organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-C-Methyl-3,4-O-methyl­­idene-D-arabinono-1,5-lactone

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, bDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and cDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: Richard.Bream@pmb.oxon.org

(Received 25 August 2006; accepted 1 September 2006; online 8 September 2006)

The relative stereochemistry at C-2 of the title compound, C7H10O5, was determined by X-ray crystallographic analysis of the arabinonolactone, which adopts a boat conformation with a flagpole hydroxyl group. Its absolute configuration was determined by the use of D-erythronolactone as the starting material.

Comment

Until recently, only linear carbohydrate chirons have been available as scaffolds for the synthesis of complex synthetic targets (Lichtenthaler & Peters, 2004[Lichtenthaler, F. W. & Peters, S. (2004). C. R. Acad. Sci. Ser. IIc Chim. 7, 65-90.]). However, the Kiliani cyanide reaction on ketohexoses (Hotchkiss et al., 2004[Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.]; Soengas et al., 2005[Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.]) affords versatile inter­mediates with carbon branches at C-2 of the sugar for the synthesis of imino sugars and complex sugar amino acids with non-linear carbon chains (Simone et al., 2005[Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761-5775.]). The Kiliani reaction on hamamelose provides access to carbohydrates with a branch at C-3 (Parker, Watkin, Simone & Fleet, 2006[Parker, S. G., Watkin, D. J., Simone, M. I. & Fleet, G. W. J. (2006). Acta Cryst. E62, o3961-o3963.]).

[Scheme 1]

Carbohydrate building blocks with a C-2 methyl group can be formed by the reaction of cyanide on 1-deoxy­ketoses, themselves prepared by the addition of organometallic reagents to sugar lactones (Hotchkiss et al., 2006[Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315-318.]). Thus, reaction of the isopropyl­idene-protected D-erythronolactone, (1), with methyl magnesium bromide followed by sodium cyanide gave the arabino-protected derivative, (2), as the only 1,5-lactone isolated (Punzo et al., 2005a[Punzo, F., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2005a). Acta Cryst. E61, o127-o129.]). The potential of (2) as a route to sugar derivatives with a C-2 methyl group bearing a functional group at the tertiary centre is shown by its easy conversion to the branched arabinose, (3) (Punzo et al., 2005b[Punzo, F., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2005b). Acta Cryst. E61, o326-o327.]), the quaternary ribo-azide, (4) (Punzo, Watkin, Jenkinson, Cruz & Fleet, 2005[Punzo, F., Watkin, D. J., Jenkinson, S. F., Cruz, F. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, o511-o512.]), and the quaternary ribo-fluoride, (5) (Parker, Watkin, Mayes et al., 2006[Parker, S., Watkin, D., Mayes, B., Storer, R., Jenkinson, S. & Fleet, G. (2006). Acta Cryst. E62, o1208-o1210.]). The branched azido­methyl lactone, (6), has also been prepared from (2) and is a precursor to complex piperidine amino acids and imino­sugars (Punzo et al., 2006[Punzo, F., Watkin, D. J., Jenkinson, S. F., da Cruz, F. P. & Fleet, G. W. J. (2006). Acta Cryst. E62, o321-o323.]).

In order to optimize the protecting group strategy for the synthesis of complex targets (and to investigate the diastereo­selectivity of the Kiliani cyanide extension), the formaldehyde acetal of D-erythronolactone, (7), was treated with methyl magnesium bromide to give the 1-de­oxy-D-ribulose, (8). The Kiliani reaction of (8) with sodium cyanide gave a single diastereomeric product, (9), as the only 1,5-lactone isolated (Jenkinson et al., 2006[Jenkinson, S. F., Jones, N. A. & Fleet, G. W. J. (2006). In preparation.]). This paper shows, by X-ray crystallography, that the arabinonolactone, (9), was formed in this reaction with none of the epimeric ribono diastereomer, (10), isolated.

The X-ray crystal structure determination shows that (9) is in a boat conformation (Fig. 1[link]). The formation of (9) with the smaller hydroxyl group in the flagpole position may be due to the alternative product, (10), having the larger methyl group in the more hindered flagpole environment. The potential of (9) as a chiron is under investigation.

In the crystal structure, inter­molecular O—H⋯O hydrogen bonds (Table 1[link]) link the mol­ecules into zigzag chains extending along the a axis (Fig. 2[link]).

[Figure 1]
Figure 1
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.
[Figure 2]
Figure 2
The crystal packing, viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Experimental

The title arabinono-1,5-lactone, (9), was obtained (Jenkinson et al.., 2006[Jenkinson, S. F., Jones, N. A. & Fleet, G. W. J. (2006). In preparation.]) by vapour diffusion of cyclohexane into a solution in ethyl acetate until crystals of a suitable size were formed (m.p. 373–375 K). [α]D −126.0 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 1.67 (3H, s, Me), 3.04 (1H, s, OH), 4.25 (1H, d, J3,4 = 7.9 Hz, H3), 4.46–4.50 (2H, m, H4, H5a), 4.82 (1H, s, OCH2O), 4.97 (1H, dd, J4,5 b = 1.9 Hz, J5a,5 b = 12.0 Hz, H5b), 5.17 (1H, s, OCH2O); 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 22.1 (Me), 68.7 (C5), 71.5 (C4), 72.2 (C3), 78.8 (C2), 94.9 (OCH2O), 171.4 (CO).

Crystal data
  • C7H10O5

  • Mr = 174.15

  • Orthorhombic, P 21 21 21

  • a = 6.8693 (3) Å

  • b = 7.0382 (3) Å

  • c = 15.7909 (7) Å

  • V = 763.45 (6) Å3

  • Z = 4

  • Dx = 1.515 Mg m−3

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 150 K

  • Needle, colourless

  • 0.50 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.882, Tmax = 0.974

  • 1726 measured reflections

  • 1032 independent reflections

  • 784 reflections with I > 2σ(I)

  • Rint = 0.032

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.080

  • S = 1.00

  • 1027 reflections

  • 109 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.04P)2 + 0.03P] where P = (max(Fo2,0) + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H1⋯O7i 0.83 2.10 2.911 (2) 167
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

A [sin(θ)/λ]2 threshold of 0.01 was used to guard against the risk of including low angle reflections partially occluded by the beam stop. In the absence of significant anomalous scattering, 873 Friedel pairs were merged and the absolute configuration was assigned from the known starting material. All H atoms were located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–98 Å, and O—H = 0.825 Å) and isotropic displacement parameters [Uiso(H) in the range 1.2–1.5Ueq of the parent atom], after which they were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

2-C-Methyl-3,4-O-methylidene-D-arabinono-1,5-lactone top
Crystal data top
C7H10O5Dx = 1.515 Mg m3
Mr = 174.15Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 981 reflections
a = 6.8693 (3) Åθ = 1–27°
b = 7.0382 (3) ŵ = 0.13 mm1
c = 15.7909 (7) ÅT = 150 K
V = 763.45 (6) Å3Needle, colourless
Z = 40.50 × 0.20 × 0.20 mm
F(000) = 368
Data collection top
Nonius KappaCCD area-detector
diffractometer
784 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 88
Tmin = 0.882, Tmax = 0.974k = 99
1726 measured reflectionsl = 2020
1032 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(F2) + (0.04P)2 + 0.03P]
where P = (max(Fo2,0) + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.000146
1027 reflectionsΔρmax = 0.36 e Å3
109 parametersΔρmin = 0.34 e Å3
0 restraints
Special details top

