organic compounds
2-C-Methyl-3,4-O-methylidene-D-arabinono-1,5-lactone
aDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, bDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and cDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: Richard.Bream@pmb.oxon.org
The relative stereochemistry at C-2 of the title compound, C7H10O5, was determined by X-ray crystallographic analysis of the arabinonolactone, which adopts a boat conformation with a flagpole hydroxyl group. Its was determined by the use of D-erythronolactone as the starting material.
Comment
Until recently, only linear carbohydrate chirons have been available as scaffolds for the synthesis of complex synthetic targets (Lichtenthaler & Peters, 2004). However, the Kiliani cyanide reaction on ketohexoses (Hotchkiss et al., 2004; Soengas et al., 2005) affords versatile intermediates with carbon branches at C-2 of the sugar for the synthesis of imino sugars and complex sugar amino acids with non-linear carbon chains (Simone et al., 2005). The Kiliani reaction on hamamelose provides access to with a branch at C-3 (Parker, Watkin, Simone & Fleet, 2006).
Carbohydrate building blocks with a C-2 methyl group can be formed by the reaction of cyanide on 1-deoxyketoses, themselves prepared by the addition of organometallic reagents to sugar et al., 2006). Thus, reaction of the isopropylidene-protected D-erythronolactone, (1), with methyl magnesium bromide followed by sodium cyanide gave the arabino-protected derivative, (2), as the only 1,5-lactone isolated (Punzo et al., 2005a). The potential of (2) as a route to sugar derivatives with a C-2 methyl group bearing a at the tertiary centre is shown by its easy conversion to the branched arabinose, (3) (Punzo et al., 2005b), the quaternary ribo-azide, (4) (Punzo, Watkin, Jenkinson, Cruz & Fleet, 2005), and the quaternary ribo-fluoride, (5) (Parker, Watkin, Mayes et al., 2006). The branched azidomethyl lactone, (6), has also been prepared from (2) and is a precursor to complex piperidine amino acids and iminosugars (Punzo et al., 2006).
(HotchkissIn order to optimize the protecting group strategy for the synthesis of complex targets (and to investigate the diastereoselectivity of the Kiliani cyanide extension), the formaldehyde acetal of D-erythronolactone, (7), was treated with methyl magnesium bromide to give the 1-deoxy-D-ribulose, (8). The Kiliani reaction of (8) with sodium cyanide gave a single diastereomeric product, (9), as the only 1,5-lactone isolated (Jenkinson et al., 2006). This paper shows, by X-ray crystallography, that the arabinonolactone, (9), was formed in this reaction with none of the epimeric ribono diastereomer, (10), isolated.
The X-ray ). The formation of (9) with the smaller hydroxyl group in the flagpole position may be due to the alternative product, (10), having the larger methyl group in the more hindered flagpole environment. The potential of (9) as a chiron is under investigation.
determination shows that (9) is in a boat conformation (Fig. 1In the ) link the molecules into zigzag chains extending along the a axis (Fig. 2).
intermolecular O—H⋯O hydrogen bonds (Table 1Experimental
The title arabinono-1,5-lactone, (9), was obtained (Jenkinson et al.., 2006) by vapour diffusion of cyclohexane into a solution in ethyl acetate until crystals of a suitable size were formed (m.p. 373–375 K). [α]D −126.0 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 1.67 (3H, s, Me), 3.04 (1H, s, OH), 4.25 (1H, d, J3,4 = 7.9 Hz, H3), 4.46–4.50 (2H, m, H4, H5a), 4.82 (1H, s, OCH2O), 4.97 (1H, dd, J4,5 b = 1.9 Hz, J5a,5 b = 12.0 Hz, H5b), 5.17 (1H, s, OCH2O); 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 22.1 (Me), 68.7 (C5), 71.5 (C4), 72.2 (C3), 78.8 (C2), 94.9 (OCH2O), 171.4 (CO).
Crystal data
|
Refinement
|
A [sin(θ)/λ]2 threshold of 0.01 was used to guard against the risk of including low angle reflections partially occluded by the beam stop. In the absence of significant 873 Friedel pairs were merged and the was assigned from the known starting material. All H atoms were located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–98 Å, and O—H = 0.825 Å) and isotropic displacement parameters [Uiso(H) in the range 1.2–1.5Ueq of the parent atom], after which they were refined with riding constraints.
Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536806035331/cv2114sup1.cif
contains datablocks 9, global. DOI:Structure factors: contains datablock 9. DOI: https://doi.org/10.1107/S1600536806035331/cv21149sup2.hkl
Data collection: COLLECT (Nonius, 2001); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C7H10O5 | Dx = 1.515 Mg m−3 |
Mr = 174.15 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 981 reflections |
a = 6.8693 (3) Å | θ = 1–27° |
b = 7.0382 (3) Å | µ = 0.13 mm−1 |
c = 15.7909 (7) Å | T = 150 K |
V = 763.45 (6) Å3 | Needle, colourless |
Z = 4 | 0.50 × 0.20 × 0.20 mm |
F(000) = 368 |
Nonius KappaCCD area-detector diffractometer | 784 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ω scans | θmax = 27.5°, θmin = 2.6° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −8→8 |
Tmin = 0.882, Tmax = 0.974 | k = −9→9 |
1726 measured reflections | l = −20→20 |
1032 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.080 | w = 1/[σ2(F2) + (0.04P)2 + 0.03P] where P = (max(Fo2,0) + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.000146 |
1027 reflections | Δρmax = 0.36 e Å−3 |
109 parameters | Δρmin = −0.34 e Å−3 |
0 restraints |
Experimental. [α]D -126.0 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 1.67 (3H, s, Me), 3.04 (1H, s, OH), 4.25 (1H, d, J3,4 = 7.9 Hz, H3), 4.46–4.50 (2H, m, H4, H5a), 4.82 (1H, s, OCH2O), 4.97 (1H, dd, J4,5 b = 1.9 Hz, J5a,5 b = 12.0 Hz, H5b), 5.17 (1H, s, OCH2O); 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 22.1 (Me), 68.7 (C5), 71.5 (C4), 72.2 (C3), 78.8 (C2), 94.9 (OCH2O), 171.4 (CO). |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5144 (3) | 0.4702 (3) | 0.40608 (13) | 0.0239 | |
C2 | 0.4191 (3) | 0.5797 (3) | 0.33348 (13) | 0.0229 | |
C3 | 0.2346 (3) | 0.4823 (4) | 0.29802 (14) | 0.0265 | |
C4 | 0.1759 (4) | 0.3085 (4) | 0.34774 (14) | 0.0315 | |
O5 | 0.1906 (2) | 0.3444 (3) | 0.43863 (9) | 0.0308 | |
C6 | 0.3551 (3) | 0.4201 (3) | 0.46975 (13) | 0.0230 | |
O7 | 0.3657 (2) | 0.4406 (2) | 0.54569 (9) | 0.0280 | |
O8 | 0.0852 (2) | 0.6217 (2) | 0.30591 (10) | 0.0338 | |
C9 | 0.1773 (4) | 0.7974 (4) | 0.32128 (16) | 0.0299 | |
O10 | 0.3496 (2) | 0.7553 (2) | 0.36642 (10) | 0.0315 | |
O11 | 0.5831 (2) | 0.2984 (2) | 0.36767 (10) | 0.0312 | |
C12 | 0.6764 (3) | 0.5837 (4) | 0.44681 (15) | 0.0324 | |
H21 | 0.5170 | 0.5978 | 0.2888 | 0.0257* | |
H31 | 0.2515 | 0.4494 | 0.2401 | 0.0317* | |
H41 | 0.0385 | 0.2805 | 0.3369 | 0.0378* | |
H42 | 0.2600 | 0.1971 | 0.3317 | 0.0373* | |
H91 | 0.2107 | 0.8636 | 0.2684 | 0.0341* | |
H92 | 0.0908 | 0.8822 | 0.3566 | 0.0339* | |
H121 | 0.7348 | 0.5108 | 0.4921 | 0.0481* | |
H122 | 0.7769 | 0.6091 | 0.4049 | 0.0476* | |
H123 | 0.6253 | 0.6978 | 0.4707 | 0.0472* | |
H1 | 0.6575 | 0.2398 | 0.3993 | 0.0572* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0250 (11) | 0.0228 (14) | 0.0239 (11) | 0.0022 (11) | 0.0032 (10) | 0.0000 (10) |
C2 | 0.0247 (10) | 0.0235 (13) | 0.0206 (11) | 0.0009 (11) | 0.0028 (10) | 0.0011 (10) |
C3 | 0.0299 (11) | 0.0269 (14) | 0.0227 (11) | 0.0002 (12) | −0.0011 (10) | −0.0025 (11) |
C4 | 0.0386 (13) | 0.0316 (14) | 0.0244 (12) | −0.0077 (13) | −0.0068 (12) | −0.0011 (11) |
O5 | 0.0309 (8) | 0.0378 (11) | 0.0237 (8) | −0.0133 (8) | −0.0024 (7) | 0.0046 (8) |
C6 | 0.0265 (12) | 0.0176 (12) | 0.0250 (12) | −0.0003 (11) | 0.0001 (10) | 0.0041 (10) |
O7 | 0.0286 (8) | 0.0341 (11) | 0.0215 (8) | 0.0014 (8) | −0.0001 (7) | 0.0006 (8) |
O8 | 0.0281 (8) | 0.0301 (10) | 0.0432 (10) | −0.0002 (8) | −0.0045 (8) | 0.0033 (9) |
C9 | 0.0328 (12) | 0.0281 (14) | 0.0289 (12) | 0.0040 (12) | −0.0023 (12) | 0.0024 (11) |
O10 | 0.0344 (9) | 0.0251 (9) | 0.0350 (9) | 0.0041 (8) | −0.0080 (8) | −0.0047 (8) |
O11 | 0.0373 (9) | 0.0314 (10) | 0.0248 (8) | 0.0122 (8) | −0.0004 (8) | 0.0007 (8) |
C12 | 0.0245 (11) | 0.0404 (16) | 0.0324 (13) | −0.0055 (12) | −0.0027 (11) | 0.0021 (12) |
C1—C2 | 1.529 (3) | C4—H42 | 1.006 |
C1—C6 | 1.528 (3) | O5—C6 | 1.342 (3) |
C1—O11 | 1.432 (3) | C6—O7 | 1.210 (3) |
C1—C12 | 1.514 (3) | O8—C9 | 1.410 (3) |
C2—C3 | 1.545 (3) | C9—O10 | 1.414 (3) |
C2—O10 | 1.423 (3) | C9—H91 | 0.983 |
C2—H21 | 0.984 | C9—H92 | 1.010 |
C3—C4 | 1.508 (3) | O11—H1 | 0.825 |
C3—O8 | 1.426 (3) | C12—H121 | 0.966 |
C3—H31 | 0.951 | C12—H122 | 0.972 |
C4—O5 | 1.461 (3) | C12—H123 | 0.954 |
C4—H41 | 0.979 | ||
C2—C1—C6 | 107.64 (17) | O5—C4—H42 | 110.0 |
C2—C1—O11 | 104.41 (17) | H41—C4—H42 | 110.6 |
C6—C1—O11 | 108.66 (18) | C4—O5—C6 | 119.11 (18) |
C2—C1—C12 | 111.57 (19) | C1—C6—O5 | 116.98 (18) |
C6—C1—C12 | 111.67 (18) | C1—C6—O7 | 125.5 (2) |
O11—C1—C12 | 112.52 (18) | O5—C6—O7 | 117.47 (19) |
C1—C2—C3 | 113.54 (19) | C3—O8—C9 | 107.19 (16) |
C1—C2—O10 | 107.89 (17) | O8—C9—O10 | 106.18 (18) |
C3—C2—O10 | 104.06 (17) | O8—C9—H91 | 112.0 |
C1—C2—H21 | 108.1 | O10—C9—H91 | 109.4 |
C3—C2—H21 | 111.0 | O8—C9—H92 | 110.4 |
O10—C2—H21 | 112.3 | O10—C9—H92 | 109.7 |
C2—C3—C4 | 113.0 (2) | H91—C9—H92 | 109.1 |
C2—C3—O8 | 104.69 (17) | C2—O10—C9 | 106.17 (17) |
C4—C3—O8 | 108.65 (18) | C1—O11—H1 | 111.7 |
C2—C3—H31 | 110.9 | C1—C12—H121 | 109.8 |
C4—C3—H31 | 109.6 | C1—C12—H122 | 109.3 |
O8—C3—H31 | 109.8 | H121—C12—H122 | 107.8 |
C3—C4—O5 | 110.7 (2) | C1—C12—H123 | 110.0 |
C3—C4—H41 | 109.3 | H121—C12—H123 | 107.9 |
O5—C4—H41 | 105.8 | H122—C12—H123 | 112.1 |
C3—C4—H42 | 110.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H1···O7i | 0.83 | 2.10 | 2.911 (2) | 167 |
Symmetry code: (i) x+1/2, −y+1/2, −z+1. |
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318. Web of Science CrossRef CAS Google Scholar
Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464. Web of Science CrossRef CAS Google Scholar
Jenkinson, S. F., Jones, N. A. & Fleet, G. W. J. (2006). In preparation. Google Scholar
Lichtenthaler, F. W. & Peters, S. (2004). C. R. Acad. Sci. Ser. IIc Chim. 7, 65–90. CAS Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Parker, S., Watkin, D., Mayes, B., Storer, R., Jenkinson, S. & Fleet, G. (2006). Acta Cryst. E62, o1208–o1210. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parker, S. G., Watkin, D. J., Simone, M. I. & Fleet, G. W. J. (2006). Acta Cryst. E62, o3961–o3963. Web of Science CSD CrossRef IUCr Journals Google Scholar
Punzo, F., Watkin, D. J., Jenkinson, S. F., Cruz, F. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, o511–o512. Web of Science CSD CrossRef IUCr Journals Google Scholar
Punzo, F., Watkin, D. J., Jenkinson, S. F., da Cruz, F. P. & Fleet, G. W. J. (2006). Acta Cryst. E62, o321–o323. Web of Science CSD CrossRef IUCr Journals Google Scholar
Punzo, F., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2005a). Acta Cryst. E61, o127–o129. Web of Science CSD CrossRef IUCr Journals Google Scholar
Punzo, F., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2005b). Acta Cryst. E61, o326–o327. Web of Science CSD CrossRef IUCr Journals Google Scholar
Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5775. Web of Science CSD CrossRef CAS Google Scholar
Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759. Web of Science CrossRef CAS Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.