organic compounds
(±)-exo-2-Hydroxy-5-oxo-4,8-dioxatricyclo[4.2.1.03,7]nonane-9-exo-carboxylic acid
aCentre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, England, and bSchool of Chemistry, University of Nottingham, Nottingham NG7 2RD, England
*Correspondence e-mail: claire.wilson@nottingham.ac.uk
The title compound, C8H9NO5, was prepared as a by-product in synthetic efforts to prepare a carbasugar analogue of a putative intermediate, viz. (±)-6-hydroxymethyl-7-oxabicyclo[2.2.1]hept-2-exo-3-endo-diol, in the uridine diphosphate–galactopyranose mutase-catalysed reaction. The structure shows extensive hydrogen bonding involving N—H⋯O and O—H⋯O as well as C—H⋯O interactions.
Comment
The title compound, (I), was prepared as a by-product in synthetic efforts to prepare a carbasugar analogue of a putative intermediate, viz. (±)-6-hydroxymethyl-7-oxabicyclo[2.2.1]hept-2-exo-3-endo-diol in the uridine diphosphate–galactopyranose mutase-catalysed reaction, and was synthesized from racemic exo-5,6-epoxy-7-oxabicyclo[2.2.1]heptan-trans-2,3-dicarboxylic acid dimethyl ester (Sadeghi-Khomami et al., 2005) through treatment with concentrated ammonia solution (30% w/v).
The molecular structure of (I) is shown in Fig. 1. There is extensive hydrogen bonding in the structure (see Table 1). N—H⋯O interactions form a ribbon structure (Fig. 2), which lies parallel to the ac plane and propagates along the c-axis direction. These ribbons can be considered to be linked by O—H⋯O interactions, forming a two-dimensional layer parallel to the bc plane (Fig. 3). In addition, there are C—H⋯O interactions in the structure (Table 1) which conform to the geometric conditions for the weak hydrogen bonds given by Desiraju & Steiner (1999).
Experimental
Formation of the title compound occurred via hydrolysis of the endo-methyl carboxylate, followed by a 5-exo-Tet lactonization on to the exo-epoxide. Concurrently, the exo-methyl carboxylate is hydrolysed and, somewhat surprisingly, forms the carboxamide rather than the expected ammonium salt of the carboxylic acid. The resulting solution was neutralized to pH 7.0 after 16 h at room temperature by dropwise addition of glacial acetic acid and the solvent removed by lyophilization (see scheme). This procedure gave the amide-lactone product (RF = 0.5, 2-propanol/MeOH 2:1), which crystallized from methanol as colourless blocks. The IR spectrum of the title compound clearly revealed carbonyl bands for the lactone (1780 cm−1) and carboxamide functional groups (1670 cm−1).
Crystal data
|
Data collection
|
Refinement
|
All H atoms could be located in a difference Fourier map. However, the H atoms bound to carbon were subsequently placed in idealized positions and included as part of a riding model, with C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C). Positional and Uiso parameters were refined for H atoms bound to nitrogen and oxygen.
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2000); data reduction: SAINT and SHELXTL (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: MERCURY (Version 1.4.1; Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).
Supporting information
https://doi.org/10.1107/S1600536806030649/fb2008sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806030649/fb2008Isup2.hkl
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2000); data reduction: SAINT and SHELXTL (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Version 1.4.1; Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).C8H9NO5 | F(000) = 416 |
Mr = 199.16 | Dx = 1.705 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5318 reflections |
a = 8.3843 (6) Å | θ = 2.2–27.5° |
b = 9.1844 (6) Å | µ = 0.14 mm−1 |
c = 10.1638 (7) Å | T = 150 K |
β = 97.525 (1)° | Block, colourless |
V = 775.92 (9) Å3 | 0.67 × 0.49 × 0.31 mm |
Z = 4 |
Bruker SMART1000 CCD area-detector diffractometer | 1665 reflections with I > 2σ(I) |
Radiation source: normal-focus sealed tube | Rint = 0.051 |
Graphite monochromator | θmax = 27.5°, θmin = 2.5° |
ω scans | h = −10→10 |
6671 measured reflections | k = −11→11 |
1744 independent reflections | l = −13→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0546P)2 + 0.3811P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
1744 reflections | Δρmax = 0.40 e Å−3 |
140 parameters | Δρmin = −0.24 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.025 (4) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.39752 (13) | 0.90298 (12) | 0.83551 (11) | 0.0162 (2) | |
H1A | 0.5033 | 0.8833 | 0.8904 | 0.019* | |
O2 | 0.27189 (11) | 0.91959 (10) | 1.03823 (8) | 0.0221 (2) | |
H2 | 0.329 (3) | 0.843 (2) | 1.040 (2) | 0.046 (6)* | |
C2 | 0.27728 (14) | 0.98325 (13) | 0.91116 (11) | 0.0184 (3) | |
H2A | 0.3023 | 1.0896 | 0.9187 | 0.022* | |
C3 | 0.11901 (14) | 0.95537 (14) | 0.81764 (12) | 0.0203 (3) | |
H3A | 0.0316 | 0.9169 | 0.8661 | 0.024* | |
O4 | 0.06852 (11) | 1.08301 (10) | 0.73785 (9) | 0.0251 (2) | |
O5 | 0.10540 (11) | 1.17205 (10) | 0.53941 (9) | 0.0272 (2) | |
C5 | 0.13596 (14) | 1.08018 (13) | 0.62312 (12) | 0.0205 (3) | |
C6 | 0.24340 (13) | 0.94895 (13) | 0.62351 (11) | 0.0171 (3) | |
H6A | 0.2473 | 0.9071 | 0.5332 | 0.020* | |
C7 | 0.17366 (13) | 0.84289 (13) | 0.71936 (11) | 0.0185 (3) | |
H7A | 0.0875 | 0.7762 | 0.6771 | 0.022* | |
O8 | 0.30882 (10) | 0.77254 (9) | 0.79295 (8) | 0.0184 (2) | |
C9 | 0.41311 (13) | 0.97821 (12) | 0.70168 (11) | 0.0155 (2) | |
H9A | 0.4365 | 1.0846 | 0.7126 | 0.019* | |
C10 | 0.54303 (13) | 0.89808 (12) | 0.63801 (11) | 0.0163 (2) | |
N10 | 0.69432 (13) | 0.92649 (13) | 0.68952 (12) | 0.0243 (3) | |
H10A | 0.715 (2) | 0.989 (2) | 0.7503 (19) | 0.038 (5)* | |
O11 | 0.50958 (10) | 0.80859 (11) | 0.54905 (9) | 0.0258 (2) | |
H10B | 0.769 (2) | 0.881 (2) | 0.6526 (18) | 0.035 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0159 (5) | 0.0172 (5) | 0.0153 (5) | −0.0015 (4) | 0.0017 (4) | 0.0003 (4) |
O2 | 0.0267 (5) | 0.0245 (5) | 0.0161 (4) | 0.0012 (3) | 0.0063 (3) | 0.0021 (3) |
C2 | 0.0200 (6) | 0.0192 (5) | 0.0165 (5) | −0.0004 (4) | 0.0043 (4) | 0.0008 (4) |
C3 | 0.0176 (5) | 0.0241 (6) | 0.0197 (5) | 0.0018 (4) | 0.0046 (4) | 0.0022 (4) |
O4 | 0.0242 (5) | 0.0295 (5) | 0.0224 (5) | 0.0107 (4) | 0.0055 (3) | 0.0031 (3) |
O5 | 0.0257 (5) | 0.0292 (5) | 0.0263 (5) | 0.0087 (4) | 0.0020 (4) | 0.0065 (4) |
C5 | 0.0163 (5) | 0.0243 (6) | 0.0208 (6) | 0.0022 (4) | 0.0016 (4) | −0.0009 (4) |
C6 | 0.0156 (5) | 0.0192 (5) | 0.0163 (5) | 0.0009 (4) | 0.0013 (4) | 0.0005 (4) |
C7 | 0.0153 (5) | 0.0209 (6) | 0.0191 (5) | −0.0011 (4) | 0.0019 (4) | 0.0006 (4) |
O8 | 0.0186 (4) | 0.0161 (4) | 0.0203 (4) | −0.0009 (3) | 0.0012 (3) | 0.0010 (3) |
C9 | 0.0147 (5) | 0.0164 (5) | 0.0153 (5) | 0.0008 (4) | 0.0021 (4) | 0.0004 (4) |
C10 | 0.0170 (5) | 0.0160 (5) | 0.0162 (5) | 0.0002 (4) | 0.0037 (4) | 0.0025 (4) |
N10 | 0.0159 (5) | 0.0285 (6) | 0.0287 (6) | 0.0011 (4) | 0.0030 (4) | −0.0103 (4) |
O11 | 0.0199 (4) | 0.0308 (5) | 0.0270 (5) | −0.0007 (4) | 0.0044 (3) | −0.0123 (4) |
C1—O8 | 1.4460 (13) | C5—C6 | 1.5044 (16) |
C1—C2 | 1.5344 (15) | C6—C7 | 1.5457 (16) |
C1—C9 | 1.5464 (15) | C6—C9 | 1.5594 (15) |
C1—H1A | 1.0000 | C6—H6A | 1.0000 |
O2—C2 | 1.4238 (14) | C7—O8 | 1.4279 (14) |
O2—H2 | 0.84 (2) | C7—H7A | 1.0000 |
C2—C3 | 1.5491 (16) | C9—C10 | 1.5270 (15) |
C2—H2A | 1.0000 | C9—H9A | 1.0000 |
C3—O4 | 1.4565 (14) | C10—O11 | 1.2269 (14) |
C3—C7 | 1.5476 (16) | C10—N10 | 1.3332 (15) |
C3—H3A | 1.0000 | N10—H10A | 0.84 (2) |
O4—C5 | 1.3612 (15) | N10—H10B | 0.88 (2) |
O5—C5 | 1.2018 (15) | ||
O8—C1—C2 | 101.66 (9) | C5—C6—C9 | 111.68 (9) |
O8—C1—C9 | 101.92 (8) | C7—C6—C9 | 100.53 (8) |
C2—C1—C9 | 111.28 (9) | C5—C6—H6A | 113.4 |
O8—C1—H1A | 113.6 | C7—C6—H6A | 113.4 |
C2—C1—H1A | 113.6 | C9—C6—H6A | 113.4 |
C9—C1—H1A | 113.6 | O8—C7—C6 | 105.99 (9) |
C2—O2—H2 | 105.8 (14) | O8—C7—C3 | 104.22 (9) |
O2—C2—C1 | 110.99 (9) | C6—C7—C3 | 98.89 (9) |
O2—C2—C3 | 111.24 (9) | O8—C7—H7A | 115.3 |
C1—C2—C3 | 100.33 (9) | C6—C7—H7A | 115.3 |
O2—C2—H2A | 111.3 | C3—C7—H7A | 115.3 |
C1—C2—H2A | 111.3 | C7—O8—C1 | 97.10 (8) |
C3—C2—H2A | 111.3 | C10—C9—C1 | 107.73 (9) |
O4—C3—C7 | 105.48 (9) | C10—C9—C6 | 110.79 (9) |
O4—C3—C2 | 111.82 (10) | C1—C9—C6 | 101.22 (8) |
C7—C3—C2 | 101.78 (9) | C10—C9—H9A | 112.2 |
O4—C3—H3A | 112.4 | C1—C9—H9A | 112.2 |
C7—C3—H3A | 112.4 | C6—C9—H9A | 112.2 |
C2—C3—H3A | 112.4 | O11—C10—N10 | 122.30 (11) |
C5—O4—C3 | 109.79 (9) | O11—C10—C9 | 121.89 (10) |
O5—C5—O4 | 121.27 (11) | N10—C10—C9 | 115.73 (10) |
O5—C5—C6 | 129.53 (11) | C10—N10—H10A | 121.0 (13) |
O4—C5—C6 | 109.20 (10) | C10—N10—H10B | 115.9 (12) |
C5—C6—C7 | 103.34 (9) | H10A—N10—H10B | 122.9 (17) |
O8—C1—C2—O2 | 76.24 (11) | O4—C3—C7—O8 | 142.70 (9) |
C9—C1—C2—O2 | −175.90 (9) | C2—C3—C7—O8 | 25.84 (11) |
O8—C1—C2—C3 | −41.43 (10) | O4—C3—C7—C6 | 33.59 (11) |
C9—C1—C2—C3 | 66.43 (11) | C2—C3—C7—C6 | −83.27 (10) |
O2—C2—C3—O4 | 139.66 (10) | C6—C7—O8—C1 | 51.80 (10) |
C1—C2—C3—O4 | −102.85 (10) | C3—C7—O8—C1 | −51.99 (10) |
O2—C2—C3—C7 | −108.18 (10) | C2—C1—O8—C7 | 58.46 (9) |
C1—C2—C3—C7 | 9.31 (11) | C9—C1—O8—C7 | −56.51 (9) |
C7—C3—O4—C5 | −20.84 (12) | O8—C1—C9—C10 | −76.25 (10) |
C2—C3—O4—C5 | 88.98 (11) | C2—C1—C9—C10 | 176.06 (9) |
C3—O4—C5—O5 | 176.83 (11) | O8—C1—C9—C6 | 40.06 (10) |
C3—O4—C5—C6 | −2.27 (13) | C2—C1—C9—C6 | −67.62 (11) |
O5—C5—C6—C7 | −154.72 (13) | C5—C6—C9—C10 | −145.28 (10) |
O4—C5—C6—C7 | 24.28 (12) | C7—C6—C9—C10 | 105.67 (10) |
O5—C5—C6—C9 | 98.04 (15) | C5—C6—C9—C1 | 100.68 (10) |
O4—C5—C6—C9 | −82.96 (12) | C7—C6—C9—C1 | −8.38 (10) |
C5—C6—C7—O8 | −141.71 (9) | C1—C9—C10—O11 | 100.73 (12) |
C9—C6—C7—O8 | −26.23 (11) | C6—C9—C10—O11 | −9.14 (15) |
C5—C6—C7—C3 | −34.04 (11) | C1—C9—C10—N10 | −76.22 (12) |
C9—C6—C7—C3 | 81.44 (9) | C6—C9—C10—N10 | 173.92 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N10—H10A···O2i | 0.84 (2) | 2.30 (2) | 3.0871 (15) | 156.1 (17) |
N10—H10B···O5ii | 0.88 (2) | 2.39 (2) | 3.1743 (15) | 149.8 (16) |
O2—H2···O11iii | 0.84 (2) | 2.06 (2) | 2.8841 (13) | 167 (2) |
C2—H2A···O11iv | 1.00 | 2.55 | 3.4779 (15) | 154 |
C1—H1A···O11iii | 1.00 | 2.38 | 2.9723 (14) | 117 |
C7—H7A···O4v | 1.00 | 2.43 | 3.2000 (14) | 133 |
C7—H7A···O5vi | 1.00 | 2.60 | 3.2862 (15) | 126 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+1, −y+2, −z+1; (iii) x, −y+3/2, z+1/2; (iv) −x+1, y+1/2, −z+3/2; (v) −x, y−1/2, −z+3/2; (vi) −x, −y+2, −z+1. |
Acknowledgements
We thank the Iranian Government for financial support to Dr Ali Sadeghi-Khomani.
References
Bruker (2000). SAINT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SMART (Version 6.524) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 60. Oxford University Press. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sadeghi-Khomami, A., Blake, A. J., Wilson, C. & Thomas, N. R. (2005). Org. Lett. 7, 4891–4894. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.