Experimental. [α]D -126.0 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 1.67 (3H, s, Me), 3.04 (1H, s, OH), 4.25 (1H, d, J3,4 = 7.9 Hz, H3), 4.46–4.50 (2H, m, H4, H5a), 4.82 (1H, s, OCH2O), 4.97 (1H, dd, J4,5 b = 1.9 Hz, J5a,5 b = 12.0 Hz, H5b), 5.17 (1H, s, OCH2O); 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 22.1 (Me), 68.7 (C5), 71.5 (C4), 72.2 (C3), 78.8 (C2), 94.9 (OCH2O), 171.4 (CO).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5144 (3)0.4702 (3)0.40608 (13)0.0239
C20.4191 (3)0.5797 (3)0.33348 (13)0.0229
C30.2346 (3)0.4823 (4)0.29802 (14)0.0265
C40.1759 (4)0.3085 (4)0.34774 (14)0.0315
O50.1906 (2)0.3444 (3)0.43863 (9)0.0308
C60.3551 (3)0.4201 (3)0.46975 (13)0.0230
O70.3657 (2)0.4406 (2)0.54569 (9)0.0280
O80.0852 (2)0.6217 (2)0.30591 (10)0.0338
C90.1773 (4)0.7974 (4)0.32128 (16)0.0299
O100.3496 (2)0.7553 (2)0.36642 (10)0.0315
O110.5831 (2)0.2984 (2)0.36767 (10)0.0312
C120.6764 (3)0.5837 (4)0.44681 (15)0.0324
H210.51700.59780.28880.0257*
H310.25150.44940.24010.0317*
H410.03850.28050.33690.0378*
H420.26000.19710.33170.0373*
H910.21070.86360.26840.0341*
H920.09080.88220.35660.0339*
H1210.73480.51080.49210.0481*
H1220.77690.60910.40490.0476*
H1230.62530.69780.47070.0472*
H10.65750.23980.39930.0572*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0250 (11)0.0228 (14)0.0239 (11)0.0022 (11)0.0032 (10)0.0000 (10)
C20.0247 (10)0.0235 (13)0.0206 (11)0.0009 (11)0.0028 (10)0.0011 (10)
C30.0299 (11)0.0269 (14)0.0227 (11)0.0002 (12)0.0011 (10)0.0025 (11)
C40.0386 (13)0.0316 (14)0.0244 (12)0.0077 (13)0.0068 (12)0.0011 (11)
O50.0309 (8)0.0378 (11)0.0237 (8)0.0133 (8)0.0024 (7)0.0046 (8)
C60.0265 (12)0.0176 (12)0.0250 (12)0.0003 (11)0.0001 (10)0.0041 (10)
O70.0286 (8)0.0341 (11)0.0215 (8)0.0014 (8)0.0001 (7)0.0006 (8)
O80.0281 (8)0.0301 (10)0.0432 (10)0.0002 (8)0.0045 (8)0.0033 (9)
C90.0328 (12)0.0281 (14)0.0289 (12)0.0040 (12)0.0023 (12)0.0024 (11)
O100.0344 (9)0.0251 (9)0.0350 (9)0.0041 (8)0.0080 (8)0.0047 (8)
O110.0373 (9)0.0314 (10)0.0248 (8)0.0122 (8)0.0004 (8)0.0007 (8)
C120.0245 (11)0.0404 (16)0.0324 (13)0.0055 (12)0.0027 (11)0.0021 (12)
Geometric parameters (Å, º) top
C1—C21.529 (3)C4—H421.006
C1—C61.528 (3)O5—C61.342 (3)
C1—O111.432 (3)C6—O71.210 (3)
C1—C121.514 (3)O8—C91.410 (3)
C2—C31.545 (3)C9—O101.414 (3)
C2—O101.423 (3)C9—H910.983
C2—H210.984C9—H921.010
C3—C41.508 (3)O11—H10.825
C3—O81.426 (3)C12—H1210.966
C3—H310.951C12—H1220.972
C4—O51.461 (3)C12—H1230.954
C4—H410.979
C2—C1—C6107.64 (17)O5—C4—H42110.0
C2—C1—O11104.41 (17)H41—C4—H42110.6
C6—C1—O11108.66 (18)C4—O5—C6119.11 (18)
C2—C1—C12111.57 (19)C1—C6—O5116.98 (18)
C6—C1—C12111.67 (18)C1—C6—O7125.5 (2)
O11—C1—C12112.52 (18)O5—C6—O7117.47 (19)
C1—C2—C3113.54 (19)C3—O8—C9107.19 (16)
C1—C2—O10107.89 (17)O8—C9—O10106.18 (18)
C3—C2—O10104.06 (17)O8—C9—H91112.0
C1—C2—H21108.1O10—C9—H91109.4
C3—C2—H21111.0O8—C9—H92110.4
O10—C2—H21112.3O10—C9—H92109.7
C2—C3—C4113.0 (2)H91—C9—H92109.1
C2—C3—O8104.69 (17)C2—O10—C9106.17 (17)
C4—C3—O8108.65 (18)C1—O11—H1111.7
C2—C3—H31110.9C1—C12—H121109.8
C4—C3—H31109.6C1—C12—H122109.3
O8—C3—H31109.8H121—C12—H122107.8
C3—C4—O5110.7 (2)C1—C12—H123110.0
C3—C4—H41109.3H121—C12—H123107.9
O5—C4—H41105.8H122—C12—H123112.1
C3—C4—H42110.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H1···O7i0.832.102.911 (2)167
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318.  Web of Science CrossRef CAS Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationJenkinson, S. F., Jones, N. A. & Fleet, G. W. J. (2006). In preparation.  Google Scholar
First citationLichtenthaler, F. W. & Peters, S. (2004). C. R. Acad. Sci. Ser. IIc Chim. 7, 65–90.  CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParker, S., Watkin, D., Mayes, B., Storer, R., Jenkinson, S. & Fleet, G. (2006). Acta Cryst. E62, o1208–o1210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParker, S. G., Watkin, D. J., Simone, M. I. & Fleet, G. W. J. (2006). Acta Cryst. E62, o3961–o3963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPunzo, F., Watkin, D. J., Jenkinson, S. F., Cruz, F. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, o511–o512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPunzo, F., Watkin, D. J., Jenkinson, S. F., da Cruz, F. P. & Fleet, G. W. J. (2006). Acta Cryst. E62, o321–o323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPunzo, F., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2005a). Acta Cryst. E61, o127–o129.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPunzo, F., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2005b). Acta Cryst. E61, o326–o327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSimone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5775.  Web of Science CSD CrossRef CAS Google Scholar
First citationSoengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds