metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ2-acetato-diaceto­nitrile[μ2-N,N′-bis­­(2-hy­droxy­phen­yl)pyridine-2,6-dicarboxamide]potassium(I)]

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química Inorgánica y Analítica, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles (Madrid), Spain, bDepartment of Chemistry, University of Bath, Bath BA2 7AY, England, and cCCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England
*Correspondence e-mail: p.r.raithby@bath.ac.uk

(Received 18 August 2006; accepted 22 August 2006; online 31 August 2006)

The title compound, [K(C2H3O2)(C2H3N)2(C19H15N3O4)], is polymeric. Each K+ ion adopts a distorted octa­hedral geometry, being linked to two 2,6-pyridine­dicarboxamide ligands through carbonyl O atoms and to two acetate groups also through O atoms. The potassium coordination is completed by the N atoms of two acetonitrile ligands. The 2,6-pyridine­dicarboxamide ligands are also involved in O—H⋯O hydrogen bonds.

Comment

Many derivatives of 2,6-pyridine­carboxamide show anti-inflammatory, anti­pyretic and analgesic activities (Singha & Sathyanarayana, 1997[Singha, N. C. & Sathyanarayana, D. N. (1997). J. Mol. Struct. 403, 123-135.], and references therein). A series of CuII, FeIII, CoIII and NiII (Chavez et al., 1996[Chavez, F. A., Olmstead, M. M. & Mascharak, P. K. (1996). Inorg. Chem. 35, 1410-1412.], 1998[Chavez, F. A., Olmstead, M. M. & Mascharak, P. K. (1998). Inorg. Chim. Acta, 269, 269-273.]; Marlin et al., 1999[Marlin, D. S., Olmstead, M. M. & Mascharak, P. K. (1999). Inorg. Chem. 38, 3258-3260.]; Hiratani & Taguchi, 1990[Hiratani, K. & Taguchi, K. (1990). Bull. Chem. Soc. Jpn, 63, 3331-3333.]) complexes containing 2,6-pyridine­dicarboxamide ligands has been synthesized during the last two decades. The derivative N,N′-bis­(2-hydroxy­phenyl)­pyridine-2,6-dicarboxamide has been synthesized previously (Marlin et al., 2000[Marlin, D. S., Olmstead, M. M. & Mascharak, P. K. (2000). Inorg. Chim. Acta, 297, 106-114.]). Several complexes of this ligand have been reported, two of which consist of the fully deprotonated penta­dentate ligand with an FeIII atom in the equatorial plane of the ligand, the coordination being completed by two monodentate ligands in axial sites (Marlin et al., 2000[Marlin, D. S., Olmstead, M. M. & Mascharak, P. K. (2000). Inorg. Chim. Acta, 297, 106-114.]). We are continuing to investigate the coordination properties of this ligand with a range of heavier main group and transition metals.

[Scheme 1]

In this paper, we report the synthesis and crystal structure of the title polymeric potassium complex of N,N′-bis­(2-hydroxy­phenyl)pyridine-2,6-dicarboxamide, (I) (Fig. 1[link]), where the ligand links two K+ ions through the two carbonyl groups. The coordination environment of each K+ centre is completed by coordination of one O atom of each of two acetate groups, and two terminal acetonitrile ligands. The acetate groups act as linker groups between adjacent K+ centres.

The K+ centres display a distorted octa­hedral coordination geometry. The two K—O(carbon­yl) distances (average 2.75 Å) are similar in length to the two K—O(acetate) distances (average 2.72 Å), and these four distances are significantly shorter than the two K—N(acetonitrile) distances (average 3.11 Å). The K—O(eth­oxy) distances are similar to the average value of 2.67 Å previously reported for an ethanol-solvated dimeric potassium calixarene complex (Clague et al., 1999[Clague, N. P., Clegg, W., Coles, S. J., Crane, J. D., Moreton, D. J., Sinn, E., Teat, S. J. & Young, N. A. (1999). Chem. Commun. pp. 379-380.]).

In addition, the N,N′-bis­(2-hydroxy­phenyl)pyridine-2,6-dicarboxamide ligands are involved in O—H⋯O hydrogen bonds from the two hydroxyl groups to the linking acetate groups (Table 1[link]).

[Figure 1]
Figure 1
A view of (I), with 50% probability displacement ellipsoids, showing the polymeric nature of the structure. [Symmetry codes: (i) [{1\over 2}] + x, [{3\over 2}] − y, 1 − z; (ii) x − [{1\over 2}], y, [{1\over 2}] − z; (iii) [{1\over 2}] − x, [{3\over 2}] − y, 1 − z; (iv) [{1\over 2}] + x, y, [{1\over 2}] − z; (v) [{1\over 2}] − x, 1 − y, [{1\over 2}] + z; (vi) [{1\over 2}] − x, 1 − y, [{1\over 2}] + z; (vii) −x, 1 − y, 1 − z.]

Experimental

Compound (I) was synthesized by mixing solutions of N,N′-bis­(2-hydroxy­phenyl)pyridine-2,6-dicarboxamide and KOtBu, in the presence of potassium acetate (as a potential deprotonation reagent), in acetonitrile, in a 1:2 molar ratio, and stirring the resulting mixture for 2 h. Orange needles of (I) suitable for X-ray analysis were grown by slow diffusion of ethyl acetate into a dimethyl­formamide solution of (I).

Crystal data
  • [K(C2H3O2)(C2H3N)2(C19H15N3O4)]

  • Mr = 529.59

  • Orthorhombic, P b c a

  • a = 13.6100 (2) Å

  • b = 21.1060 (3) Å

  • c = 17.5730 (3) Å

  • V = 5047.89 (13) Å3

  • Z = 8

  • Dx = 1.394 Mg m−3

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 150 (2) K

  • Block, orange

  • 0.17 × 0.13 × 0.1 mm

Data collection
  • Bruker NoniusKappa CCD area-detector diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.919, Tmax = 0.974

  • 30810 measured reflections

  • 4445 independent reflections

  • 3751 reflections with I > 2σ(I)

  • Rint = 0.046

  • θmax = 25.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.183

  • S = 1.05

  • 4445 reflections

  • 339 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0943P)2 + 9.313P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.006

  • Δρmax = 0.45 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O6i 0.84 1.8 2.638 (3) 174
O1—H1O⋯O5i 0.84 1.78 2.618 (3) 175
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

H atoms were constrained as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H, and C—H =0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H, and with N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N), and O—H = 0.84 Å and Uiso(H) = 1.2Ueq(O). There was no residual electron density above 0.5 e Å3. The deepest hole is located 0.45 Å from atom K1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Poly[diacetonitrile-µ2-acetato-µ2-N,N'-bis(2-hydroxyphenyl)pyridine- 2,6-dicarboxamide)potassium(I)] top
Crystal data top
[K(C2H3O2)(C2H3N)2(C19H15N3O4)]Dx = 1.394 Mg m3
Mr = 529.59Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 48840 reflections
a = 13.6100 (2) Åθ = 2.9–25.0°
b = 21.1060 (3) ŵ = 0.26 mm1
c = 17.5730 (3) ÅT = 150 K
V = 5047.89 (13) Å3Block, orange
Z = 80.17 × 0.13 × 0.1 mm
F(000) = 2208
Data collection top
Bruker NoniusKappa CCD area-detector
diffractometer
3751 reflections with I > 2σ(I)
ω and φ scansRint = 0.046
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
θmax = 25.0°, θmin = 3.6°
Tmin = 0.919, Tmax = 0.974h = 1614
30810 measured reflectionsk = 2524
4445 independent reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.0943P)2 + 9.313P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.183(Δ/σ)max = 0.006
S = 1.05Δρmax = 0.45 e Å3
4445 reflectionsΔρmin = 1.04 e Å3
339 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.32899 (6)0.63984 (4)0.32048 (5)0.0393 (3)
O10.03601 (16)0.46047 (10)0.61597 (12)0.0260 (5)
H1O0.02450.43770.65420.031*
O20.21897 (17)0.59656 (12)0.44330 (14)0.0370 (6)
O30.18735 (16)0.74268 (10)0.61676 (13)0.0277 (5)
O40.14184 (15)0.52344 (10)0.69281 (13)0.0268 (5)
H4O0.14620.48620.70940.032*
O50.49403 (15)0.60471 (10)0.24059 (12)0.0265 (5)
O60.65655 (16)0.59633 (10)0.23424 (13)0.0294 (5)
N10.00694 (18)0.64723 (11)0.54463 (13)0.0203 (5)
N20.11790 (19)0.54268 (12)0.52490 (14)0.0233 (6)
H2N0.06350.54720.55140.028*
N30.14907 (18)0.63872 (11)0.63950 (14)0.0212 (6)
H3N0.10190.61080.6330.025*
N40.3715 (3)0.7545 (2)0.2052 (2)0.0638 (11)
N50.4598 (3)0.58325 (18)0.4408 (2)0.0512 (9)
C10.1195 (2)0.44041 (14)0.58171 (16)0.0230 (7)
C20.1607 (2)0.38097 (16)0.59291 (19)0.0294 (7)
H20.13130.35210.62760.035*
C30.2448 (3)0.36378 (16)0.55337 (19)0.0337 (8)
H30.27290.32310.5610.04*
C40.2878 (3)0.40571 (17)0.5028 (2)0.0353 (8)
H40.34520.39340.47580.042*
C50.2486 (2)0.46531 (17)0.49105 (18)0.0299 (7)
H50.27880.49390.45640.036*
C60.1638 (2)0.48308 (15)0.53076 (17)0.0237 (7)
C70.1456 (2)0.59359 (15)0.48446 (17)0.0245 (7)
C80.0810 (2)0.65075 (15)0.49447 (17)0.0233 (7)
C90.1018 (2)0.70516 (16)0.45264 (19)0.0307 (7)
H90.15430.70560.4170.037*
C100.0446 (3)0.75849 (16)0.46388 (19)0.0321 (8)
H100.05750.79630.43640.038*
C110.0316 (2)0.75581 (15)0.51580 (18)0.0264 (7)
H110.07160.79190.52510.032*
C120.0483 (2)0.69926 (13)0.55413 (16)0.0203 (6)
C130.1347 (2)0.69564 (13)0.60721 (16)0.0209 (6)
C140.2309 (2)0.61816 (14)0.68278 (16)0.0204 (6)
C150.3139 (2)0.65442 (15)0.69736 (18)0.0256 (7)
H150.31740.69690.67960.031*
C160.3917 (2)0.62870 (16)0.73790 (19)0.0290 (7)
H160.44860.65350.74740.035*
C170.3868 (2)0.56729 (15)0.76450 (18)0.0287 (7)
H170.44030.54990.79230.034*
C180.3037 (2)0.53074 (15)0.75074 (18)0.0255 (7)
H180.30020.48860.76970.031*
C190.2254 (2)0.55555 (14)0.70935 (16)0.0216 (6)
C200.5794 (2)0.62540 (14)0.25225 (17)0.0223 (7)
C210.5892 (3)0.68904 (15)0.2908 (2)0.0349 (8)
H21A0.57450.68460.34510.052*
H21B0.54290.71910.26780.052*
H21C0.65640.70480.28440.052*
C220.3376 (3)0.79010 (18)0.1655 (2)0.0359 (8)
C230.2917 (4)0.8356 (2)0.1151 (3)0.0617 (13)
H23A0.25280.81310.07670.092*
H23B0.34250.8610.08990.092*
H23C0.24860.86350.14460.092*
C240.5035 (3)0.5437 (2)0.4138 (2)0.0417 (9)
C250.5612 (4)0.4924 (2)0.3796 (2)0.0561 (11)
H25A0.62990.50580.37480.084*
H25B0.53490.48240.32910.084*
H25C0.55750.45470.41210.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0324 (5)0.0411 (5)0.0445 (5)0.0007 (3)0.0030 (3)0.0026 (3)
O10.0257 (11)0.0253 (11)0.0269 (11)0.0016 (9)0.0042 (9)0.0048 (9)
O20.0299 (13)0.0408 (14)0.0402 (14)0.0016 (11)0.0153 (11)0.0023 (11)
O30.0285 (12)0.0220 (11)0.0326 (12)0.0049 (9)0.0016 (10)0.0015 (9)
O40.0223 (11)0.0207 (11)0.0374 (13)0.0026 (9)0.0038 (10)0.0068 (10)
O50.0198 (11)0.0289 (11)0.0306 (12)0.0021 (9)0.0029 (9)0.0063 (9)
O60.0211 (11)0.0257 (11)0.0413 (14)0.0006 (9)0.0036 (10)0.0047 (10)
N10.0186 (12)0.0228 (12)0.0195 (12)0.0044 (10)0.0023 (10)0.0002 (10)
N20.0200 (13)0.0274 (14)0.0227 (13)0.0018 (11)0.0021 (10)0.0004 (10)
N30.0189 (12)0.0194 (12)0.0253 (13)0.0027 (10)0.0029 (10)0.0023 (10)
N40.081 (3)0.065 (2)0.045 (2)0.039 (2)0.007 (2)0.0071 (19)
N50.0345 (18)0.049 (2)0.070 (2)0.0018 (17)0.0036 (18)0.0115 (19)
C10.0216 (15)0.0265 (16)0.0210 (15)0.0015 (13)0.0064 (12)0.0042 (12)
C20.0325 (18)0.0269 (16)0.0289 (17)0.0026 (14)0.0092 (14)0.0035 (14)
C30.0335 (18)0.0325 (18)0.0352 (18)0.0119 (15)0.0115 (16)0.0093 (15)
C40.0273 (17)0.045 (2)0.0340 (18)0.0117 (16)0.0036 (15)0.0141 (16)
C50.0238 (16)0.0391 (19)0.0266 (16)0.0029 (14)0.0017 (14)0.0069 (14)
C60.0207 (15)0.0279 (16)0.0225 (15)0.0031 (13)0.0052 (12)0.0054 (12)
C70.0234 (16)0.0295 (17)0.0206 (15)0.0032 (13)0.0018 (13)0.0015 (13)
C80.0206 (15)0.0272 (16)0.0220 (15)0.0053 (13)0.0024 (12)0.0000 (12)
C90.0269 (17)0.0340 (18)0.0313 (17)0.0056 (14)0.0053 (14)0.0057 (14)
C100.0366 (19)0.0261 (17)0.0335 (18)0.0095 (15)0.0028 (15)0.0072 (14)
C110.0299 (17)0.0209 (15)0.0285 (16)0.0043 (13)0.0028 (14)0.0008 (13)
C120.0192 (14)0.0218 (15)0.0198 (14)0.0049 (12)0.0054 (12)0.0001 (12)
C130.0212 (15)0.0215 (15)0.0201 (14)0.0002 (12)0.0049 (12)0.0004 (12)
C140.0190 (15)0.0224 (14)0.0197 (14)0.0021 (12)0.0002 (11)0.0002 (12)
C150.0249 (16)0.0239 (16)0.0280 (16)0.0036 (13)0.0001 (13)0.0016 (13)
C160.0204 (16)0.0327 (17)0.0340 (18)0.0048 (13)0.0037 (14)0.0020 (14)
C170.0227 (16)0.0339 (17)0.0295 (17)0.0051 (14)0.0037 (13)0.0004 (14)
C180.0265 (16)0.0222 (15)0.0276 (15)0.0028 (13)0.0012 (13)0.0015 (13)
C190.0201 (15)0.0241 (15)0.0205 (15)0.0000 (12)0.0009 (12)0.0017 (12)
C200.0244 (17)0.0212 (15)0.0212 (15)0.0003 (13)0.0029 (12)0.0010 (12)
C210.0324 (19)0.0246 (17)0.048 (2)0.0021 (14)0.0034 (16)0.0084 (15)
C220.037 (2)0.0362 (19)0.0347 (19)0.0065 (16)0.0003 (16)0.0090 (16)
C230.087 (4)0.051 (3)0.047 (2)0.023 (3)0.000 (2)0.007 (2)
C240.039 (2)0.047 (2)0.039 (2)0.0073 (19)0.0100 (17)0.0143 (18)
C250.070 (3)0.062 (3)0.037 (2)0.008 (2)0.005 (2)0.003 (2)
Geometric parameters (Å, º) top
K1—O6i2.697 (2)C5—C61.400 (5)
K1—O3ii2.723 (2)C5—H50.95
K1—O52.751 (2)C7—C81.503 (4)
K1—O22.781 (2)C8—C91.392 (4)
K1—N53.011 (4)C9—C101.382 (5)
K1—N43.209 (4)C9—H90.95
O1—C11.354 (4)C10—C111.383 (5)
O1—H1O0.84C10—H100.95
O2—C71.234 (4)C11—C121.389 (4)
O3—C131.236 (4)C11—H110.95
O3—K1iii2.723 (2)C12—C131.503 (4)
O4—C191.356 (4)C14—C151.388 (4)
O4—H4O0.84C14—C191.404 (4)
O5—C201.258 (4)C15—C161.387 (5)
O6—C201.257 (4)C15—H150.95
O6—K1iv2.697 (2)C16—C171.379 (5)
N1—C81.341 (4)C16—H160.95
N1—C121.341 (4)C17—C181.391 (5)
N2—C71.342 (4)C17—H170.95
N2—C61.408 (4)C18—C191.392 (4)
N2—H2N0.88C18—H180.95
N3—C131.343 (4)C20—C211.510 (4)
N3—C141.417 (4)C21—H21A0.98
N3—H3N0.88C21—H21B0.98
N4—C221.123 (5)C21—H21C0.98
N5—C241.129 (5)C22—C231.449 (6)
C1—C21.388 (4)C23—H23A0.98
C1—C61.406 (5)C23—H23B0.98
C2—C31.387 (5)C23—H23C0.98
C2—H20.95C24—C251.467 (6)
C3—C41.384 (5)C25—H25A0.98
C3—H30.95C25—H25B0.98
C4—C51.382 (5)C25—H25C0.98
C4—H40.95
O6i—K1—O3ii112.54 (7)C10—C9—H9120.6
O6i—K1—O5115.90 (7)C8—C9—H9120.6
O3ii—K1—O5121.26 (7)C9—C10—C11118.9 (3)
O6i—K1—O272.33 (8)C9—C10—H10120.6
O3ii—K1—O286.60 (7)C11—C10—H10120.6
O5—K1—O2138.35 (7)C10—C11—C12118.6 (3)
O6i—K1—N5129.03 (9)C10—C11—H11120.7
O3ii—K1—N597.19 (9)C12—C11—H11120.7
O5—K1—N576.62 (9)N1—C12—C11123.4 (3)
O2—K1—N569.09 (9)N1—C12—C13118.3 (2)
O6i—K1—N4100.86 (10)C11—C12—C13118.2 (3)
O3ii—K1—N465.38 (8)O3—C13—N3125.2 (3)
O5—K1—N474.58 (8)O3—C13—C12119.8 (3)
O2—K1—N4146.57 (9)N3—C13—C12114.9 (3)
N5—K1—N4129.49 (11)C15—C14—C19120.1 (3)
C1—O1—H1O109.5C15—C14—N3124.7 (3)
C7—O2—K1155.1 (2)C19—C14—N3115.1 (3)
C13—O3—K1iii137.67 (19)C14—C15—C16120.0 (3)
C19—O4—H4O109.5C14—C15—H15120
C20—O5—K1125.27 (18)C16—C15—H15120
C20—O6—K1iv130.59 (19)C17—C16—C15120.4 (3)
C8—N1—C12117.3 (3)C17—C16—H16119.8
C7—N2—C6129.0 (3)C15—C16—H16119.8
C7—N2—H2N115.5C16—C17—C18120.1 (3)
C6—N2—H2N115.5C16—C17—H17120
C13—N3—C14128.0 (3)C18—C17—H17120
C13—N3—H3N116C17—C18—C19120.3 (3)
C14—N3—H3N116C17—C18—H18119.8
C22—N4—K1145.3 (4)C19—C18—H18119.8
C24—N5—K1108.0 (3)O4—C19—C18124.5 (3)
O1—C1—C2124.0 (3)O4—C19—C14116.4 (3)
O1—C1—C6116.3 (3)C18—C19—C14119.2 (3)
C2—C1—C6119.8 (3)O6—C20—O5124.1 (3)
C3—C2—C1119.9 (3)O6—C20—C21118.3 (3)
C3—C2—H2120O5—C20—C21117.6 (3)
C1—C2—H2120C20—C21—H21A109.5
C4—C3—C2120.2 (3)C20—C21—H21B109.5
C4—C3—H3119.9H21A—C21—H21B109.5
C2—C3—H3119.9C20—C21—H21C109.5
C5—C4—C3121.0 (3)H21A—C21—H21C109.5
C5—C4—H4119.5H21B—C21—H21C109.5
C3—C4—H4119.5N4—C22—C23178.6 (5)
C4—C5—C6119.2 (3)C22—C23—H23A109.5
C4—C5—H5120.4C22—C23—H23B109.5
C6—C5—H5120.4H23A—C23—H23B109.5
C5—C6—C1120.0 (3)C22—C23—H23C109.5
C5—C6—N2124.6 (3)H23A—C23—H23C109.5
C1—C6—N2115.4 (3)H23B—C23—H23C109.5
O2—C7—N2125.3 (3)N5—C24—C25179.2 (5)
O2—C7—C8120.1 (3)C24—C25—H25A109.5
N2—C7—C8114.6 (3)C24—C25—H25B109.5
N1—C8—C9123.0 (3)H25A—C25—H25B109.5
N1—C8—C7118.2 (3)C24—C25—H25C109.5
C9—C8—C7118.8 (3)H25A—C25—H25C109.5
C10—C9—C8118.8 (3)H25B—C25—H25C109.5
O6i—K1—O2—C753.9 (5)C12—N1—C8—C7178.4 (2)
O3ii—K1—O2—C761.1 (5)O2—C7—C8—N1174.4 (3)
O5—K1—O2—C7163.2 (5)N2—C7—C8—N13.6 (4)
N5—K1—O2—C7160.1 (5)O2—C7—C8—C94.3 (4)
N4—K1—O2—C729.0 (6)N2—C7—C8—C9177.6 (3)
O6i—K1—O5—C20172.2 (2)N1—C8—C9—C101.0 (5)
O3ii—K1—O5—C2029.7 (3)C7—C8—C9—C10177.6 (3)
O2—K1—O5—C2095.6 (2)C8—C9—C10—C110.5 (5)
N5—K1—O5—C2060.7 (2)C9—C10—C11—C120.7 (5)
N4—K1—O5—C2077.4 (2)C8—N1—C12—C110.9 (4)
O6i—K1—N4—C2225.3 (5)C8—N1—C12—C13177.1 (2)
O3ii—K1—N4—C2284.7 (5)C10—C11—C12—N11.4 (5)
O5—K1—N4—C22139.4 (5)C10—C11—C12—C13176.7 (3)
O2—K1—N4—C2249.0 (6)K1iii—O3—C13—N3114.6 (3)
N5—K1—N4—C22163.2 (5)K1iii—O3—C13—C1267.2 (4)
O6i—K1—N5—C2479.2 (3)C14—N3—C13—O38.1 (5)
O3ii—K1—N5—C24153.9 (3)C14—N3—C13—C12170.2 (3)
O5—K1—N5—C2433.4 (3)N1—C12—C13—O3179.6 (3)
O2—K1—N5—C24122.5 (3)C11—C12—C13—O31.4 (4)
N4—K1—N5—C2490.1 (3)N1—C12—C13—N31.2 (4)
O1—C1—C2—C3177.9 (3)C11—C12—C13—N3177.0 (3)
C6—C1—C2—C30.5 (4)C13—N3—C14—C152.1 (5)
C1—C2—C3—C40.1 (5)C13—N3—C14—C19179.9 (3)
C2—C3—C4—C50.4 (5)C19—C14—C15—C160.3 (5)
C3—C4—C5—C60.3 (5)N3—C14—C15—C16177.4 (3)
C4—C5—C6—C10.2 (4)C14—C15—C16—C170.6 (5)
C4—C5—C6—N2178.7 (3)C15—C16—C17—C180.0 (5)
O1—C1—C6—C5177.9 (3)C16—C17—C18—C190.8 (5)
C2—C1—C6—C50.6 (4)C17—C18—C19—O4179.6 (3)
O1—C1—C6—N23.1 (4)C17—C18—C19—C141.0 (5)
C2—C1—C6—N2178.4 (3)C15—C14—C19—O4179.9 (3)
C7—N2—C6—C52.6 (5)N3—C14—C19—O42.2 (4)
C7—N2—C6—C1176.3 (3)C15—C14—C19—C180.5 (4)
K1—O2—C7—N2151.0 (4)N3—C14—C19—C18178.4 (3)
K1—O2—C7—C831.2 (7)K1iv—O6—C20—O5142.5 (2)
C6—N2—C7—O20.7 (5)K1iv—O6—C20—C2137.9 (4)
C6—N2—C7—C8177.3 (3)K1—O5—C20—O6156.2 (2)
C12—N1—C8—C90.3 (4)K1—O5—C20—C2123.4 (4)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x1/2, y+3/2, z+1; (iv) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O6v0.841.82.638 (3)174
O1—H1O···O5v0.841.782.618 (3)175
Symmetry code: (v) x+1/2, y+1, z+1/2.
 

Acknowledgements

The authors are grateful to the EPSRC, the Nuffield Foundation and the Universidad Rey Juan Carlos for funding.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChavez, F. A., Olmstead, M. M. & Mascharak, P. K. (1996). Inorg. Chem. 35, 1410–1412.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationChavez, F. A., Olmstead, M. M. & Mascharak, P. K. (1998). Inorg. Chim. Acta, 269, 269–273.  Web of Science CSD CrossRef CAS Google Scholar
First citationClague, N. P., Clegg, W., Coles, S. J., Crane, J. D., Moreton, D. J., Sinn, E., Teat, S. J. & Young, N. A. (1999). Chem. Commun. pp. 379–380.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHiratani, K. & Taguchi, K. (1990). Bull. Chem. Soc. Jpn, 63, 3331–3333.  CrossRef CAS Web of Science Google Scholar
First citationMarlin, D. S., Olmstead, M. M. & Mascharak, P. K. (1999). Inorg. Chem. 38, 3258–3260.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarlin, D. S., Olmstead, M. M. & Mascharak, P. K. (2000). Inorg. Chim. Acta, 297, 106–114.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSingha, N. C. & Sathyanarayana, D. N. (1997). J. Mol. Struct. 403, 123–135.  CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds