organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(±)-exo-2-Hydr­­oxy-5-oxo-4,8-dioxatri­cyclo­[4.2.1.03,7]nonane-9-exo-carboxylic acid

CROSSMARK_Color_square_no_text.svg

aCentre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, England, and bSchool of Chemistry, University of Nottingham, Nottingham NG7 2RD, England
*Correspondence e-mail: claire.wilson@nottingham.ac.uk

(Received 14 June 2006; accepted 4 August 2006; online 9 August 2006)

The title compound, C8H9NO5, was prepared as a by-product in synthetic efforts to prepare a carbasugar analogue of a putative inter­mediate, viz. (±)-6-hydroxy­methyl-7-oxa­bicyclo­[2.2.1]hept-2-exo-3-endo-diol, in the uridine diphos­phate–galactopyran­ose mutase-catalysed reaction. The structure shows extensive hydrogen bonding involving N—H⋯O and O—H⋯O as well as C—H⋯O inter­actions.

Comment

The title compound, (I)[link], was prepared as a by-product in synthetic efforts to prepare a carbasugar analogue of a putative inter­mediate, viz. (±)-6-hydroxy­methyl-7-oxabicyclo­[2.2.1]hept-2-exo-3-endo-diol in the uridine diphosphate–galactopyran­ose mutase-catalysed reaction, and was synthesized from racemic exo-5,6-epoxy-7-oxabicyclo[2.2.1]heptan-trans-2,3-dicarboxylic acid dimethyl ester (Sadeghi-Khomami et al., 2005[Sadeghi-Khomami, A., Blake, A. J., Wilson, C. & Thomas, N. R. (2005). Org. Lett. 7, 4891-4894.]) through treatment with concentrated ammonia solution (30% w/v).

[Scheme 1]

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. There is extensive hydrogen bonding in the structure (see Table 1[link]). N—H⋯O inter­actions form a ribbon structure (Fig. 2[link]), which lies parallel to the ac plane and propagates along the c-axis direction. These ribbons can be considered to be linked by O—H⋯O inter­actions, forming a two-dimensional layer parallel to the bc plane (Fig. 3[link]). In addition, there are C—H⋯O inter­actions in the structure (Table 1[link]) which conform to the geometric conditions for the weak hydrogen bonds given by Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 60. Oxford University Press.]).

[Figure 1]
Figure 1
View showing the mol­ecular structure and atom-labelling scheme of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
View showing N—H⋯O hydrogen-bonding inter­actions (dashed lines), leading to a ribbon structure parallel to the ac plane and propagating parallel to the c axis.
[Figure 3]
Figure 3
View showing linkage of the N—H⋯O ribbons (each shown as a single colour) by O—H⋯O inter­actions (dashed lines), forming a sheet in the bc plane.

Experimental

Formation of the title compound occurred via hydrolysis of the endo-methyl carboxyl­ate, followed by a 5-exo-Tet lactonization on to the exo-epoxide. Concurrently, the exo-methyl carboxyl­ate is hydrolysed and, somewhat surprisingly, forms the carboxamide rather than the expected ammonium salt of the carboxylic acid. The resulting solution was neutralized to pH 7.0 after 16 h at room temperature by dropwise addition of glacial acetic acid and the solvent removed by lyophilization (see scheme). This procedure gave the amide-lactone product (RF = 0.5, 2-propanol/MeOH 2:1), which crystallized from methanol as colourless blocks. The IR spectrum of the title compound clearly revealed carbonyl bands for the lactone (1780 cm−1) and carboxamide functional groups (1670 cm−1).

[Scheme 2]
Crystal data
  • C8H9NO5

  • Mr = 199.16

  • Monoclinic, P 21 /c

  • a = 8.3843 (6) Å

  • b = 9.1844 (6) Å

  • c = 10.1638 (7) Å

  • β = 97.525 (1)°

  • V = 775.92 (9) Å3

  • Z = 4

  • Dx = 1.705 Mg m−3

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.67 × 0.49 × 0.31 mm

Data collection
  • Bruker SMART1000 CCD area-detector diffractometer

  • ω scans

  • Absorption correction: none

  • 6671 measured reflections

  • 1744 independent reflections

  • 1665 reflections with I > 2σ(I)

  • Rint = 0.051

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.03

  • 1744 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0546P)2 + 0.3811P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.24 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.025 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10A⋯O2i 0.84 (2) 2.30 (2) 3.0871 (15) 156.1 (17)
N10—H10B⋯O5ii 0.88 (2) 2.39 (2) 3.1743 (15) 149.8 (16)
O2—H2⋯O11iii 0.84 (2) 2.06 (2) 2.8841 (13) 167 (2)
C2—H2A⋯O11iv 1.00 2.55 3.4779 (15) 154
C1—H1A⋯O11iii 1.00 2.38 2.9723 (14) 117
C7—H7A⋯O4v 1.00 2.43 3.2000 (14) 133
C7—H7A⋯O5vi 1.00 2.60 3.2862 (15) 126
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+1, -y+2, -z+1; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) -x, -y+2, -z+1.

All H atoms could be located in a difference Fourier map. However, the H atoms bound to carbon were subsequently placed in idealized positions and included as part of a riding model, with C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C). Positional and Uiso parameters were refined for H atoms bound to nitro­gen and oxygen.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 6.524) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SHELXTL (Bruker, 2001[Bruker (2001). SMART (Version 6.524) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: MERCURY (Version 1.4.1; Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT and SHELXTL (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Version 1.4.1; Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

(±)-exo-2-Hydroxy-5-oxo-4,8-dioxatricyclo[4.2.1.03,7]nonane-9-exo-carboxylic acid top
Crystal data top
C8H9NO5F(000) = 416
Mr = 199.16Dx = 1.705 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5318 reflections
a = 8.3843 (6) Åθ = 2.2–27.5°
b = 9.1844 (6) ŵ = 0.14 mm1
c = 10.1638 (7) ÅT = 150 K
β = 97.525 (1)°Block, colourless
V = 775.92 (9) Å30.67 × 0.49 × 0.31 mm
Z = 4
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
1665 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ω scansh = 1010
6671 measured reflectionsk = 1111
1744 independent reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.3811P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
1744 reflectionsΔρmax = 0.40 e Å3
140 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.39752 (13)0.90298 (12)0.83551 (11)0.0162 (2)
H1A0.50330.88330.89040.019*
O20.27189 (11)0.91959 (10)1.03823 (8)0.0221 (2)
H20.329 (3)0.843 (2)1.040 (2)0.046 (6)*
C20.27728 (14)0.98325 (13)0.91116 (11)0.0184 (3)
H2A0.30231.08960.91870.022*
C30.11901 (14)0.95537 (14)0.81764 (12)0.0203 (3)
H3A0.03160.91690.86610.024*
O40.06852 (11)1.08301 (10)0.73785 (9)0.0251 (2)
O50.10540 (11)1.17205 (10)0.53941 (9)0.0272 (2)
C50.13596 (14)1.08018 (13)0.62312 (12)0.0205 (3)
C60.24340 (13)0.94895 (13)0.62351 (11)0.0171 (3)
H6A0.24730.90710.53320.020*
C70.17366 (13)0.84289 (13)0.71936 (11)0.0185 (3)
H7A0.08750.77620.67710.022*
O80.30882 (10)0.77254 (9)0.79295 (8)0.0184 (2)
C90.41311 (13)0.97821 (12)0.70168 (11)0.0155 (2)
H9A0.43651.08460.71260.019*
C100.54303 (13)0.89808 (12)0.63801 (11)0.0163 (2)
N100.69432 (13)0.92649 (13)0.68952 (12)0.0243 (3)
H10A0.715 (2)0.989 (2)0.7503 (19)0.038 (5)*
O110.50958 (10)0.80859 (11)0.54905 (9)0.0258 (2)
H10B0.769 (2)0.881 (2)0.6526 (18)0.035 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0159 (5)0.0172 (5)0.0153 (5)0.0015 (4)0.0017 (4)0.0003 (4)
O20.0267 (5)0.0245 (5)0.0161 (4)0.0012 (3)0.0063 (3)0.0021 (3)
C20.0200 (6)0.0192 (5)0.0165 (5)0.0004 (4)0.0043 (4)0.0008 (4)
C30.0176 (5)0.0241 (6)0.0197 (5)0.0018 (4)0.0046 (4)0.0022 (4)
O40.0242 (5)0.0295 (5)0.0224 (5)0.0107 (4)0.0055 (3)0.0031 (3)
O50.0257 (5)0.0292 (5)0.0263 (5)0.0087 (4)0.0020 (4)0.0065 (4)
C50.0163 (5)0.0243 (6)0.0208 (6)0.0022 (4)0.0016 (4)0.0009 (4)
C60.0156 (5)0.0192 (5)0.0163 (5)0.0009 (4)0.0013 (4)0.0005 (4)
C70.0153 (5)0.0209 (6)0.0191 (5)0.0011 (4)0.0019 (4)0.0006 (4)
O80.0186 (4)0.0161 (4)0.0203 (4)0.0009 (3)0.0012 (3)0.0010 (3)
C90.0147 (5)0.0164 (5)0.0153 (5)0.0008 (4)0.0021 (4)0.0004 (4)
C100.0170 (5)0.0160 (5)0.0162 (5)0.0002 (4)0.0037 (4)0.0025 (4)
N100.0159 (5)0.0285 (6)0.0287 (6)0.0011 (4)0.0030 (4)0.0103 (4)
O110.0199 (4)0.0308 (5)0.0270 (5)0.0007 (4)0.0044 (3)0.0123 (4)
Geometric parameters (Å, º) top
C1—O81.4460 (13)C5—C61.5044 (16)
C1—C21.5344 (15)C6—C71.5457 (16)
C1—C91.5464 (15)C6—C91.5594 (15)
C1—H1A1.0000C6—H6A1.0000
O2—C21.4238 (14)C7—O81.4279 (14)
O2—H20.84 (2)C7—H7A1.0000
C2—C31.5491 (16)C9—C101.5270 (15)
C2—H2A1.0000C9—H9A1.0000
C3—O41.4565 (14)C10—O111.2269 (14)
C3—C71.5476 (16)C10—N101.3332 (15)
C3—H3A1.0000N10—H10A0.84 (2)
O4—C51.3612 (15)N10—H10B0.88 (2)
O5—C51.2018 (15)
O8—C1—C2101.66 (9)C5—C6—C9111.68 (9)
O8—C1—C9101.92 (8)C7—C6—C9100.53 (8)
C2—C1—C9111.28 (9)C5—C6—H6A113.4
O8—C1—H1A113.6C7—C6—H6A113.4
C2—C1—H1A113.6C9—C6—H6A113.4
C9—C1—H1A113.6O8—C7—C6105.99 (9)
C2—O2—H2105.8 (14)O8—C7—C3104.22 (9)
O2—C2—C1110.99 (9)C6—C7—C398.89 (9)
O2—C2—C3111.24 (9)O8—C7—H7A115.3
C1—C2—C3100.33 (9)C6—C7—H7A115.3
O2—C2—H2A111.3C3—C7—H7A115.3
C1—C2—H2A111.3C7—O8—C197.10 (8)
C3—C2—H2A111.3C10—C9—C1107.73 (9)
O4—C3—C7105.48 (9)C10—C9—C6110.79 (9)
O4—C3—C2111.82 (10)C1—C9—C6101.22 (8)
C7—C3—C2101.78 (9)C10—C9—H9A112.2
O4—C3—H3A112.4C1—C9—H9A112.2
C7—C3—H3A112.4C6—C9—H9A112.2
C2—C3—H3A112.4O11—C10—N10122.30 (11)
C5—O4—C3109.79 (9)O11—C10—C9121.89 (10)
O5—C5—O4121.27 (11)N10—C10—C9115.73 (10)
O5—C5—C6129.53 (11)C10—N10—H10A121.0 (13)
O4—C5—C6109.20 (10)C10—N10—H10B115.9 (12)
C5—C6—C7103.34 (9)H10A—N10—H10B122.9 (17)
O8—C1—C2—O276.24 (11)O4—C3—C7—O8142.70 (9)
C9—C1—C2—O2175.90 (9)C2—C3—C7—O825.84 (11)
O8—C1—C2—C341.43 (10)O4—C3—C7—C633.59 (11)
C9—C1—C2—C366.43 (11)C2—C3—C7—C683.27 (10)
O2—C2—C3—O4139.66 (10)C6—C7—O8—C151.80 (10)
C1—C2—C3—O4102.85 (10)C3—C7—O8—C151.99 (10)
O2—C2—C3—C7108.18 (10)C2—C1—O8—C758.46 (9)
C1—C2—C3—C79.31 (11)C9—C1—O8—C756.51 (9)
C7—C3—O4—C520.84 (12)O8—C1—C9—C1076.25 (10)
C2—C3—O4—C588.98 (11)C2—C1—C9—C10176.06 (9)
C3—O4—C5—O5176.83 (11)O8—C1—C9—C640.06 (10)
C3—O4—C5—C62.27 (13)C2—C1—C9—C667.62 (11)
O5—C5—C6—C7154.72 (13)C5—C6—C9—C10145.28 (10)
O4—C5—C6—C724.28 (12)C7—C6—C9—C10105.67 (10)
O5—C5—C6—C998.04 (15)C5—C6—C9—C1100.68 (10)
O4—C5—C6—C982.96 (12)C7—C6—C9—C18.38 (10)
C5—C6—C7—O8141.71 (9)C1—C9—C10—O11100.73 (12)
C9—C6—C7—O826.23 (11)C6—C9—C10—O119.14 (15)
C5—C6—C7—C334.04 (11)C1—C9—C10—N1076.22 (12)
C9—C6—C7—C381.44 (9)C6—C9—C10—N10173.92 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10A···O2i0.84 (2)2.30 (2)3.0871 (15)156.1 (17)
N10—H10B···O5ii0.88 (2)2.39 (2)3.1743 (15)149.8 (16)
O2—H2···O11iii0.84 (2)2.06 (2)2.8841 (13)167 (2)
C2—H2A···O11iv1.002.553.4779 (15)154
C1—H1A···O11iii1.002.382.9723 (14)117
C7—H7A···O4v1.002.433.2000 (14)133
C7—H7A···O5vi1.002.603.2862 (15)126
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+2, z+1; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x, y1/2, z+3/2; (vi) x, y+2, z+1.
 

Acknowledgements

We thank the Iranian Government for financial support to Dr Ali Sadeghi-Khomani.

References

First citationBruker (2000). SAINT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART (Version 6.524) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 60. Oxford University Press.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSadeghi-Khomami, A., Blake, A. J., Wilson, C. & Thomas, N. R. (2005). Org. Lett. 7, 4891–4894.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds