organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-4-(di­methyl­amino­methyl­ene­amino)-2-(methyl­sulfan­yl)pyrimidine

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland.
*Correspondence e-mail: che562@abdn.ac.uk

(Received 24 July 2006; accepted 14 August 2006; online 16 August 2006)

The mol­ecules in the title compound, C8H11ClN4S, are linked in pairs by a ππ stacking inter­action. There are, however, no other direction-specific inter­actions.

Comment

In our search for good candidates for inter­mediates in the synthesis of new pyrimidine fused ring systems, we have prepared the title compound, (I), (Fig. 1[link]), a formyl derivative of 4-amino-6-chloro-2-(methyl­sulfan­yl)pyrimidine, using the Vilsmeier formyl­ation reaction (Vilsmeier & Haack, 1927[Vilsmeier, A. & Haack, A. (1927). Chem. Ber. 60, 119-122.]).

[Scheme 1]

The bond lengths and angles show no unusual features. The essentially planar group consisting of atoms N4, C41, N42, C43 and C44 forms a dihedral angle of 31.49 (8)° with that of the planar pyrimidine ring. The leading torsion angles are given in Table 1[link]. The mol­ecules are linked into pairs by a ππ stacking inter­action (Fig. 2[link]). The mol­ecules at (x, y, z) and (1 − x, 1 − y, 1 − z) are parallel, with an inter­planar spacing of 3.4661 (2) Å. The ring-centroid separation is 3.359 (2) Å corresponding to a ring offset of 0.857 Å.

[Figure 1]
Figure 1
A view of (I) with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A view of the ππ stacking viewed perpendicular to the plane of the pyrimidine ring. Atoms labelled with an asterisk (*) are in the mol­ecule at (1 − x, 1 − y, 1 − z). For the sake of clarity, all H atoms have been omitted.

Experimental

The Vilsmeier reagent was prepared in an ice-bath by adding phospho­rus oxychloride (1.8 mmol) to N,N-dimethyl­formamide (38 mmol) and stirring for 15 min. 4-Amino-6-chloro-2-(methyl­sulfan­yl)pyrimidine (0.2 g, 1.14 mmol) was then added and the reaction temperature raised to 323–333 K, and the mixture stirred for 2 h. The reaction mixture was then poured on to crushed ice and neutralized with NaOH (10% in water) until the pH was raised to 8–9. The resulting white solid was filtered off and recrystallized from DMSO-d6 producing white crystalline blocks suitable for single-crystal X-ray diffraction (yield 60%; m.p. 374–376 K). MS (70 eV): 232/230 (38:100, M+2/M+), 217/215 (17/18, [(M+2/M) − CH3]+), 186/184 (17/18, [(M+2/M) − SCH2]+), 149 (31, [M − SCH3 − Cl]+), 71 (4, [N=CH—N(CH3)2]+).

Crystal data
  • C8H11ClN4S

  • Mr = 230.72

  • Triclinic, [P \overline 1]

  • a = 7.4817 (2) Å

  • b = 8.5739 (2) Å

  • c = 9.818 (3) Å

  • α = 111.973 (2)°

  • β = 91.661 (2)°

  • γ = 114.566 (2)°

  • V = 518.31 (15) Å3

  • Z = 2

  • Dx = 1.478 Mg m−3

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.856, Tmax = 0.901

  • 12192 measured reflections

  • 2378 independent reflections

  • 2015 reflections with I > 2σ(I)

  • Rint = 0.032

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.106

  • S = 1.13

  • 2378 reflections

  • 130 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0456P)2 + 0.5109P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected torsion angles (°)

N3—C2—S2—C21 0.17 (18)
N1—C2—S2—C21 −179.75 (14)
N3—C4—N4—C41 −25.4 (3)
C5—C4—N4—C41 156.38 (18)
C4—N4—C41—N41 174.23 (17)
N4—C41—N41—C43 −3.4 (3)
N4—C41—N41—C44 175.22 (18)
C2—N1—C6—Cl6 −177.26 (13)
C4—C5—C6—Cl6 175.75 (14)

H atoms were treated as riding atoms, with aromatic C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C), and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). The positions of all methyl H atoms were checked in a difference map.

Data collection: COLLECT (Bruker–Nonius, 2004[Bruker-Nonius (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M, Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Bruker–Nonius, 2004); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

6-Chloro-4-(dimethylaminomethyleneamino)-2-(methylsulfanyl)pyrimidine top
Crystal data top
C8H11ClN4SZ = 2
Mr = 230.72F(000) = 240
Triclinic, P1Dx = 1.478 Mg m3
a = 7.4817 (2) ÅMo Kα radiation, λ = 0.71069 Å
b = 8.5739 (2) ÅCell parameters from 2378 reflections
c = 9.818 (3) Åθ = 4.2–27.5°
α = 111.973 (2)°µ = 0.54 mm1
β = 91.661 (2)°T = 120 K
γ = 114.566 (2)°Block, colourless
V = 518.31 (15) Å30.30 × 0.30 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
2015 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
θmax = 27.5°, θmin = 4.2°
Tmin = 0.856, Tmax = 0.901h = 99
12192 measured reflectionsk = 1111
2378 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.5109P]
where P = (Fo2 + 2Fc2)/3
2378 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Experimental. The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7202 (2)0.4345 (2)0.35311 (18)0.0187 (3)
C20.7336 (3)0.4427 (3)0.4933 (2)0.0171 (4)
S20.71334 (8)0.23243 (7)0.49580 (5)0.02132 (15)
C210.7347 (3)0.2824 (3)0.6919 (2)0.0255 (4)
N30.7589 (2)0.5869 (2)0.62132 (18)0.0176 (3)
C40.7747 (3)0.7458 (3)0.6112 (2)0.0172 (4)
N40.8032 (2)0.9024 (2)0.73831 (18)0.0192 (3)
C410.7393 (3)0.8703 (3)0.8511 (2)0.0183 (4)
N410.7704 (2)1.0073 (2)0.98542 (18)0.0195 (3)
C430.8898 (3)1.2062 (3)1.0181 (2)0.0241 (4)
C440.6831 (3)0.9661 (3)1.1064 (2)0.0234 (4)
C50.7678 (3)0.7549 (3)0.4712 (2)0.0191 (4)
C60.7360 (3)0.5939 (3)0.3494 (2)0.0185 (4)
Cl60.70810 (8)0.58526 (7)0.16889 (5)0.02420 (15)
H21A0.72440.17180.70590.038*
H21B0.62620.31110.72750.038*
H21C0.86520.39140.74950.038*
H410.66650.74260.83700.022*
H43A0.96841.21700.94090.036*
H43B0.98141.27241.11700.036*
H43C0.80021.26321.01830.036*
H44A0.59200.83021.06800.035*
H44B0.60781.03771.14410.035*
H44C0.79101.00271.18850.035*
H50.78420.86620.46180.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0197 (8)0.0177 (8)0.0186 (8)0.0086 (7)0.0043 (6)0.0077 (6)
C20.0159 (9)0.0168 (9)0.0173 (9)0.0072 (7)0.0030 (7)0.0064 (7)
S20.0301 (3)0.0171 (2)0.0182 (3)0.0133 (2)0.00435 (19)0.00624 (19)
C210.0362 (12)0.0228 (10)0.0195 (10)0.0149 (9)0.0050 (8)0.0094 (8)
N30.0191 (8)0.0167 (8)0.0170 (8)0.0088 (6)0.0024 (6)0.0065 (6)
C40.0153 (8)0.0160 (9)0.0185 (9)0.0069 (7)0.0023 (7)0.0062 (7)
N40.0217 (8)0.0176 (8)0.0172 (8)0.0098 (7)0.0023 (6)0.0055 (6)
C410.0179 (9)0.0154 (9)0.0188 (9)0.0087 (7)0.0017 (7)0.0036 (7)
N410.0220 (8)0.0178 (8)0.0184 (8)0.0100 (7)0.0032 (6)0.0064 (7)
C430.0299 (11)0.0174 (9)0.0222 (10)0.0112 (8)0.0031 (8)0.0054 (8)
C440.0266 (10)0.0270 (10)0.0187 (9)0.0146 (9)0.0064 (8)0.0091 (8)
C50.0203 (9)0.0163 (9)0.0210 (9)0.0084 (8)0.0040 (7)0.0084 (8)
C60.0174 (9)0.0222 (9)0.0174 (9)0.0097 (8)0.0040 (7)0.0093 (8)
Cl60.0333 (3)0.0244 (3)0.0183 (2)0.0146 (2)0.00694 (19)0.0109 (2)
Geometric parameters (Å, º) top
N1—C61.337 (2)C41—H410.95
N1—C21.350 (2)N41—C431.455 (3)
C2—N31.331 (2)N41—C441.460 (3)
C2—S21.7553 (19)C43—H43A0.98
S2—C211.796 (2)C43—H43B0.98
C21—H21A0.98C43—H43C0.98
C21—H21B0.98C44—H44A0.98
C21—H21C0.98C44—H44B0.98
N3—C41.360 (2)C44—H44C0.98
C4—N41.378 (2)C5—C61.367 (3)
C4—C51.406 (3)C5—H50.95
N4—C411.296 (3)C6—Cl61.748 (2)
C41—N411.330 (2)
C6—N1—C2113.18 (16)C41—N41—C44121.80 (17)
N3—C2—N1127.66 (17)C43—N41—C44116.60 (16)
N3—C2—S2119.89 (14)N41—C43—H43A109.5
N1—C2—S2112.44 (14)N41—C43—H43B109.5
C2—S2—C21102.86 (9)H43A—C43—H43B109.5
S2—C21—H21A109.5N41—C43—H43C109.5
S2—C21—H21B109.5H43A—C43—H43C109.5
H21A—C21—H21B109.5H43B—C43—H43C109.5
S2—C21—H21C109.5N41—C44—H44A109.5
H21A—C21—H21C109.5N41—C44—H44B109.5
H21B—C21—H21C109.5H44A—C44—H44B109.5
C2—N3—C4116.74 (16)N41—C44—H44C109.5
N3—C4—N4120.58 (17)H44A—C44—H44C109.5
N3—C4—C5120.53 (17)H44B—C44—H44C109.5
N4—C4—C5118.87 (17)C6—C5—C4115.92 (17)
C41—N4—C4116.07 (17)C6—C5—H5122.0
N4—C41—N41123.31 (18)C4—C5—H5122.0
N4—C41—H41118.3N1—C6—C5125.91 (18)
N41—C41—H41118.3N1—C6—Cl6114.60 (14)
C41—N41—C43121.59 (17)C5—C6—Cl6119.48 (15)
C6—N1—C2—N30.3 (3)C4—N4—C41—N41174.23 (17)
C6—N1—C2—S2179.79 (13)N4—C41—N41—C433.4 (3)
N3—C2—S2—C210.17 (18)N4—C41—N41—C44175.22 (18)
N1—C2—S2—C21179.75 (14)N3—C4—C5—C62.7 (3)
N1—C2—N3—C40.5 (3)N4—C4—C5—C6179.04 (17)
S2—C2—N3—C4179.60 (13)C2—N1—C6—C51.6 (3)
C2—N3—C4—N4179.32 (17)C2—N1—C6—Cl6177.26 (13)
C2—N3—C4—C51.1 (3)C4—C5—C6—N13.1 (3)
N3—C4—N4—C4125.4 (3)C4—C5—C6—Cl6175.75 (14)
C5—C4—N4—C41156.38 (18)
 

Acknowledgements

JT, MN and JC thank the Consejería de Innovacíon, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén, Spain, for financial support. JT thanks also the Universidad de Jaén for a research scholarship.

References

First citationBruker–Nonius (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M, Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVilsmeier, A. & Haack, A. (1927). Chem. Ber. 60, 119–122.  CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds