organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydrogen-bonded chains in 1-[3-(4-nitro­benzyl­­idene­amino)prop­yl]-2-(4-nitro­phen­yl)hexa­hydro­pyrimidine methanol solvate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 7 August 2006; accepted 8 August 2006; online 11 August 2006)

In the title compound, C20H23N5O4·CH4O, the mol­ecular components are linked into C22(4) chains by a combination of O—H⋯N and N—H⋯O hydrogen bonds.

Comment

We report here the structure of the title compound, (I) (Fig. 1[link]), a stoichiometric methanol solvate, wherein the pyrimidine component was formed by spontaneous cyclization of the inter­mediate (II) (see scheme) produced by condensation of bis­(3-amino­prop­yl)amine with two molar equivalents of 4-nitro­benzaldehyde. We have recently reported the supra­molecular structures of the 4-nitro­benzyl­idene derivatives of 1,2-diamino­ethane and 1,3-diaminopropane (Bomfim et al., 2005[Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53-o56.]), 1,8-diamino­octane (Glidewell et al., 2005b[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005b). Acta Cryst. E61, o3551-o3553.]) and tris­(2-amino­ethyl)amine (Glidewell et al., 2005a[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005a). Acta Cryst. C61, o75-o77.]). The target compound, (II), was intended to complement that series but, in the event, the ring-closed product (I) resulted.

[Scheme 1]

For the hexa­hydro­pyrimidine ring (N11/C12/N13/C14–C16), the ring-puckering parameters [θ = 176.1 (3)° and φ = 162 (5)°; Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]] indicate an almost perfect chair conformation. The substituents at N11 and C12 both occupy equatorial sites, as expected, but the N—H bond at N13 occupies an axial site with the lone pair at N13 equatorial. The bond lengths and angles show no unexpected features.

Within the selected asymmetric unit (Fig. 1[link]) the components are linked by an almost linear O—H⋯N hydrogen bond (Table 1[link]). In addition, atom N13 at (x, y, z) acts as hydrogen-bond donor to methanol atom O41 at (1 − x, [{1\over 2}] + y, [{3\over 2}] − z), so forming a C22(4) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [010] direction and generated by the 21 screw axis along ([{1\over 2}], y, [{3\over 4}]) (Fig. 2[link]). Two such chains, related to one another by inversion and hence anti­parallel, pass through each unit cell, but there are no significant direction-specific inter­actions between adjacent chains. Two C—H⋯O contacts between chains (Table 1[link]) both involve aliphatic C—H bonds of very low acidity, both are long, and hence are probably not structurally significant.

[Figure 1]
Figure 1
The mol­ecular components of compound (I), showing the atom-labelling scheme and the O—H⋯·N hydrogen bond (dashed line) within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of compound (I), showing the formation of a C22(4) chain along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 − x, [{1\over 2}] + y, [{3\over 2}] − z) and (1 − x, −[{1\over 2}] + y, [{3\over 2}] − z), respectively. Dashed lines indicate hydrogen bonds.

Experimental

A solution of 4-nitro­benaza­ldehyde (4 mmol) and bis­(3-amino­prop­yl)amine (2 mmol) in methanol (25 ml) was heated under reflux for 2 h. The mixture was cooled to ambient temperature and the solvent was removed under reduced pressure. Recrystallization of the crude solid product from methanol provided crystals of compound (I) suitable for single-crystal X-ray diffraction.

Crystal data
  • C20H23N5O4·CH4O

  • Mr = 429.48

  • Monoclinic, P 21 /c

  • a = 16.9257 (16) Å

  • b = 7.5144 (8) Å

  • c = 16.8911 (15) Å

  • β = 93.562 (5)°

  • V = 2144.2 (4) Å3

  • Z = 4

  • Dx = 1.330 Mg m−3

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.24 × 0.22 × 0.06 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.965, Tmax = 0.994

  • 23793 measured reflections

  • 4712 independent reflections

  • 3010 reflections with I > 2σ(I)

  • Rint = 0.067

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.222

  • S = 1.08

  • 4712 reflections

  • 282 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0907P)2 + 2.3771P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen bonds and short intermolecular contacts (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O41—H41⋯N13 0.84 1.94 2.782 (4) 178
N13—H13⋯O41i 0.88 1.97 2.841 (3) 171
C17—H17B⋯O32ii 0.99 2.55 3.371 (4) 140
C18—H18A⋯O31iii 0.99 2.56 3.490 (4) 156
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 (aromatic and =CH—), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH), N—H = 0.88 Å and O—H = 0.84 Å, and with Uiso(H) = kUeq(C,N,O), where k = 1.5 for the methanol H atoms and 1.2 for all other H atoms.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

1-[3-(4-nitrobenzylideneamino)propyl]-2-(4-nitrophenyl)hexahydropyrimidine methanol solvate top
Crystal data top
C20H23N5O4·CH4OF(000) = 912
Mr = 429.48Dx = 1.330 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4712 reflections
a = 16.9257 (16) Åθ = 3.0–27.5°
b = 7.5144 (8) ŵ = 0.10 mm1
c = 16.8911 (15) ÅT = 120 K
β = 93.562 (5)°Plate, colourless
V = 2144.2 (4) Å30.24 × 0.22 × 0.06 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4712 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
φ and ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.965, Tmax = 0.994l = 2121
23793 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.222H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0907P)2 + 2.3771P]
where P = (Fo2 + 2Fc2)/3
4712 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.27 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.69996 (16)0.7976 (3)0.78891 (14)0.0335 (6)
C120.6536 (2)0.6328 (4)0.79664 (18)0.0355 (7)
N130.56828 (16)0.6657 (4)0.80368 (14)0.0365 (6)
C140.5462 (2)0.7841 (5)0.8710 (2)0.0425 (8)
C150.5936 (2)0.9548 (4)0.8681 (2)0.0414 (8)
C160.6811 (2)0.9101 (5)0.85906 (19)0.0410 (8)
C210.66947 (18)0.5087 (4)0.72645 (18)0.0321 (7)
C220.6821 (2)0.5720 (4)0.64863 (19)0.0382 (8)
C230.6931 (2)0.4561 (4)0.58592 (19)0.0372 (8)
C240.69164 (18)0.2744 (4)0.60064 (18)0.0337 (7)
N240.70510 (17)0.1503 (4)0.53407 (16)0.0401 (7)
O210.70457 (17)0.2086 (3)0.46651 (14)0.0541 (7)
O220.71752 (17)0.0070 (3)0.54932 (15)0.0554 (7)
C250.67844 (19)0.2069 (4)0.67673 (18)0.0361 (8)
C260.66765 (19)0.3263 (4)0.73860 (19)0.0360 (7)
C170.78529 (19)0.7628 (4)0.78205 (18)0.0371 (8)
C180.8327 (2)0.9140 (4)0.74341 (18)0.0369 (8)
C190.91819 (19)0.8602 (4)0.72293 (18)0.0361 (8)
N370.92010 (16)0.7556 (4)0.64971 (14)0.0349 (6)
C370.91861 (18)0.5874 (4)0.65696 (17)0.0326 (7)
C310.91118 (18)0.4678 (4)0.58863 (18)0.0314 (7)
C320.89958 (19)0.5339 (4)0.51321 (18)0.0363 (8)
C330.89443 (19)0.4196 (4)0.45034 (18)0.0364 (8)
C340.90149 (19)0.2380 (4)0.46366 (18)0.0352 (7)
N340.89963 (17)0.1166 (4)0.39599 (16)0.0413 (7)
O310.88460 (16)0.1784 (3)0.33098 (14)0.0533 (7)
O320.91459 (16)0.0409 (3)0.40567 (14)0.0501 (7)
C350.91109 (19)0.1676 (4)0.53764 (18)0.0368 (8)
C360.9155 (2)0.2852 (4)0.60029 (18)0.0364 (8)
O410.48091 (17)0.3626 (4)0.83431 (13)0.0549 (7)
C410.4785 (2)0.3418 (5)0.91697 (19)0.0470 (9)
H120.67410.57180.84640.043*
H130.55650.71860.75800.044*
H14A0.55790.72320.92240.051*
H14E0.48890.81120.86580.051*
H15E0.58821.02360.91750.050*
H15A0.57321.02850.82280.050*
H16E0.71061.02340.85600.049*
H16A0.70160.84800.90780.049*
H220.68300.69660.63930.046*
H230.70140.50030.53440.045*
H250.67690.08220.68570.043*
H260.65890.28160.78990.043*
H17A0.79080.65290.75050.044*
H17B0.80980.73980.83580.044*
H18A0.83621.01690.78010.044*
H18B0.80290.95290.69410.044*
H19A0.95010.96950.71740.043*
H19B0.94300.79010.76750.043*
H370.92250.53740.70870.039*
H320.89510.65860.50470.044*
H330.88610.46410.39780.044*
H350.91460.04270.54580.044*
H360.92170.24010.65290.044*
H410.50840.45210.82460.082*
H41A0.53240.34680.94160.070*
H41B0.45460.22670.92850.070*
H41C0.44670.43760.93830.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0414 (16)0.0280 (13)0.0304 (13)0.0010 (11)0.0047 (11)0.0028 (11)
C120.046 (2)0.0285 (16)0.0307 (16)0.0003 (14)0.0052 (14)0.0003 (13)
N130.0436 (17)0.0369 (15)0.0283 (13)0.0024 (12)0.0029 (11)0.0002 (11)
C140.047 (2)0.042 (2)0.0385 (18)0.0011 (16)0.0017 (15)0.0037 (15)
C150.051 (2)0.0357 (18)0.0363 (18)0.0028 (16)0.0034 (15)0.0036 (14)
C160.050 (2)0.0350 (18)0.0368 (18)0.0008 (15)0.0076 (15)0.0048 (14)
C210.0309 (17)0.0290 (16)0.0359 (17)0.0018 (13)0.0030 (13)0.0017 (13)
C220.046 (2)0.0283 (16)0.0392 (18)0.0025 (14)0.0070 (14)0.0024 (14)
C230.043 (2)0.0332 (17)0.0339 (17)0.0022 (15)0.0069 (14)0.0041 (14)
C240.0312 (17)0.0337 (17)0.0352 (17)0.0004 (14)0.0040 (13)0.0038 (13)
N240.0416 (17)0.0378 (17)0.0399 (16)0.0021 (13)0.0048 (12)0.0063 (13)
O210.075 (2)0.0521 (16)0.0337 (13)0.0006 (13)0.0099 (12)0.0052 (11)
O220.076 (2)0.0350 (14)0.0543 (16)0.0012 (13)0.0004 (13)0.0072 (12)
C250.0399 (19)0.0288 (17)0.0390 (18)0.0004 (14)0.0018 (14)0.0013 (14)
C260.0394 (19)0.0341 (17)0.0339 (17)0.0003 (14)0.0014 (13)0.0049 (14)
C170.043 (2)0.0350 (17)0.0316 (16)0.0015 (15)0.0112 (14)0.0033 (13)
C180.045 (2)0.0315 (16)0.0326 (17)0.0003 (14)0.0106 (14)0.0031 (13)
C190.0416 (19)0.0299 (17)0.0355 (17)0.0041 (14)0.0093 (14)0.0013 (13)
N370.0375 (16)0.0334 (14)0.0328 (14)0.0014 (12)0.0070 (11)0.0008 (11)
C370.0340 (18)0.0352 (17)0.0278 (15)0.0004 (14)0.0048 (12)0.0014 (13)
C310.0293 (17)0.0317 (16)0.0326 (16)0.0010 (13)0.0038 (12)0.0002 (13)
C320.0424 (19)0.0315 (17)0.0341 (17)0.0024 (14)0.0067 (14)0.0022 (13)
C330.0408 (19)0.0369 (18)0.0305 (16)0.0010 (15)0.0066 (13)0.0036 (14)
C340.0346 (18)0.0364 (17)0.0335 (17)0.0004 (14)0.0062 (13)0.0052 (14)
N340.0411 (17)0.0418 (17)0.0395 (16)0.0014 (13)0.0092 (12)0.0057 (13)
O310.0747 (19)0.0465 (15)0.0362 (13)0.0094 (13)0.0169 (12)0.0056 (11)
O320.0640 (17)0.0321 (13)0.0517 (15)0.0057 (12)0.0165 (12)0.0101 (11)
C350.0406 (19)0.0282 (16)0.0404 (18)0.0015 (14)0.0070 (14)0.0013 (14)
C360.0420 (19)0.0351 (18)0.0311 (16)0.0023 (14)0.0058 (13)0.0033 (13)
O410.0740 (19)0.0543 (17)0.0351 (13)0.0267 (14)0.0079 (12)0.0017 (11)
C410.054 (2)0.047 (2)0.0388 (19)0.0026 (18)0.0050 (16)0.0022 (16)
Geometric parameters (Å, º) top
N11—C121.476 (4)C17—H17A0.99
N11—C171.479 (4)C17—H17B0.99
N11—C161.506 (4)C18—C191.562 (5)
C12—N131.477 (4)C18—H18A0.99
C12—C211.545 (4)C18—H18B0.99
C12—H121.00C19—N371.468 (4)
N13—C141.509 (4)C19—H19A0.99
N13—H130.88C19—H19B0.99
C14—C151.515 (5)N37—C371.270 (4)
C14—H14A0.99C37—C311.462 (4)
C14—H14E0.99C37—H370.95
C15—C161.535 (5)C31—C321.370 (4)
C15—H15E0.99C31—C361.387 (4)
C15—H15A0.99C32—C331.364 (4)
C16—H16E0.99C32—H320.95
C16—H16A0.99C33—C341.387 (5)
C21—C261.387 (4)C33—H330.95
C21—C221.426 (4)C34—C351.357 (4)
C22—C231.392 (5)C34—N341.461 (4)
C22—H220.95N34—O311.205 (3)
C23—C241.389 (4)N34—O321.219 (4)
C23—H230.95C35—C361.377 (4)
C24—C251.412 (4)C35—H350.95
C24—N241.489 (4)C36—H360.95
N24—O211.222 (3)O41—C411.408 (4)
N24—O221.225 (4)O41—H410.84
C25—C261.398 (4)C41—H41A0.98
C25—H250.95C41—H41B0.98
C26—H260.95C41—H41C0.98
C17—C181.557 (5)
C12—N11—C17112.7 (2)N11—C17—C18115.8 (3)
C12—N11—C16105.2 (2)N11—C17—H17A108.3
C17—N11—C16114.6 (2)C18—C17—H17A108.3
N11—C12—N13113.2 (2)N11—C17—H17B108.3
N11—C12—C21108.6 (2)C18—C17—H17B108.3
N13—C12—C21112.4 (2)H17A—C17—H17B107.4
N11—C12—H12107.5C17—C18—C19114.4 (3)
N13—C12—H12107.5C17—C18—H18A108.7
C21—C12—H12107.5C19—C18—H18A108.7
C12—N13—C14116.7 (2)C17—C18—H18B108.7
C12—N13—H13100.1C19—C18—H18B108.7
C14—N13—H13109.9H18A—C18—H18B107.6
N13—C14—C15108.5 (3)N37—C19—C18113.2 (2)
N13—C14—H14A110.0N37—C19—H19A108.9
C15—C14—H14A110.0C18—C19—H19A108.9
N13—C14—H14E110.0N37—C19—H19B108.9
C15—C14—H14E110.0C18—C19—H19B108.9
H14A—C14—H14E108.4H19A—C19—H19B107.7
C14—C15—C16109.5 (3)C37—N37—C19116.8 (3)
C14—C15—H15E109.8N37—C37—C31122.5 (3)
C16—C15—H15E109.8N37—C37—H37118.8
C14—C15—H15A109.8C31—C37—H37118.8
C16—C15—H15A109.8C32—C31—C36119.6 (3)
H15E—C15—H15A108.2C32—C31—C37120.8 (3)
N11—C16—C15117.0 (3)C36—C31—C37119.6 (3)
N11—C16—H16E108.0C33—C32—C31119.6 (3)
C15—C16—H16E108.0C33—C32—H32120.2
N11—C16—H16A108.0C31—C32—H32120.2
C15—C16—H16A108.0C32—C33—C34119.5 (3)
H16E—C16—H16A107.3C32—C33—H33120.2
C26—C21—C22118.1 (3)C34—C33—H33120.2
C26—C21—C12118.4 (3)C35—C34—C33122.5 (3)
C22—C21—C12123.3 (3)C35—C34—N34118.2 (3)
C23—C22—C21121.9 (3)C33—C34—N34119.3 (3)
C23—C22—H22119.1O31—N34—O32121.8 (3)
C21—C22—H22119.1O31—N34—C34117.8 (3)
C24—C23—C22118.3 (3)O32—N34—C34120.5 (3)
C24—C23—H23120.9C34—C35—C36117.1 (3)
C22—C23—H23120.9C34—C35—H35121.5
C23—C24—C25121.4 (3)C36—C35—H35121.5
C23—C24—N24118.4 (3)C35—C36—C31121.7 (3)
C25—C24—N24120.2 (3)C35—C36—H36119.1
O21—N24—O22122.2 (3)C31—C36—H36119.1
O21—N24—C24119.2 (3)C41—O41—H41109.5
O22—N24—C24118.5 (3)O41—C41—H41A109.5
C26—C25—C24119.0 (3)O41—C41—H41B109.5
C26—C25—H25120.5H41A—C41—H41B109.5
C24—C25—H25120.5O41—C41—H41C109.5
C21—C26—C25121.2 (3)H41A—C41—H41C109.5
C21—C26—H26119.4H41B—C41—H41C109.5
C25—C26—H26119.4
C17—N11—C12—N13179.9 (2)C22—C21—C26—C250.5 (5)
C16—N11—C12—N1354.4 (3)C12—C21—C26—C25177.5 (3)
C17—N11—C12—C2154.6 (3)C24—C25—C26—C210.2 (5)
C16—N11—C12—C21179.9 (2)C12—N11—C17—C18158.3 (2)
N11—C12—N13—C1457.0 (3)C16—N11—C17—C1881.5 (3)
C21—C12—N13—C14179.4 (3)N11—C17—C18—C19169.4 (2)
C12—N13—C14—C1551.6 (4)C17—C18—C19—N3778.9 (3)
N13—C14—C15—C1648.2 (3)C18—C19—N37—C3792.4 (3)
C12—N11—C16—C1557.2 (3)C19—N37—C37—C31172.9 (3)
C17—N11—C16—C15178.5 (3)N37—C37—C31—C324.9 (5)
C14—C15—C16—N1156.5 (4)N37—C37—C31—C36175.5 (3)
N11—C12—C21—C26148.1 (3)C36—C31—C32—C331.6 (5)
N13—C12—C21—C2685.9 (3)C37—C31—C32—C33178.7 (3)
N11—C12—C21—C2235.1 (4)C31—C32—C33—C340.4 (5)
N13—C12—C21—C2290.9 (4)C32—C33—C34—C352.0 (5)
C26—C21—C22—C230.5 (5)C32—C33—C34—N34177.2 (3)
C12—C21—C22—C23177.4 (3)C35—C34—N34—O31174.0 (3)
C21—C22—C23—C240.1 (5)C33—C34—N34—O316.8 (5)
C22—C23—C24—C250.8 (5)C35—C34—N34—O327.5 (5)
C22—C23—C24—N24178.7 (3)C33—C34—N34—O32171.7 (3)
C23—C24—N24—O2111.4 (4)C33—C34—C35—C361.5 (5)
C25—C24—N24—O21169.1 (3)N34—C34—C35—C36177.7 (3)
C23—C24—N24—O22167.5 (3)C34—C35—C36—C310.6 (5)
C25—C24—N24—O2212.0 (4)C32—C31—C36—C352.2 (5)
C23—C24—C25—C260.8 (5)C37—C31—C36—C35178.1 (3)
N24—C24—C25—C26178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O41—H41···N130.841.942.782 (4)178
N13—H13···O41i0.881.972.841 (3)171
C17—H17B···O32ii0.992.553.371 (4)140
C18—H18A···O31iii0.992.563.490 (4)156
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

X-ray data were collected at the EPSRC National X-ray Crystallography Service, University of Southampton, England, using a Nonius KappaCCD diffractometer. The authors thank the staff for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005a). Acta Cryst. C61, o75–o77.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005b). Acta Cryst. E61, o3551–o3553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds