organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-7-(salicyl­idene­amino)coumarin

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of King Abdulaziz, PO Box 6171, Jeddah 21442, Saudi Arabia, and bThe Chemistry Laboratory, School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton BN1 9QJ, England
*Correspondence e-mail: eazam@kaau.edu.sa

(Received 21 July 2006; accepted 28 August 2006; online 6 September 2006)

The title compound, C17H13NO3, consists of a methyl-substituted coumarin group fused to a 2-hydroxy­phenyl ring via an azomethine linkage. The coumarin and benzene ring planes form a dihedral angle of 24.0 (1)°. Intra­molecular O—H⋯N hydrogen bonding is present and the crystal structure includes inter­molecular C—H⋯O inter­actions.

Comment

Coumarin derivatives are used as fluorescent dyes for synthetic fibres and daylight fluorescent pigments. The absorption spectrum of the title compound, (I), is comparable to that of azomethine dyes such as 6-substituted derivatives of 2Hchromen-2-one (Kachkovski et al., 2004[Kachkovski, O.-D., Tolmachev, O.-I., Kobryn, L.-O., Bila, E.-E. & Park, S.-W. (2004). Dyes Pigments, C63, 203-211.]). We report here the crystal structure of (I) (Fig. 1[link]).

[Scheme 1]

Planar mol­ecules of Schiff bases are usually stabilized by inter­molecular ππ inter­actions (Wozniak et al. 2000[Wozniak, K., Grech, E. & Szady-Chemieniecka, A. (2000). Pol. J. Chem. 74, 717-728.]). However, (I) is not planar [the dihedral angle between the coumarin and benzene ring planes is 24.0 (1)°], indicating an absence of ππ coupling. Compound (I) shows no photochromic effect in the solid state at ambient temperature, which is attributed to the presence of an intra­molecular O—H⋯N hydrogen bond. Such an inter­action is considered to be vital for determining lightfastness properties (that is, retention of colour strength over time under exposure to sunlight) by providing electronic protection of the chromophore towards photochemical degradation (Chang et al., 2003[Chang, C.-H., Christie, R. M. & Rosair, G. M. (2003). Acta Cryst. C59, o556-o558.]).

Adjacent mol­ecules of (I) are linked via inter­molecular C—H⋯O inter­actions (Fig. 2[link]) between the carbonyl atom O3 and two C—H groups (C13—H13 and C7—H7) from a neighbouring mol­ecule [C13⋯O3i = 3.5565 (16) Å and C13—H13⋯O3i = 165°, and C7⋯O3i = 3.2733 (15) Å and C7—H7⋯O3i = 146°; symmetry code: (i) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z]. Similar inter­actions are present in 7-meth­oxy-3-(salicylideneamino)coumarin, which is a planar mol­ecule (Khoo et al., 2000[Khoo, L. E., Zhang, Y. & Ng, S. W. (2000). Acta Cryst. C56, e350-e351.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I), showing displacement ellipsoids at the 50% probability level for non-H atoms.
[Figure 2]
Figure 2
View of the unit-cell contents of (I), showing intra­molecular O—H⋯N hydrogen bonds and inter­molecular C—H⋯O inter­actions as dashed lines.

Experimental

Salicylaldehyde (1.22 ml, 10 mmol) dissolved in 15 ml absolute ethanol was added to a warm stirred solution of 7-amino-4-methyl­coumarin (1.75 g, 10 mmol) in absolute ethanol (15 ml), and the mixture was refluxed for 1 h. The resulting yellow–orange precipitate was removed, washed with ethanol followed by diethyl ether and then dried in vacuo. Suitable single crystals were grown by slow evaporation from either chloro­form/methanol (1:1) or 10–15 ml ethanol (yield 85%, m.p 459–460 K). 1H NMR (400 MHz, DMSO-d6, 298 K, TMS): δ 6.28 (1H, s, H15), 7.41–7.45 (2H, m, H9,H10), 7.64 (1H, d, H13), 7.00–7.26 (4H, m, aromatic), 2.46 (3H, s, H17AC), 8.65 (1H, s, H7), 12.79 (1H, s, H1); 13C NMR (100.6 MHz, DMSO-d6, 298 K, TMS): δ 108.75–160.16 (aromatic C), 18.79 (C17), 164 (C16), 154 (C7). UV/Vis (ethanol, λ, nm): 210, 229, 269, 285, 350. Elemental analysis found: C 73.11, H 4.69, N 5.02%; calculated: C 72.78, H 4.55, N 5.11%. IR (ν, cm−1): 3459 (O—H), 1718 (C=O), 1639 (C=N), 1570 (C=C), 1215 (C—O).

Crystal data
  • C17H13NO3

  • Mr = 279.28

  • Monoclinic, P 21 /c

  • a = 8.7209 (3) Å

  • b = 9.9919 (3) Å

  • c = 15.3906 (4) Å

  • β = 97.853 (2)°

  • V = 1328.53 (7) Å3

  • Z = 4

  • Dx = 1.396 Mg m−3

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 (2) K

  • Prism, orange

  • 0.25 × 0.2 × 0.2 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: none

  • 12760 measured reflections

  • 2600 independent reflections

  • 2213 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 26.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.02

  • 2600 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0498P)2 + 0.3959P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

H atoms bound to C atoms were placed in calculated positions and allowed to ride during subsequent refinement, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for Csp2, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for the methyl group. The methyl group was allowed to rotate about its local threefold axis. Atom H1 of the hydroxyl group was located in a Fourier map and refined freely with an isotropic displacement parameter; the refined O—H distance is 0.92 (2) Å.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

4-Methyl-7-(salicylideneamino)coumarin top
Crystal data top
C17H13NO3F(000) = 584
Mr = 279.28Dx = 1.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7644 reflections
a = 8.7209 (3) Åθ = 3.4–26.0°
b = 9.9919 (3) ŵ = 0.10 mm1
c = 15.3906 (4) ÅT = 173 K
β = 97.853 (2)°Prism, orange
V = 1328.53 (7) Å30.25 × 0.2 × 0.2 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2213 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.033
Graphite monochromatorθmax = 26.0°, θmin = 3.5°
Detector resolution: 9 pixels mm-1h = 1010
ω and φ scansk = 129
12760 measured reflectionsl = 1818
2600 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.3959P]
where P = (Fo2 + 2Fc2)/3
2600 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.96556 (10)0.13858 (10)0.67129 (6)0.0321 (2)
H10.934 (2)0.069 (2)0.6335 (13)0.068 (6)*
O20.60263 (10)0.21112 (9)0.27394 (5)0.0286 (2)
O30.51133 (12)0.30134 (10)0.14659 (6)0.0422 (3)
N10.80250 (12)0.00876 (10)0.54404 (7)0.0270 (3)
C10.73582 (14)0.22881 (12)0.58642 (8)0.0233 (3)
C20.86395 (14)0.23980 (13)0.65290 (8)0.0251 (3)
C30.88635 (15)0.35761 (13)0.70148 (9)0.0300 (3)
H30.97250.36550.74620.036*
C40.78415 (16)0.46272 (13)0.68494 (9)0.0322 (3)
H40.8010.54270.71830.039*
C50.65646 (16)0.45341 (13)0.62004 (9)0.0310 (3)
H50.58610.52610.60930.037*
C60.63358 (15)0.33729 (12)0.57154 (8)0.0272 (3)
H60.54680.33070.52720.033*
C70.70922 (14)0.10920 (12)0.53335 (8)0.0250 (3)
H70.62110.10470.48970.03*
C80.77850 (14)0.10553 (12)0.48957 (8)0.0257 (3)
C90.84691 (16)0.22489 (14)0.52279 (8)0.0322 (3)
H90.90390.22640.580.039*
C100.83234 (16)0.34013 (13)0.47339 (8)0.0302 (3)
H100.87830.42050.49740.036*
C110.75108 (14)0.34116 (12)0.38847 (8)0.0242 (3)
C120.68437 (14)0.22046 (12)0.35694 (8)0.0233 (3)
C130.69678 (14)0.10337 (12)0.40544 (8)0.0250 (3)
H130.65030.0230.38170.03*
C140.73364 (14)0.45777 (12)0.33190 (8)0.0250 (3)
C150.65366 (14)0.44444 (13)0.25094 (8)0.0282 (3)
H150.64250.52060.21360.034*
C160.58430 (15)0.32011 (13)0.21838 (8)0.0293 (3)
C170.80358 (16)0.58880 (13)0.36292 (9)0.0323 (3)
H17A0.91650.58350.36640.048*
H17B0.77580.60930.42110.048*
H17C0.76440.65950.32160.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0291 (5)0.0327 (5)0.0317 (5)0.0064 (4)0.0055 (4)0.0040 (4)
O20.0346 (5)0.0253 (5)0.0230 (5)0.0008 (4)0.0057 (4)0.0015 (4)
O30.0530 (7)0.0380 (6)0.0300 (5)0.0041 (5)0.0139 (5)0.0056 (4)
N10.0311 (6)0.0259 (6)0.0232 (5)0.0020 (4)0.0007 (4)0.0025 (4)
C10.0247 (6)0.0245 (6)0.0213 (6)0.0005 (5)0.0049 (5)0.0011 (5)
C20.0237 (6)0.0270 (6)0.0250 (6)0.0003 (5)0.0054 (5)0.0005 (5)
C30.0284 (7)0.0330 (7)0.0282 (7)0.0048 (5)0.0023 (5)0.0050 (5)
C40.0373 (7)0.0257 (7)0.0353 (7)0.0053 (5)0.0113 (6)0.0071 (6)
C50.0325 (7)0.0255 (6)0.0365 (8)0.0033 (5)0.0102 (6)0.0015 (6)
C60.0262 (6)0.0291 (7)0.0262 (6)0.0014 (5)0.0032 (5)0.0030 (5)
C70.0264 (6)0.0276 (6)0.0204 (6)0.0003 (5)0.0005 (5)0.0002 (5)
C80.0269 (6)0.0262 (6)0.0236 (6)0.0010 (5)0.0024 (5)0.0029 (5)
C90.0387 (8)0.0331 (7)0.0227 (6)0.0088 (6)0.0037 (5)0.0011 (5)
C100.0362 (7)0.0270 (7)0.0265 (7)0.0085 (5)0.0006 (5)0.0019 (5)
C110.0249 (6)0.0245 (6)0.0239 (6)0.0007 (5)0.0054 (5)0.0004 (5)
C120.0234 (6)0.0263 (6)0.0197 (6)0.0012 (5)0.0011 (5)0.0005 (5)
C130.0275 (6)0.0224 (6)0.0245 (6)0.0014 (5)0.0017 (5)0.0012 (5)
C140.0241 (6)0.0243 (6)0.0278 (7)0.0018 (5)0.0079 (5)0.0015 (5)
C150.0294 (7)0.0259 (6)0.0293 (7)0.0017 (5)0.0038 (5)0.0054 (5)
C160.0313 (7)0.0290 (7)0.0262 (7)0.0024 (5)0.0004 (5)0.0048 (5)
C170.0408 (8)0.0252 (7)0.0314 (7)0.0030 (6)0.0068 (6)0.0013 (5)
Geometric parameters (Å, º) top
O1—C21.3489 (15)C7—H70.95
O1—H10.92 (2)C8—C131.3902 (17)
O2—C121.3784 (14)C8—C91.3987 (18)
O2—C161.3804 (15)C9—C101.3761 (18)
O3—C161.2119 (15)C9—H90.95
N1—C71.2882 (16)C10—C111.3990 (18)
N1—C81.4152 (15)C10—H100.95
C1—C61.4024 (17)C11—C121.3969 (17)
C1—C21.4124 (17)C11—C141.4500 (17)
C1—C71.4483 (17)C12—C131.3841 (17)
C2—C31.3940 (18)C13—H130.95
C3—C41.3785 (19)C14—C151.3488 (18)
C3—H30.95C14—C171.4947 (17)
C4—C51.394 (2)C15—C161.4413 (18)
C4—H40.95C15—H150.95
C5—C61.3793 (18)C17—H17A0.98
C5—H50.95C17—H17B0.98
C6—H60.95C17—H17C0.98
C2—O1—H1107.5 (12)C8—C9—H9119.7
C12—O2—C16121.47 (10)C9—C10—C11121.27 (12)
C7—N1—C8120.88 (10)C9—C10—H10119.4
C6—C1—C2118.73 (11)C11—C10—H10119.4
C6—C1—C7119.76 (11)C12—C11—C10116.87 (11)
C2—C1—C7121.51 (11)C12—C11—C14118.73 (11)
O1—C2—C3118.73 (11)C10—C11—C14124.40 (11)
O1—C2—C1121.71 (11)O2—C12—C13115.79 (10)
C3—C2—C1119.55 (11)O2—C12—C11121.24 (10)
C4—C3—C2120.31 (12)C13—C12—C11122.98 (11)
C4—C3—H3119.8C12—C13—C8118.78 (11)
C2—C3—H3119.8C12—C13—H13120.6
C3—C4—C5120.97 (12)C8—C13—H13120.6
C3—C4—H4119.5C15—C14—C11118.29 (11)
C5—C4—H4119.5C15—C14—C17121.23 (11)
C6—C5—C4119.10 (12)C11—C14—C17120.48 (11)
C6—C5—H5120.4C14—C15—C16123.08 (11)
C4—C5—H5120.4C14—C15—H15118.5
C5—C6—C1121.34 (12)C16—C15—H15118.5
C5—C6—H6119.3O3—C16—O2116.39 (11)
C1—C6—H6119.3O3—C16—C15126.41 (12)
N1—C7—C1121.41 (11)O2—C16—C15117.19 (11)
N1—C7—H7119.3C14—C17—H17A109.5
C1—C7—H7119.3C14—C17—H17B109.5
C13—C8—C9119.50 (11)H17A—C17—H17B109.5
C13—C8—N1123.69 (11)C14—C17—H17C109.5
C9—C8—N1116.77 (11)H17A—C17—H17C109.5
C10—C9—C8120.59 (12)H17B—C17—H17C109.5
C10—C9—H9119.7
C6—C1—C2—O1179.16 (11)C16—O2—C12—C13178.79 (11)
C7—C1—C2—O11.41 (18)C16—O2—C12—C110.50 (17)
C6—C1—C2—C30.41 (17)C10—C11—C12—O2179.69 (11)
C7—C1—C2—C3179.01 (11)C14—C11—C12—O20.29 (18)
O1—C2—C3—C4179.50 (12)C10—C11—C12—C130.45 (19)
C1—C2—C3—C40.09 (19)C14—C11—C12—C13178.95 (11)
C2—C3—C4—C50.4 (2)O2—C12—C13—C8179.63 (11)
C3—C4—C5—C60.5 (2)C11—C12—C13—C80.35 (19)
C4—C5—C6—C10.14 (19)C9—C8—C13—C120.51 (19)
C2—C1—C6—C50.30 (18)N1—C8—C13—C12178.09 (11)
C7—C1—C6—C5179.13 (11)C12—C11—C14—C150.11 (17)
C8—N1—C7—C1177.58 (11)C10—C11—C14—C15179.24 (12)
C6—C1—C7—N1178.58 (12)C12—C11—C14—C17179.81 (11)
C2—C1—C7—N10.84 (18)C10—C11—C14—C170.46 (19)
C7—N1—C8—C1324.41 (19)C11—C14—C15—C160.33 (19)
C7—N1—C8—C9157.94 (12)C17—C14—C15—C16179.98 (12)
C13—C8—C9—C100.8 (2)C12—O2—C16—O3179.55 (11)
N1—C8—C9—C10178.54 (12)C12—O2—C16—C150.29 (17)
C8—C9—C10—C110.9 (2)C14—C15—C16—O3179.95 (13)
C9—C10—C11—C120.73 (19)C14—C15—C16—O20.13 (19)
C9—C10—C11—C14178.64 (12)
 

Acknowledgements

The authors gratefully acknowledge the Ministry of Higher Education in Saudi Arabia and the Institute of Research and Consultation at King Abdulaziz University for financial support (grant No. 426/501).

References

First citationChang, C.-H., Christie, R. M. & Rosair, G. M. (2003). Acta Cryst. C59, o556–o558.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKachkovski, O.-D., Tolmachev, O.-I., Kobryn, L.-O., Bila, E.-E. & Park, S.-W. (2004). Dyes Pigments, C63, 203–211.  CrossRef Google Scholar
First citationKhoo, L. E., Zhang, Y. & Ng, S. W. (2000). Acta Cryst. C56, e350–e351.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWozniak, K., Grech, E. & Szady-Chemieniecka, A. (2000). Pol. J. Chem. 74, 717–728.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds