organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris[2-(2-nitro­benzyl­­idene­amino)eth­yl]amine

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Loughborough University, Loughborough, Leics LE11 3TU, England, and bSchool of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
*Correspondence e-mail: v.mckee@lboro.ac.uk

(Received 1 August 2006; accepted 3 August 2006; online 9 August 2006)

The title imine podand, C27H27N7O6, is approximately planar, with the amine N atom lying on a threefold axis. ππ Stacking of the nitro­benzene groups and significant C—H⋯O hydrogen bonds are present in the crystal structure.

Comment

Our long-standing inter­est in the chemistry of cryptands based on tris­(amino­ethyl)amine and related amines (see for example McKee et al., 2003[McKee, V., Nelson, J. & Town, R. M. (2003). Chem. Soc. Rev. 32, 309-325.]; Nelson et al., 1998[Nelson, J., McKee, V. & Morgan, G. (1998). Prog. Inorg. Chem. 47, 167-316.]) has led us to synthesize a range of analogous podates in order to compare their properties with those of the related cryptand and cryptate systems.

[Scheme 1]

In this paper we report the structure of tris­[N-2-(nitro­benzyl­ideneamino)eth­yl]amine, (I)[link], which was prepared by Schiff base condensation of 2-nitro­benzaldehyde with tris­(amino­ethyl)amine (tren). Compound (I)[link] crystallizes in the trigonal space group R[\overline{3}] and lies on a threefold axis (Fig. 1[link]). The mol­ecule overall is approximately planar [r.m.s. deviation of all non-H atoms from the mean plane is 0.264 (2) Å]. This arrangement allows the π systems to stack parallel to the c axis (Fig. 2[link]). The benzene ring comprising C4–C9 is inclined at 7.69 (2)° to its equivalent by symmetry operation ([{2\over 3}] − y, −[{2\over 3}] + xy, [{1\over 3}] + z) and the centroid of the ring is 3.432 (1) Å from the plane of the second ring; the ring centroids are 3.835 (2) Å apart. The plane of the nitro group is inclined at 22.75 (4)° to the mean plane of the benzene ring.

A search of the CSD (Version 5.27; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]; Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]) shows that, although many tris­(amino­ethyl)amine/salicylate complexes have been investigated, few simple podands with other substituted benzaldehyde derivatives have been structurally characterized. The closest analogue in the literature is tris­(N-4-nitro­benzyl­ideneamino­ethyl)amine (Glidewell et al., 2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o75-o77.]). In that structure the three arms of the mol­ecule are independent and each has a different conformation. The mol­ecule has a more `closed' conformation, due to intra­molecular ππ inter­actions between two of the rings. There are also inter­molecular ππ inter­actions as well as one intra­molecular, and one inter­molecular, C—H⋯O hydrogen bond.

None of the podands reported previously have the planar geometry seen in the present compound. A likely reason for this unusual arrangement is that the position of the nitro group allows formation of a total of 12 inter­molecular C—H⋯O hydrogen bonds per mol­ecule which support the π stacking in the lattice (Table 1[link]). Fig. 3[link] shows the C12—H12⋯O12iii hydrogen bond along with the five symmetry-related inter­actions involving a single mol­ecule of (I)[link]. The central mol­ecule is linked into three R22(16) rings (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) and lies slightly below the mean plane of the other three mol­ecules. Similarly, Fig. 4[link] shows the C18—H18⋯O11iv hydrogen bond and symmetry-related inter­actions; in this case R22(34) rings result and the central mol­ecule is above the plane of the three neighbours. The two arrays of mol­ecules hydrogen bonded to the central mol­ecule inter­act with each other by ππ stacking, as shown in Fig. 2[link].

[Figure 1]
Figure 1
Perspective view of the structure (I)[link]; displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes (i) 1 − y, xy − 1, z; (ii) 2 − x + y, 1 − x, z.]
[Figure 2]
Figure 2
Packing diagram viewed down the c axis and showing ππ stacking. H atoms have been omitted for clarity.
[Figure 3]
Figure 3
C12—H12⋯O12iii and symmetry-related hydrogen-bonds (shown dashed). [Symmetry code: (iii) [4\over3] − x, −[{1\over 3}] − y, [{2\over 3}] − z.]
[Figure 4]
Figure 4
C18—H18⋯O11iv and symmetry-related hydrogen-bonds (shown dashed). [Symmetry code: (iv) x − y[{1\over 3}], x − [{2\over 3}], [{1\over 3}] − z.]

Experimental

Compound (I)[link] was prepared by condensation of tris­(2-amino­ethyl)amine (1.04 g, 7.1 mmol) and 2-nitro­benzaldehyde (3.17 g, 20.0 mmol) in ethanol (50 ml). The solution was refluxed for 30 min and the product obtained as yellow crystals on reducing the volume (yield 3.73 g, 98%). Analysis calculated for C27H27N7O6: C 59.4, H 5.0, N 18.0%; found C 59.2, H 4.9, N 18.0%.

Crystal data
  • C27H27N7O6

  • Mr = 545.56

  • Trigonal, [R \overline 3]

  • a = 20.765 (1) Å

  • c = 10.453 (1) Å

  • V = 3903.3 (5) Å3

  • Z = 6

  • Dx = 1.393 Mg m−3

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 (2) K

  • Block, yellow

  • 0.55 × 0.40 × 0.30 mm

Data collection
  • Siemens P4 four-circle diffractometer

  • ω scans

  • Absorption correction: none

  • 2518 measured reflections

  • 1952 independent reflections

  • 1425 reflections with I > 2σ(I)

  • Rint = 0.016

  • θmax = 27.5°

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.118

  • S = 1.03

  • 1952 reflections

  • 121 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0491P)2 + 5.6815P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O12iii 0.99 2.60 3.592 (2) 178
C18—H18⋯O11iv 0.95 2.51 3.147 (2) 124
Symmetry codes: (iii) [-x+{\script{4\over 3}}, -y-{\script{1\over 3}}, -z+{\script{2\over 3}}]; (iv) [x-y-{\script{1\over 3}}, x-{\script{2\over 3}}, -z+{\script{1\over 3}}].

H atoms were placed at calculated positions and refined using a riding model. The constrained distances were 0.95 and 0.99 Å for aryl and methyl­ene, respectively. They were refined with Uiso(H) = 1.2Ueq(C).

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL.

Tris[N-2-(nitrobenzylideneamino)ethyl]amine top
Crystal data top
C27H27N7O6Dx = 1.393 Mg m3
Mr = 545.56Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 31 reflections
Hall symbol: -R 3θ = 5.0–12.5°
a = 20.765 (1) ŵ = 0.10 mm1
c = 10.453 (1) ÅT = 123 K
V = 3903.3 (5) Å3Block, yellow
Z = 60.55 × 0.40 × 0.30 mm
F(000) = 1716
Data collection top
Siemens P4 four-circle
diffractometer
Rint = 0.016
Radiation source: normal-focus sealed tubeθmax = 27.5°, θmin = 2.3°
Graphite monochromatorh = 126
ω scansk = 261
2518 measured reflectionsl = 113
1952 independent reflections3 standard reflections every 97 reflections
1425 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0491P)2 + 5.6815P]
where P = (Fo2 + 2Fc2)/3
1952 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Experimental. NMR (CDCl3, p.p.m., 1H): 3.01(t, 6, CH2), 3.80(t, 6, CH2),), 8.64(s, 3, imine), 7.99(d, 3, aromatic), 7.97 (d, 3, aromatic), 7.49–7.61(m, 6, aromatic. Mass spectrum (FAB): m/e 546 (I+H+). IR (KBr, cm-1) inter alia: 1629(m, imine), 1521(s, NO2), 1342(m, NO2).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.00000.00000.2625 (3)0.0251 (6)
C110.95311 (10)0.03093 (10)0.2257 (2)0.0296 (4)
H11A0.93010.01060.14140.036*
H11B0.98420.08560.21730.036*
C120.89304 (10)0.01266 (11)0.3229 (2)0.0301 (4)
H12A0.86460.04180.33660.036*
H12B0.91590.03650.40540.036*
N110.84242 (8)0.03839 (8)0.28074 (16)0.0297 (4)
C130.77375 (9)0.00662 (9)0.29467 (16)0.0220 (4)
H130.75720.05610.32210.026*
C140.71876 (9)0.01770 (9)0.26824 (15)0.0188 (3)
C150.74417 (10)0.09390 (10)0.26214 (17)0.0238 (4)
H150.79610.12790.26610.029*
C160.69605 (11)0.12121 (10)0.25056 (18)0.0286 (4)
H160.71520.17330.24500.034*
C170.61985 (11)0.07295 (11)0.24696 (18)0.0290 (4)
H170.58680.09200.24060.035*
C180.59218 (9)0.00295 (10)0.25268 (17)0.0246 (4)
H180.54010.03650.25110.029*
C190.64171 (9)0.02941 (9)0.26073 (15)0.0199 (3)
N120.60806 (8)0.11087 (8)0.25530 (14)0.0255 (3)
O110.64710 (8)0.13623 (7)0.21889 (13)0.0333 (3)
O120.54240 (8)0.14936 (8)0.28380 (15)0.0409 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0137 (7)0.0137 (7)0.0479 (16)0.0068 (4)0.0000.000
C110.0243 (9)0.0224 (9)0.0441 (11)0.0131 (8)0.0005 (8)0.0056 (8)
C120.0230 (9)0.0285 (10)0.0436 (11)0.0165 (8)0.0017 (8)0.0024 (8)
N110.0218 (8)0.0248 (8)0.0461 (10)0.0143 (7)0.0010 (7)0.0044 (7)
C130.0224 (9)0.0213 (8)0.0257 (8)0.0135 (7)0.0002 (7)0.0015 (7)
C140.0193 (8)0.0207 (8)0.0185 (8)0.0116 (7)0.0005 (6)0.0008 (6)
C150.0208 (9)0.0207 (8)0.0284 (9)0.0092 (7)0.0015 (7)0.0018 (7)
C160.0366 (10)0.0217 (9)0.0325 (10)0.0183 (8)0.0041 (8)0.0005 (7)
C170.0310 (10)0.0372 (10)0.0318 (9)0.0268 (9)0.0025 (8)0.0012 (8)
C180.0179 (8)0.0316 (10)0.0251 (9)0.0130 (8)0.0005 (7)0.0023 (7)
C190.0211 (8)0.0192 (8)0.0188 (8)0.0098 (7)0.0001 (6)0.0008 (6)
N120.0269 (8)0.0217 (8)0.0233 (7)0.0089 (6)0.0018 (6)0.0006 (6)
O110.0403 (8)0.0253 (7)0.0396 (8)0.0204 (6)0.0052 (6)0.0055 (6)
O120.0273 (7)0.0291 (8)0.0475 (9)0.0000 (6)0.0042 (6)0.0008 (6)
Geometric parameters (Å, º) top
N1—C11i1.4607 (19)C14—C191.399 (2)
N1—C11ii1.4607 (19)C15—C161.379 (2)
N1—C111.4607 (19)C15—H150.9500
C11—C121.503 (3)C16—C171.387 (3)
C11—H11A0.9900C16—H160.9500
C11—H11B0.9900C17—C181.383 (3)
C12—N111.465 (2)C17—H170.9500
C12—H12A0.9900C18—C191.390 (2)
C12—H12B0.9900C18—H180.9500
N11—C131.263 (2)C19—N121.474 (2)
C13—C141.487 (2)N12—O121.223 (2)
C13—H130.9500N12—O111.2273 (19)
C14—C151.397 (2)
C11i—N1—C11ii113.33 (11)C15—C14—C13118.28 (15)
C11i—N1—C11113.33 (11)C19—C14—C13125.23 (15)
C11ii—N1—C11113.33 (11)C16—C15—C14121.93 (16)
N1—C11—C12111.25 (17)C16—C15—H15119.0
N1—C11—H11A109.4C14—C15—H15119.0
C12—C11—H11A109.4C15—C16—C17120.31 (17)
N1—C11—H11B109.4C15—C16—H16119.8
C12—C11—H11B109.4C17—C16—H16119.8
H11A—C11—H11B108.0C18—C17—C16119.74 (16)
N11—C12—C11111.16 (16)C18—C17—H17120.1
N11—C12—H12A109.4C16—C17—H17120.1
C11—C12—H12A109.4C17—C18—C19119.03 (16)
N11—C12—H12B109.4C17—C18—H18120.5
C11—C12—H12B109.4C19—C18—H18120.5
H12A—C12—H12B108.0C18—C19—C14122.73 (15)
C13—N11—C12116.49 (15)C18—C19—N12115.57 (15)
N11—C13—C14120.12 (15)C14—C19—N12121.65 (15)
N11—C13—H13119.9O12—N12—O11123.69 (15)
C14—C13—H13119.9O12—N12—C19118.32 (15)
C15—C14—C19116.20 (15)O11—N12—C19117.96 (14)
C11i—N1—C11—C1283.6 (3)C16—C17—C18—C190.6 (3)
C11ii—N1—C11—C12145.41 (19)C17—C18—C19—C142.5 (3)
N1—C11—C12—N11175.32 (15)C17—C18—C19—N12174.98 (15)
C11—C12—N11—C13135.09 (18)C15—C14—C19—C182.5 (2)
C12—N11—C13—C14173.14 (16)C13—C14—C19—C18171.22 (16)
N11—C13—C14—C1517.0 (3)C15—C14—C19—N12174.88 (15)
N11—C13—C14—C19169.45 (17)C13—C14—C19—N1211.5 (2)
C19—C14—C15—C160.6 (3)C18—C19—N12—O1222.2 (2)
C13—C14—C15—C16173.55 (16)C14—C19—N12—O12160.27 (16)
C14—C15—C16—C171.2 (3)C18—C19—N12—O11155.76 (15)
C15—C16—C17—C181.2 (3)C14—C19—N12—O1121.7 (2)
Symmetry codes: (i) y+1, xy1, z; (ii) x+y+2, x+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O110.952.312.777 (2)109
C12—H12A···O12iii0.992.603.592 (2)178
C18—H18···O11iv0.952.513.147 (2)124
Symmetry codes: (iii) x+4/3, y1/3, z+2/3; (iv) xy1/3, x2/3, z+1/3.
 

Acknowledgements

We thank the Leverhulme Foundation and Unilever R&D for support and acknowledge the use of the EPSRC's Chemical Database Service at Daresbury.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o75–o77.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKee, V., Nelson, J. & Town, R. M. (2003). Chem. Soc. Rev. 32, 309–325.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNelson, J., McKee, V. & Morgan, G. (1998). Prog. Inorg. Chem. 47, 167–316.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds