (2)0.2148 (8)0.67711 (17)0.0760*
Geometric parameters (Å, º) top
O1—C121.220 (9)C25—C261.5171 (13)
O2—C161.210 (13)C26—C271.5217 (13)
O3—C201.218 (2)C21—H230.951 (5)
O4—C241.2138 (19)C22—H240.951 (5)
N1—C161.3860 (14)C22—H250.950 (3)
N1—C121.383 (3)C23—H260.951 (5)
N1—H110.900 (5)C25—H270.950 (4)
N2—C241.3870 (17)C25—H280.951 (5)
N2—C201.3833 (15)C26—H290.949 (5)
N2—H220.901 (5)C26—H300.951 (4)
C12—C131.502 (7)C27—H310.950 (4)
C13—C141.5168 (13)C27—H320.951 (5)
C13—C191.5395 (14)C1—C21.3927 (12)
C14—C151.5246 (14)C1—C61.3909 (12)
C15—C171.5306 (13)C1—C111.5084 (13)
C15—C161.5034 (15)C2—C31.3948 (13)
C17—C181.5148 (13)C2—C101.3945 (13)
C18—C191.5238 (12)C3—C41.3905 (13)
C13—H120.951 (4)C3—C71.3914 (12)
C14—H140.95 (3)C4—C51.3878 (12)
C14—H130.951 (5)C5—C61.3903 (12)
C15—H150.95 (2)C7—C81.3889 (13)
C17—H160.951 (5)C8—C91.3885 (13)
C17—H170.952 (11)C9—C101.3885 (12)
C18—H190.950 (4)C4—H20.951 (3)
C18—H180.951 (5)C5—H30.951 (3)
C19—H210.949 (5)C6—H10.950 (3)
C19—H200.950 (5)C7—H40.951 (3)
C20—C211.5027 (15)C8—H50.949 (3)
C21—C271.5379 (14)C9—H60.950 (3)
C21—C221.5163 (14)C10—H70.951 (4)
C22—C231.5234 (13)C11—H80.952 (4)
C23—C241.5048 (14)C11—H90.951 (5)
C23—C251.5336 (13)C11—H100.951 (5)
C12—N1—C16125.9 (4)C21—C27—C26112.11 (8)
C12—N1—H11116.7 (5)C20—C21—H23106.2 (3)
C16—N1—H11117.4 (3)C22—C21—H23111.7 (3)
C20—N2—C24125.95 (10)C27—C21—H23108.6 (3)
C24—N2—H22117.3 (3)C21—C22—H24110.9 (2)
C20—N2—H22116.7 (3)C21—C22—H25111.2 (2)
O1—C12—N1119.5 (5)C23—C22—H24108.8 (3)
N1—C12—C13117.2 (6)C23—C22—H25111.5 (3)
O1—C12—C13123.33 (18)H24—C22—H25106.3 (4)
C12—C13—C19109.45 (9)C22—C23—H26111.7 (3)
C14—C13—C19110.12 (8)C24—C23—H26105.0 (3)
C12—C13—C14110.6 (2)C25—C23—H26109.2 (2)
C13—C14—C15108.01 (8)C23—C25—H27104.8 (2)
C14—C15—C17110.30 (8)C23—C25—H28107.1 (2)
C14—C15—C16110.31 (8)C26—C25—H27109.9 (3)
C16—C15—C17109.83 (8)C26—C25—H28112.4 (2)
O2—C16—C15124.12 (16)H27—C25—H28109.5 (4)
N1—C16—C15116.63 (10)C25—C26—H29109.4 (3)
O2—C16—N1119.22 (16)C25—C26—H30110.3 (2)
C15—C17—C18112.73 (7)C27—C26—H29107.0 (3)
C17—C18—C19112.19 (7)C27—C26—H30109.2 (3)
C13—C19—C18111.93 (8)H29—C26—H30108.3 (4)
C12—C13—H12106.3 (4)C21—C27—H31108.3 (2)
C14—C13—H12111.8 (3)C21—C27—H32106.8 (2)
C19—C13—H12108.5 (2)C26—C27—H31112.8 (3)
C13—C14—H13110.8 (3)C26—C27—H32111.7 (3)
H13—C14—H14106 (3)H31—C27—H32104.6 (4)
C13—C14—H14111 (3)C2—C1—C6119.67 (8)
C15—C14—H13108.7 (3)C2—C1—C11120.36 (8)
C15—C14—H14111.6 (18)C6—C1—C11119.97 (8)
C14—C15—H15111.8 (3)C1—C2—C3119.99 (8)
C16—C15—H15105.1 (13)C1—C2—C10120.25 (8)
C17—C15—H15109.4 (11)C3—C2—C10119.72 (8)
C18—C17—H17112.7 (11)C2—C3—C4120.05 (8)
H16—C17—H17109.7 (7)C2—C3—C7119.89 (8)
C15—C17—H16104.7 (2)C4—C3—C7120.05 (8)
C15—C17—H17106.7 (17)C3—C4—C5119.91 (8)
C18—C17—H16109.9 (3)C4—C5—C6120.10 (8)
C17—C18—H19110.3 (3)C1—C6—C5120.26 (8)
H18—C18—H19108.5 (4)C3—C7—C8120.15 (8)
C19—C18—H18107.1 (3)C7—C8—C9120.02 (8)
C17—C18—H18109.3 (3)C8—C9—C10120.09 (8)
C19—C18—H19109.3 (2)C2—C10—C9120.11 (8)
C18—C19—H21111.9 (3)C3—C4—H2120.1 (2)
H20—C19—H21104.7 (4)C5—C4—H2120.0 (2)
C18—C19—H20112.7 (2)C4—C5—H3119.9 (2)
C13—C19—H20108.3 (3)C6—C5—H3120.0 (2)
C13—C19—H21106.9 (2)C1—C6—H1119.9 (2)
O3—C20—N2119.28 (14)C5—C6—H1119.9 (2)
N2—C20—C21117.37 (10)C3—C7—H4120.0 (2)
O3—C20—C21123.36 (14)C8—C7—H4119.9 (2)
C20—C21—C27109.98 (9)C7—C8—H5120.0 (2)
C22—C21—C27109.88 (7)C9—C8—H5120.0 (2)
C20—C21—C22110.38 (9)C8—C9—H6119.9 (2)
C21—C22—C23108.06 (8)C10—C9—H6120.0 (2)
C22—C23—C25110.66 (8)C2—C10—H7120.0 (2)
C22—C23—C24110.26 (8)C9—C10—H7119.9 (2)
C24—C23—C25109.86 (9)C1—C11—H8109.3 (2)
O4—C24—C23124.16 (15)C1—C11—H9109.7 (2)
N2—C24—C23116.38 (9)C1—C11—H10109.6 (3)
O4—C24—N2119.41 (15)H8—C11—H9109.5 (4)
C23—C25—C26112.90 (7)H8—C11—H10109.4 (4)
C25—C26—C27112.54 (8)H9—C11—H10109.3 (4)
C16—N1—C12—O1179.26 (18)C22—C21—C27—C2657.27 (10)
C16—N1—C12—C130.40 (18)C21—C22—C23—C2460.46 (11)
C12—N1—C16—O2179.8 (7)C21—C22—C23—C2561.29 (10)
C12—N1—C16—C151.51 (18)C22—C23—C24—N231.85 (15)
C20—N2—C24—O4178.34 (19)C25—C23—C24—O487.1 (2)
C24—N2—C20—C210.9 (2)C22—C23—C25—C2654.33 (10)
C24—N2—C20—O3179.72 (18)C24—C23—C25—C2667.65 (10)
C20—N2—C24—C230.7 (2)C25—C23—C24—N290.38 (12)
O1—C12—C13—C14151.34 (18)C22—C23—C24—O4150.67 (19)
N1—C12—C13—C1991.62 (15)C23—C25—C26—C2747.76 (10)
N1—C12—C13—C1429.85 (14)C25—C26—C27—C2149.14 (10)
O1—C12—C13—C1987.2 (2)C6—C1—C2—C30.3 (5)
C12—C13—C14—C1558.83 (16)C6—C1—C2—C10178.0 (3)
C12—C13—C19—C1864.9 (3)C11—C1—C2—C3179.3 (3)
C19—C13—C14—C1562.25 (10)C11—C1—C2—C101.7 (4)
C14—C13—C19—C1856.88 (11)C2—C1—C6—C50.6 (4)
C13—C14—C15—C1659.90 (10)C11—C1—C6—C5179.1 (2)
C13—C14—C15—C1761.60 (10)C1—C2—C3—C40.8 (5)
C17—C15—C16—O288.1 (7)C1—C2—C3—C7179.4 (3)
C16—C15—C17—C1866.00 (10)C10—C2—C3—C4176.8 (3)
C14—C15—C17—C1855.79 (10)C10—C2—C3—C71.8 (5)
C14—C15—C16—N131.77 (13)C1—C2—C10—C9178.9 (3)
C14—C15—C16—O2150.1 (7)C3—C2—C10—C91.2 (5)
C17—C15—C16—N190.02 (11)C2—C3—C4—C51.7 (5)
C15—C17—C18—C1949.32 (10)C7—C3—C4—C5179.7 (3)
C17—C18—C19—C1349.63 (10)C2—C3—C7—C81.5 (5)
O3—C20—C21—C22150.43 (18)C4—C3—C7—C8177.1 (3)
N2—C20—C21—C2792.44 (13)C3—C4—C5—C61.5 (5)
N2—C20—C21—C2228.97 (14)C4—C5—C6—C10.4 (4)
O3—C20—C21—C2788.17 (19)C3—C7—C8—C90.6 (5)
C27—C21—C22—C2362.69 (9)C7—C8—C9—C100.0 (4)
C20—C21—C22—C2358.77 (10)C8—C9—C10—C20.3 (5)
C20—C21—C27—C2664.43 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O30.90 (1)1.97 (1)2.865 (2)176 (1)
N2—H22···O2i0.90 (1)1.92 (1)2.812 (8)170 (1)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We thank the Basic Technology Programme of the UK Research Councils for funding under the project Control and Prediction of the Organic Solid State (www.cposs.org.uk). We also thank the EPSRC for grant GR/N07462/01.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBoultif, A. & Louër, D. (1991). J. Appl. Cryst. 24, 987–993.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCoelho, A. A. (2003). TOPAS User Manual. Version 3.1. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationDavid, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH. Version 3.0 User Manual. Cambridge Crystallographic Data Centre, Cambridge, England.  Google Scholar
First citationDavid, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931–932.  Web of Science CSD CrossRef Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHill, R. J. & Madsen, I. C. (2002). Structure Determination from Powder Diffraction Data, edited by W. I. F. David, K. Shankland, L. B. McCusker and Ch. Baerlocher, pp.114–116. Oxford University Press.  Google Scholar
First citationHowie, R. A. & Skakle, J. M. S. (2001). Acta Cryst. E57, o822–o824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJärvinen, M. (1993). J. Appl. Cryst. 26, 525–531.  CrossRef Web of Science IUCr Journals Google Scholar
First citationKienle, M. & Jacob, M. (2003). DIFFRAC plus XRD Commander. Version 2.3. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationMarkvardsen, A. J., David, W. I. F., Johnson, J. C. & Shankland, K. (2001). Acta Cryst. A57, 47–54.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPawley, G. S. (1981). J. Appl. Cryst. 14, 357–361.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationShankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem. 7, 569–572.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds