metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­methyl­tin(IV)]-μ-4-methyl-4H-1,2,4-triazole-3-thiol­ato-κ2S:N1]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bSchool of Chemistry, The University of Manchester, Manchester M13 9PL, England
*Correspondence e-mail: drsa54@yahoo.com

(Received 8 August 2006; accepted 22 August 2006; online 25 August 2006)

The crystal structure of the title compound, [Sn(CH3)3(C3H4N3S)]n, consists of a linear chain in which adjacent trimethyl­tin groups are bridged by the 4-methyl-4H-1,2,4-triazole-3-thiol­ate anion through its N and S atoms.

Comment

The synthesis and structural chemistry of organotin compounds is still a fertile area of research because of their extensive biological applications. However, there is relatively little information available on organotin compounds as anti­cancer agents in vivo. Diorganotins represent the largest group of tin compounds to have been extensively examined for cytotoxicity in vitro; they have been found to be less toxic than platinum complexes (Narayan, 1983[Narayan, V. L. (1983). Organotin Compounds as Antitumour Agents. In Structure-Activity Relationship of Antitumour Agents, edited by D. N. Reinhoudt, T. A. Connors, H. M. Pinedo & K. W. Van De Poll, pp. 77-106. The Hague: Martinus Nijhoff.]). We report here the structure of the title compound, (I), in a continuation of our work on the synthesis and structural characterization of organotin complexes of sulfur donor ligands (Shahzadi, Ali, Bhatti et al., 2006[Shahzadi, S., Ali, S., Bhatti, M. H., Fettouhi, M. & Athar, M. (2006). J. Organomet. Chem. 691, 1797-1802.], Shahzadi, Ali & Fettouhi, 2006[Shahzadi, S., Ali, S. & Fettouhi, M. (2006). Acta Cryst. E62, m1178-m1180.]).

[Scheme 1]

In the crystal structure of (I) (Fig. 1[link]), the Sn atom is bonded to three methyl groups in equatorial positions. The axial positions are occupied by N and S atoms of a 4-methyl-4H-1,2,4-triazole-3-thiol­ate anion, with an almost linear S—Sn—N angle; the Sn atom has a distorted trigonal–bipyramidal coordination geometry. The Sn—S bond length is 2.7116 (7) Å, which is shorter than the Sn—S bond distance reported earlier (Shahzadi, Ali, Bhatti et al., 2006[Shahzadi, S., Ali, S., Bhatti, M. H., Fettouhi, M. & Athar, M. (2006). J. Organomet. Chem. 691, 1797-1802.], Shahzadi, Ali & Fettouhi, 2006[Shahzadi, S., Ali, S. & Fettouhi, M. (2006). Acta Cryst. E62, m1178-m1180.]).

[Figure 1]
Figure 1
The structure of (I), with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + [{1\over 2}], y + [{1\over 2}], z + [{1\over 2}].]

Experimental

3-Mercapto-4-methyl-4H-1,2,4-triazole (0.15 g, 1 mmol) and triethyl­amine (0.1 g, 1 mmol) were suspended in dry toluene (150 ml) in a two-necked round-bottomed flask equipped with a water condenser. The mixture was stirred for 25 min at room temperature and then trimethyl­tin chloride (0.2 g, 1 mmol) was added. The reaction mixture was refluxed for 4–5 h. After cooling at room temperature, triethyl­ammonium chloride formed, was filtered off and the solvent was removed on a rotary evaporator under reduced pressure. The solid product was recrystallized from chloro­form to obtain crystals suitable for X-ray analysis (yield 80%; m.p. 433 K).

Crystal data
  • [Sn(CH3)3(C3H4N3S)]

  • Mr = 277.94

  • Orthorhombic, P n a 21

  • a = 13.7254 (11) Å

  • b = 11.0183 (9) Å

  • c = 6.6998 (5) Å

  • V = 1013.21 (14) Å3

  • Z = 4

  • Dx = 1.822 Mg m−3

  • Mo Kα radiation

  • μ = 2.68 mm−1

  • T = 100 (2) K

  • Plate, colourless

  • 0.40 × 0.30 × 0.05 mm

Data collection
  • Bruker APEX CCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART (Version 5.625), SADABS (Version 2.03a) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.414, Tmax = 0.878

  • 7581 measured reflections

  • 2051 independent reflections

  • 2032 reflections with I > 2σ(I)

  • Rint = 0.025

  • θmax = 26.3°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.042

  • S = 1.07

  • 2051 reflections

  • 104 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0189P)2 + 0.5609P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.003

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 928 Friedel pairs

  • Flack parameter: 0.06 (2)

H atoms were included in calculated positions using the riding method, with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SADABS (Version 2.03a) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SADABS (Version 2.03a) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

catena-Poly[trimethyltin(IV)-µ-4-methyl-4H-1,2,4-triazole-3-thiolato- κ2S:N1] top
Crystal data top
[Sn(CH3)3(C3H4N3S)]Dx = 1.822 Mg m3
Mr = 277.94Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 6370 reflections
a = 13.7254 (11) Åθ = 2.4–26.4°
b = 11.0183 (9) ŵ = 2.68 mm1
c = 6.6998 (5) ÅT = 100 K
V = 1013.21 (14) Å3Plate, colourless
Z = 40.40 × 0.30 × 0.05 mm
F(000) = 544
Data collection top
Bruker APEX CCD
diffractometer
2051 independent reflections
Radiation source: fine-focus sealed tube2032 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 26.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1717
Tmin = 0.414, Tmax = 0.878k = 1313
7581 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0189P)2 + 0.5609P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.003
2051 reflectionsΔρmax = 0.65 e Å3
104 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 928 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.307904 (10)0.849930 (13)0.50000 (4)0.01597 (6)
S10.45004 (5)0.68083 (6)0.45904 (9)0.01853 (14)
N10.43802 (16)0.6160 (2)0.0649 (3)0.0171 (4)
N30.31104 (16)0.4998 (2)0.0555 (4)0.0202 (5)
N40.32403 (17)0.5347 (2)0.2536 (4)0.0182 (5)
C10.40084 (19)0.6056 (2)0.2553 (4)0.0155 (5)
C20.3798 (2)0.5489 (2)0.0520 (4)0.0197 (6)
H20.38750.53880.19190.024*
C30.52432 (17)0.6837 (2)0.0019 (6)0.0242 (5)
H3A0.58300.63790.03730.036*
H3B0.52550.76270.06920.036*
H3C0.52230.69590.14290.036*
C40.4086 (2)0.9616 (3)0.6575 (5)0.0250 (6)
H4A0.37301.02400.73180.037*
H4B0.45291.00050.56230.037*
H4C0.44620.91160.75070.037*
C50.2120 (2)0.7243 (3)0.6375 (5)0.0219 (6)
H5A0.14500.74070.59430.033*
H5B0.21630.73260.78290.033*
H5C0.23020.64160.59890.033*
C60.2961 (2)0.8696 (3)0.1844 (5)0.0261 (7)
H6A0.27740.79160.12510.039*
H6B0.35890.89550.12980.039*
H6C0.24640.93060.15340.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01775 (9)0.01547 (9)0.01468 (9)0.00015 (5)0.00075 (9)0.00140 (9)
S10.0168 (3)0.0211 (3)0.0177 (4)0.0030 (2)0.0027 (2)0.0036 (2)
N10.0174 (11)0.0145 (9)0.0194 (11)0.0007 (9)0.0019 (8)0.0001 (8)
N30.0257 (13)0.0171 (11)0.0179 (14)0.0021 (8)0.0004 (8)0.0016 (9)
N40.0212 (11)0.0174 (11)0.0159 (12)0.0007 (9)0.0002 (9)0.0004 (9)
C10.0172 (12)0.0133 (12)0.0160 (12)0.0032 (10)0.0016 (10)0.0012 (9)
C20.0223 (13)0.0161 (12)0.0205 (16)0.0006 (10)0.0005 (9)0.0005 (10)
C30.0216 (11)0.0267 (12)0.0242 (13)0.0071 (9)0.0043 (15)0.0060 (19)
C40.0235 (14)0.0236 (14)0.0278 (16)0.0035 (12)0.0016 (12)0.0064 (12)
C50.0195 (14)0.0204 (15)0.0258 (16)0.0002 (11)0.0010 (11)0.0015 (12)
C60.0320 (17)0.0289 (17)0.0173 (16)0.0078 (12)0.0013 (12)0.0020 (12)
Geometric parameters (Å, º) top
Sn1—C52.121 (3)C2—H20.9500
Sn1—C42.130 (3)C3—H3A0.9800
Sn1—C62.131 (3)C3—H3B0.9800
Sn1—N3i2.351 (2)C3—H3C0.9800
Sn1—S12.7116 (7)C4—H4A0.9800
S1—C11.734 (3)C4—H4B0.9800
N1—C21.341 (3)C4—H4C0.9800
N1—C11.378 (3)C5—H5A0.9800
N1—C31.462 (3)C5—H5B0.9800
N3—C21.306 (3)C5—H5C0.9800
N3—N41.393 (3)C6—H6A0.9800
N3—Sn1ii2.351 (2)C6—H6B0.9800
N4—C11.312 (4)C6—H6C0.9800
C5—Sn1—C4124.37 (12)N1—C3—H3A109.5
C5—Sn1—C6116.73 (13)N1—C3—H3B109.5
C4—Sn1—C6118.82 (12)H3A—C3—H3B109.5
C5—Sn1—N3i87.61 (10)N1—C3—H3C109.5
C4—Sn1—N3i88.09 (10)H3A—C3—H3C109.5
C6—Sn1—N3i91.88 (11)H3B—C3—H3C109.5
C5—Sn1—S192.42 (8)Sn1—C4—H4A109.5
C4—Sn1—S188.86 (8)Sn1—C4—H4B109.5
C6—Sn1—S191.38 (9)H4A—C4—H4B109.5
N3i—Sn1—S1176.33 (6)Sn1—C4—H4C109.5
C1—S1—Sn197.35 (9)H4A—C4—H4C109.5
C2—N1—C1105.9 (2)H4B—C4—H4C109.5
C2—N1—C3126.5 (2)Sn1—C5—H5A109.5
C1—N1—C3127.5 (2)Sn1—C5—H5B109.5
C2—N3—N4108.6 (2)H5A—C5—H5B109.5
C2—N3—Sn1ii134.93 (19)Sn1—C5—H5C109.5
N4—N3—Sn1ii115.70 (17)H5A—C5—H5C109.5
C1—N4—N3106.0 (2)H5B—C5—H5C109.5
N4—C1—N1109.8 (2)Sn1—C6—H6A109.5
N4—C1—S1127.2 (2)Sn1—C6—H6B109.5
N1—C1—S1123.0 (2)H6A—C6—H6B109.5
N3—C2—N1109.7 (2)Sn1—C6—H6C109.5
N3—C2—H2125.2H6A—C6—H6C109.5
N1—C2—H2125.2H6B—C6—H6C109.5
C5—Sn1—S1—C177.35 (13)C3—N1—C1—N4178.4 (2)
C4—Sn1—S1—C1158.29 (12)C2—N1—C1—S1178.03 (19)
C6—Sn1—S1—C139.48 (13)C3—N1—C1—S13.1 (4)
N3i—Sn1—S1—C1167.8 (9)Sn1—S1—C1—N471.9 (2)
C2—N3—N4—C10.7 (3)Sn1—S1—C1—N1106.3 (2)
Sn1ii—N3—N4—C1171.96 (17)N4—N3—C2—N10.4 (3)
N3—N4—C1—N10.7 (3)Sn1ii—N3—C2—N1169.27 (18)
N3—N4—C1—S1177.73 (19)C1—N1—C2—N30.0 (3)
C2—N1—C1—N40.5 (3)C3—N1—C2—N3178.8 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z1/2.
 

Acknowledgements

AR is grateful to HEC (Higher Education Commision, Islamabad, Pakistan) for financial support under the PhD Fellowship Scheme Batch-II (PIN code: 042–111621-PS2–179).

References

First citationBruker (2001). SMART (Version 5.625), SADABS (Version 2.03a) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNarayan, V. L. (1983). Organotin Compounds as Antitumour Agents. In Structure–Activity Relationship of Antitumour Agents, edited by D. N. Reinhoudt, T. A. Connors, H. M. Pinedo & K. W. Van De Poll, pp. 77-106. The Hague: Martinus Nijhoff.  Google Scholar
First citationShahzadi, S., Ali, S., Bhatti, M. H., Fettouhi, M. & Athar, M. (2006). J. Organomet. Chem. 691, 1797–1802.  Web of Science CSD CrossRef CAS Google Scholar
First citationShahzadi, S., Ali, S. & Fettouhi, M. (2006). Acta Cryst. E62, m1178–m1180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds