metal-organic compounds
trans-Dipyridinebis(sulfamerazinato)nickel(II)–pyridine (1/4)
aSchool of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales
*Correspondence e-mail: acsbd@yahoo.com
The title compound, [Ni(C11H11N4O2S)2(C5H5N)2]·4C5H5N, contains the centrosymmetric octahedral complex trans-[Ni(smr)2(py)2] (where smr is the sulfamerazinate anion and py is pyridine) linked to four pyridine molecules via N—H⋯N hydrogen bonds. This is the first of a metal complex of sulfamerazine.
Comment
The sulfamerazine molecule was introduced into medical therapy because, like many sulfonamide derivatives, it exhibits antibacterial activity. The presence of several potential donor sites, namely the amino, pyrimidine and sulfonamide N atoms and the sulfonyl O atoms, make this ligand a versatile complexing agent. Here, we report the structure of the title nickel complex, (I), of the sulfamerazinate anion (Fig. 1). This is the first of a metal complex of sulfamerazine.
In complex (I), the Ni atom lies on a centre of inversion, and the complex contains two bidentate N-coordinated sulfamerazinate anions and two pyridine molecules occupying the trans sites. In addition, four pyridine molecules are linked via N—H⋯N hydrogen bonds to the terminal amino groups of the sulfamerazinate ligands (Table 1, Fig. 1).
The relative orientations of the sulfamerazinate ligands and the coordinated pyridine molecules are such that they are nearly perpendicular to each other. Such an orientation of the ligands around the Ni atom appears to be dictated more by steric considerations than any other factors.
The Ni—N bond distances involving the sulfonamide atom N11, the pyrimido atom N12 and the pyrimidine atom N1 are very similar, at 2.139 (2), 2.100 (2) and 2.080 (2) Å, respectively. The tetrahedral coordination at S is distorted, as also found in the neutral sulfamerazine molecule. The endocyclic angle at C11 in complex (I) is 125.2 (2)°, which is somewhat smaller than the corresponding values found in the various polymorphs of the free sulfamerazine molecule [127.5 (2) (Hossain, 2006), 127.1 (7) (Acharya et al., 1982), and 127.1 (4) and 128.2 (4)° (Caria & Mohamed, 1992)], due to the coordination to the Ni centre.
The S—O bond distances of 1.4460 (15) and 1.4435 (17) Å in (I) are longer than the corresponding bonds in pure sulfamerazine, where the values obtained are 1.4398 (16) and 1.4293 (17) Å (Hossain, 2006), 1.430 (6) and 1.441 (6) Å (Acharya et al., 1982), and 1.424 (4) and 1.435 (3), and 1.414 (4) and 1.431 (3) Å (Caria & Mohamed, 1992).
The H atoms of the amino groups form intermolecular hydrogen bonds with the N atoms of four pyridine molecules (Table 1, Fig. 1).
Experimental
Solid sulfamerazine (Hsmr) (0.529 g, 2 mmol) was dissolved in hot methanol (50 ml) and a methanolic solution (10 ml) of NiCl2·6H2O (0.238 g, 1 mmol) was added slowly with constant stirring on a hot plate at 333 K. A pink precipitate formed and stirring of the mixture was continued for 6 h. The precipitate was then filtered off and dried over silica gel. The precipitate was dissolved in a mixture of pyridine and water (10 ml, 1:10 v/v) and stirred for 30 min. The solution was then filtered and left for crystallization, and a week later pale-violet block-shaped crystals of (I) were obtained. These were removed by filtration and dried over silica gel.
Crystal data
|
Refinement
|
|
All H atoms were treated as riding atoms, with C—H = 0.95 Å and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N), or 1.5Ueq(C) for the methyl groups. The mosaicity of the compound was high, so Rint is 0.159. The deepest hole is located 0.90 Å from atom Ni1.
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536806038116/gd2006sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806038116/gd2006Isup2.hkl
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[Ni(C11H11N4O2S)2(C5H5N)2]·4C5H5N | Z = 1 |
Mr = 1059.91 | F(000) = 554 |
Triclinic, P1 | Dx = 1.342 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.9781 (2) Å | Cell parameters from 5955 reflections |
b = 10.0610 (2) Å | θ = 2.9–27.5° |
c = 13.2582 (4) Å | µ = 0.51 mm−1 |
α = 89.744 (1)° | T = 150 K |
β = 82.238 (1)° | Block, pale violet |
γ = 84.144 (1)° | 0.18 × 0.16 × 0.06 mm |
V = 1311.85 (5) Å3 |
Nonius KappaCCD area-detector diffractometer | 5955 independent reflections |
Radiation source: fine-focus sealed tube | 4409 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.159 |
ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (Blessing, 1995) | h = −12→12 |
Tmin = 0.914, Tmax = 0.970 | k = −13→13 |
24079 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0633P)2] where P = (Fo2 + 2Fc2)/3 |
5955 reflections | (Δ/σ)max = 0.001 |
332 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −1.13 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.5000 | 0.5000 | 0.01886 (14) | |
S11 | 0.30067 (5) | 0.23831 (5) | 0.59767 (4) | 0.01937 (16) | |
O11 | 0.16033 (14) | 0.27796 (16) | 0.63779 (13) | 0.0278 (4) | |
O12 | 0.32609 (16) | 0.18289 (16) | 0.49588 (13) | 0.0284 (4) | |
N11 | 0.39181 (17) | 0.36225 (17) | 0.59441 (15) | 0.0192 (4) | |
N12 | 0.48660 (17) | 0.52862 (18) | 0.65801 (15) | 0.0212 (4) | |
N13 | 0.34288 (18) | 0.40324 (18) | 0.77429 (15) | 0.0229 (4) | |
N14 | 0.5484 (2) | −0.11971 (19) | 0.89210 (16) | 0.0283 (5) | |
H14A | 0.5107 | −0.1201 | 0.9560 | 0.034* | |
H14B | 0.6271 | −0.1666 | 0.8732 | 0.034* | |
C11 | 0.4035 (2) | 0.4301 (2) | 0.68068 (18) | 0.0189 (5) | |
C12 | 0.5123 (2) | 0.6010 (2) | 0.7359 (2) | 0.0267 (5) | |
H12 | 0.5694 | 0.6709 | 0.7229 | 0.032* | |
C13 | 0.4576 (3) | 0.5769 (3) | 0.8355 (2) | 0.0329 (6) | |
H13 | 0.4779 | 0.6276 | 0.8907 | 0.039* | |
C14 | 0.3726 (2) | 0.4762 (2) | 0.85134 (19) | 0.0279 (5) | |
C15 | 0.3652 (2) | 0.1200 (2) | 0.68170 (18) | 0.0206 (5) | |
C16 | 0.3004 (2) | 0.1118 (2) | 0.78086 (19) | 0.0234 (5) | |
H16 | 0.2157 | 0.1629 | 0.8012 | 0.028* | |
C17 | 0.3597 (2) | 0.0289 (2) | 0.85028 (19) | 0.0248 (5) | |
H17 | 0.3146 | 0.0234 | 0.9178 | 0.030* | |
C18 | 0.4849 (2) | −0.0465 (2) | 0.82228 (18) | 0.0217 (5) | |
C19 | 0.5467 (2) | −0.0405 (2) | 0.72041 (18) | 0.0223 (5) | |
H19 | 0.6299 | −0.0935 | 0.6988 | 0.027* | |
C20 | 0.4869 (2) | 0.0422 (2) | 0.65170 (18) | 0.0221 (5) | |
H20 | 0.5296 | 0.0457 | 0.5834 | 0.026* | |
C111 | 0.3049 (3) | 0.4424 (3) | 0.9551 (2) | 0.0413 (7) | |
H11A | 0.2062 | 0.4623 | 0.9583 | 0.062* | |
H11B | 0.3376 | 0.4956 | 1.0067 | 0.062* | |
H11C | 0.3267 | 0.3471 | 0.9680 | 0.062* | |
N1 | 0.32122 (17) | 0.62698 (18) | 0.50398 (15) | 0.0208 (4) | |
C1 | 0.2067 (2) | 0.5820 (2) | 0.47984 (19) | 0.0260 (5) | |
H1 | 0.2090 | 0.4906 | 0.4614 | 0.031* | |
C2 | 0.0869 (2) | 0.6628 (3) | 0.4808 (2) | 0.0320 (6) | |
H2 | 0.0080 | 0.6273 | 0.4640 | 0.038* | |
C3 | 0.0825 (2) | 0.7957 (3) | 0.5065 (2) | 0.0364 (7) | |
H3 | 0.0008 | 0.8534 | 0.5073 | 0.044* | |
C4 | 0.1997 (2) | 0.8441 (2) | 0.5313 (2) | 0.0327 (6) | |
H4 | 0.1996 | 0.9354 | 0.5493 | 0.039* | |
C5 | 0.3167 (2) | 0.7563 (2) | 0.52921 (19) | 0.0248 (5) | |
H5 | 0.3967 | 0.7891 | 0.5464 | 0.030* | |
N21 | 0.3414 (2) | −0.2171 (2) | 1.06138 (17) | 0.0350 (5) | |
C21 | 0.3501 (2) | −0.2256 (2) | 1.1609 (2) | 0.0293 (6) | |
H21 | 0.4374 | −0.2268 | 1.1820 | 0.035* | |
C22 | 0.2408 (3) | −0.2326 (3) | 1.2341 (2) | 0.0420 (7) | |
H22 | 0.2520 | −0.2374 | 1.3041 | 0.050* | |
C23 | 0.1137 (3) | −0.2327 (3) | 1.2042 (3) | 0.0496 (8) | |
H23 | 0.0357 | −0.2385 | 1.2531 | 0.059* | |
C24 | 0.1019 (3) | −0.2243 (3) | 1.1022 (3) | 0.0455 (7) | |
H24 | 0.0156 | −0.2236 | 1.0794 | 0.055* | |
C25 | 0.2177 (3) | −0.2168 (3) | 1.0338 (2) | 0.0407 (7) | |
H25 | 0.2089 | −0.2110 | 0.9634 | 0.049* | |
N31 | 0.8222 (2) | −0.2661 (2) | 0.8118 (2) | 0.0446 (6) | |
C31 | 0.8988 (3) | −0.1658 (3) | 0.8132 (3) | 0.0470 (8) | |
H31 | 0.8547 | −0.0790 | 0.8299 | 0.056* | |
C32 | 1.0387 (3) | −0.1806 (3) | 0.7917 (3) | 0.0470 (8) | |
H32 | 1.0895 | −0.1060 | 0.7942 | 0.056* | |
C33 | 1.1028 (3) | −0.3059 (3) | 0.7665 (2) | 0.0465 (8) | |
H33 | 1.1989 | −0.3191 | 0.7504 | 0.056* | |
C34 | 1.0269 (3) | −0.4113 (3) | 0.7651 (2) | 0.0431 (7) | |
H34 | 1.0688 | −0.4991 | 0.7490 | 0.052* | |
C35 | 0.8869 (3) | −0.3863 (3) | 0.7877 (3) | 0.0459 (7) | |
H35 | 0.8339 | −0.4593 | 0.7858 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0162 (2) | 0.0220 (2) | 0.0185 (2) | −0.00321 (15) | −0.00240 (16) | 0.00663 (16) |
S11 | 0.0182 (3) | 0.0227 (3) | 0.0185 (3) | −0.0055 (2) | −0.0044 (2) | 0.0051 (2) |
O11 | 0.0174 (8) | 0.0374 (10) | 0.0296 (10) | −0.0051 (7) | −0.0052 (7) | 0.0114 (8) |
O12 | 0.0352 (9) | 0.0302 (9) | 0.0216 (9) | −0.0076 (7) | −0.0079 (7) | 0.0003 (7) |
N11 | 0.0180 (9) | 0.0217 (9) | 0.0186 (10) | −0.0056 (7) | −0.0027 (7) | 0.0045 (7) |
N12 | 0.0179 (9) | 0.0235 (10) | 0.0223 (11) | −0.0025 (7) | −0.0030 (8) | 0.0045 (8) |
N13 | 0.0255 (10) | 0.0238 (10) | 0.0187 (11) | −0.0006 (8) | −0.0021 (8) | 0.0034 (8) |
N14 | 0.0291 (11) | 0.0323 (11) | 0.0211 (11) | 0.0028 (8) | 0.0001 (9) | 0.0103 (9) |
C11 | 0.0158 (10) | 0.0206 (11) | 0.0199 (12) | 0.0012 (8) | −0.0036 (9) | 0.0046 (9) |
C12 | 0.0285 (12) | 0.0241 (12) | 0.0302 (15) | −0.0061 (9) | −0.0111 (11) | 0.0012 (10) |
C13 | 0.0409 (15) | 0.0335 (14) | 0.0263 (15) | −0.0037 (11) | −0.0116 (12) | −0.0059 (11) |
C14 | 0.0345 (13) | 0.0292 (13) | 0.0196 (13) | 0.0022 (10) | −0.0064 (10) | 0.0052 (10) |
C15 | 0.0240 (11) | 0.0177 (11) | 0.0217 (13) | −0.0066 (8) | −0.0059 (9) | 0.0049 (9) |
C16 | 0.0188 (11) | 0.0247 (12) | 0.0262 (14) | −0.0042 (9) | 0.0003 (10) | 0.0035 (10) |
C17 | 0.0252 (12) | 0.0270 (12) | 0.0210 (13) | −0.0059 (9) | 0.0032 (10) | 0.0074 (10) |
C18 | 0.0243 (11) | 0.0195 (11) | 0.0219 (13) | −0.0062 (9) | −0.0022 (10) | 0.0066 (9) |
C19 | 0.0234 (11) | 0.0203 (11) | 0.0223 (13) | −0.0015 (9) | −0.0003 (9) | 0.0031 (9) |
C20 | 0.0270 (12) | 0.0214 (11) | 0.0179 (12) | −0.0072 (9) | 0.0002 (9) | 0.0035 (9) |
C111 | 0.0581 (18) | 0.0446 (16) | 0.0199 (15) | −0.0034 (13) | −0.0016 (13) | 0.0037 (12) |
N1 | 0.0171 (9) | 0.0264 (10) | 0.0193 (10) | −0.0039 (7) | −0.0031 (8) | 0.0102 (8) |
C1 | 0.0237 (12) | 0.0305 (13) | 0.0252 (14) | −0.0070 (9) | −0.0060 (10) | 0.0114 (10) |
C2 | 0.0200 (12) | 0.0444 (15) | 0.0332 (15) | −0.0080 (10) | −0.0067 (10) | 0.0186 (12) |
C3 | 0.0261 (13) | 0.0399 (15) | 0.0393 (17) | 0.0095 (11) | 0.0000 (12) | 0.0130 (12) |
C4 | 0.0322 (13) | 0.0274 (13) | 0.0368 (16) | 0.0007 (10) | −0.0015 (11) | 0.0079 (11) |
C5 | 0.0236 (12) | 0.0275 (12) | 0.0240 (13) | −0.0056 (9) | −0.0031 (10) | 0.0059 (10) |
N21 | 0.0359 (12) | 0.0426 (13) | 0.0261 (13) | −0.0107 (10) | 0.0018 (10) | 0.0032 (10) |
C21 | 0.0317 (13) | 0.0248 (12) | 0.0315 (15) | −0.0045 (10) | −0.0036 (11) | 0.0038 (11) |
C22 | 0.0467 (17) | 0.0500 (17) | 0.0277 (16) | −0.0077 (13) | 0.0025 (13) | 0.0107 (13) |
C23 | 0.0403 (17) | 0.0557 (19) | 0.049 (2) | −0.0130 (14) | 0.0151 (15) | 0.0062 (15) |
C24 | 0.0313 (15) | 0.0487 (18) | 0.058 (2) | −0.0070 (12) | −0.0087 (14) | 0.0030 (15) |
C25 | 0.0471 (16) | 0.0464 (17) | 0.0304 (16) | −0.0096 (13) | −0.0091 (13) | 0.0043 (13) |
N31 | 0.0311 (12) | 0.0375 (13) | 0.0620 (18) | 0.0026 (10) | 0.0003 (12) | 0.0074 (12) |
C31 | 0.0454 (17) | 0.0402 (16) | 0.052 (2) | 0.0053 (13) | −0.0037 (15) | 0.0046 (14) |
C32 | 0.0431 (17) | 0.0534 (19) | 0.048 (2) | −0.0146 (14) | −0.0109 (14) | 0.0127 (15) |
C33 | 0.0261 (14) | 0.071 (2) | 0.0389 (18) | 0.0060 (14) | −0.0019 (12) | 0.0175 (15) |
C34 | 0.0381 (16) | 0.0478 (17) | 0.0383 (18) | 0.0132 (13) | −0.0008 (13) | 0.0035 (13) |
C35 | 0.0433 (16) | 0.0387 (16) | 0.055 (2) | 0.0002 (12) | −0.0061 (14) | 0.0058 (14) |
Ni1—N1 | 2.0802 (18) | C111—H11C | 0.9800 |
Ni1—N1i | 2.0802 (18) | N1—C5 | 1.339 (3) |
Ni1—N12i | 2.100 (2) | N1—C1 | 1.348 (3) |
Ni1—N12 | 2.100 (2) | C1—C2 | 1.374 (3) |
Ni1—N11i | 2.1396 (18) | C1—H1 | 0.9500 |
Ni1—N11 | 2.1396 (18) | C2—C3 | 1.376 (4) |
S11—O12 | 1.4429 (18) | C2—H2 | 0.9500 |
S11—O11 | 1.4456 (16) | C3—C4 | 1.390 (4) |
S11—N11 | 1.6137 (18) | C3—H3 | 0.9500 |
S11—C15 | 1.760 (2) | C4—C5 | 1.388 (3) |
N11—C11 | 1.359 (3) | C4—H4 | 0.9500 |
N12—C12 | 1.334 (3) | C5—H5 | 0.9500 |
N12—C11 | 1.364 (3) | N21—C25 | 1.334 (4) |
N13—C14 | 1.343 (3) | N21—C21 | 1.336 (3) |
N13—C11 | 1.344 (3) | C21—C22 | 1.366 (4) |
N14—C18 | 1.363 (3) | C21—H21 | 0.9500 |
N14—H14A | 0.8800 | C22—C23 | 1.379 (4) |
N14—H14B | 0.8800 | C22—H22 | 0.9500 |
C12—C13 | 1.389 (4) | C23—C24 | 1.374 (5) |
C12—H12 | 0.9500 | C23—H23 | 0.9500 |
C13—C14 | 1.383 (4) | C24—C25 | 1.377 (4) |
C13—H13 | 0.9500 | C24—H24 | 0.9500 |
C14—C111 | 1.502 (4) | C25—H25 | 0.9500 |
C15—C20 | 1.387 (3) | N31—C31 | 1.328 (4) |
C15—C16 | 1.390 (3) | N31—C35 | 1.330 (3) |
C16—C17 | 1.390 (3) | C31—C32 | 1.380 (4) |
C16—H16 | 0.9500 | C31—H31 | 0.9500 |
C17—C18 | 1.399 (3) | C32—C33 | 1.376 (4) |
C17—H17 | 0.9500 | C32—H32 | 0.9500 |
C18—C19 | 1.411 (3) | C33—C34 | 1.366 (4) |
C19—C20 | 1.384 (3) | C33—H33 | 0.9500 |
C19—H19 | 0.9500 | C34—C35 | 1.386 (4) |
C20—H20 | 0.9500 | C34—H34 | 0.9500 |
C111—H11A | 0.9800 | C35—H35 | 0.9500 |
C111—H11B | 0.9800 | ||
N1—Ni1—N1i | 180.000 (1) | C19—C20—H20 | 119.7 |
N1—Ni1—N12i | 92.01 (7) | C15—C20—H20 | 119.7 |
N1i—Ni1—N12i | 87.99 (7) | C14—C111—H11A | 109.5 |
N1—Ni1—N12 | 87.99 (7) | C14—C111—H11B | 109.5 |
N1i—Ni1—N12 | 92.01 (7) | H11A—C111—H11B | 109.5 |
N12i—Ni1—N12 | 180.000 (16) | C14—C111—H11C | 109.5 |
N1—Ni1—N11i | 90.39 (7) | H11A—C111—H11C | 109.5 |
N1i—Ni1—N11i | 89.61 (7) | H11B—C111—H11C | 109.5 |
N12i—Ni1—N11i | 63.36 (7) | C5—N1—C1 | 117.95 (19) |
N12—Ni1—N11i | 116.64 (7) | C5—N1—Ni1 | 121.08 (15) |
N1—Ni1—N11 | 89.61 (7) | C1—N1—Ni1 | 120.96 (15) |
N1i—Ni1—N11 | 90.39 (7) | N1—C1—C2 | 122.8 (2) |
N12i—Ni1—N11 | 116.64 (7) | N1—C1—H1 | 118.6 |
N12—Ni1—N11 | 63.36 (7) | C2—C1—H1 | 118.6 |
N11i—Ni1—N11 | 180.00 (7) | C1—C2—C3 | 119.2 (2) |
O12—S11—O11 | 116.66 (10) | C1—C2—H2 | 120.4 |
O12—S11—N11 | 104.95 (10) | C3—C2—H2 | 120.4 |
O11—S11—N11 | 111.73 (10) | C2—C3—C4 | 118.8 (2) |
O12—S11—C15 | 108.81 (10) | C2—C3—H3 | 120.6 |
O11—S11—C15 | 107.21 (10) | C4—C3—H3 | 120.6 |
N11—S11—C15 | 107.11 (10) | C5—C4—C3 | 118.7 (2) |
C11—N11—S11 | 121.07 (16) | C5—C4—H4 | 120.7 |
C11—N11—Ni1 | 92.33 (13) | C3—C4—H4 | 120.7 |
S11—N11—Ni1 | 146.00 (12) | N1—C5—C4 | 122.6 (2) |
C12—N12—C11 | 116.8 (2) | N1—C5—H5 | 118.7 |
C12—N12—Ni1 | 148.88 (16) | C4—C5—H5 | 118.7 |
C11—N12—Ni1 | 93.91 (14) | C25—N21—C21 | 116.8 (2) |
C14—N13—C11 | 116.5 (2) | N21—C21—C22 | 123.9 (3) |
C18—N14—H14A | 120.0 | N21—C21—H21 | 118.0 |
C18—N14—H14B | 120.0 | C22—C21—H21 | 118.0 |
H14A—N14—H14B | 120.0 | C21—C22—C23 | 118.5 (3) |
N13—C11—N11 | 125.0 (2) | C21—C22—H22 | 120.7 |
N13—C11—N12 | 125.2 (2) | C23—C22—H22 | 120.7 |
N11—C11—N12 | 109.76 (19) | C24—C23—C22 | 118.8 (3) |
N12—C12—C13 | 121.6 (2) | C24—C23—H23 | 120.6 |
N12—C12—H12 | 119.2 | C22—C23—H23 | 120.6 |
C13—C12—H12 | 119.2 | C23—C24—C25 | 118.7 (3) |
C14—C13—C12 | 117.6 (2) | C23—C24—H24 | 120.7 |
C14—C13—H13 | 121.2 | C25—C24—H24 | 120.7 |
C12—C13—H13 | 121.2 | N21—C25—C24 | 123.4 (3) |
N13—C14—C13 | 122.1 (2) | N21—C25—H25 | 118.3 |
N13—C14—C111 | 115.2 (2) | C24—C25—H25 | 118.3 |
C13—C14—C111 | 122.7 (2) | C31—N31—C35 | 116.7 (2) |
C20—C15—C16 | 119.7 (2) | N31—C31—C32 | 123.7 (3) |
C20—C15—S11 | 119.92 (17) | N31—C31—H31 | 118.1 |
C16—C15—S11 | 120.13 (16) | C32—C31—H31 | 118.1 |
C17—C16—C15 | 120.0 (2) | C33—C32—C31 | 118.3 (3) |
C17—C16—H16 | 120.0 | C33—C32—H32 | 120.9 |
C15—C16—H16 | 120.0 | C31—C32—H32 | 120.9 |
C16—C17—C18 | 121.0 (2) | C34—C33—C32 | 119.4 (3) |
C16—C17—H17 | 119.5 | C34—C33—H33 | 120.3 |
C18—C17—H17 | 119.5 | C32—C33—H33 | 120.3 |
N14—C18—C17 | 121.1 (2) | C33—C34—C35 | 118.0 (3) |
N14—C18—C19 | 120.7 (2) | C33—C34—H34 | 121.0 |
C17—C18—C19 | 118.2 (2) | C35—C34—H34 | 121.0 |
C20—C19—C18 | 120.4 (2) | N31—C35—C34 | 123.9 (3) |
C20—C19—H19 | 119.8 | N31—C35—H35 | 118.0 |
C18—C19—H19 | 119.8 | C34—C35—H35 | 118.0 |
C19—C20—C15 | 120.6 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N14—H14B···N31 | 0.88 | 2.15 | 3.029 (3) | 173 |
N14—H14A···N21 | 0.88 | 2.33 | 3.067 (3) | 141 |
Acknowledgements
The authors acknowledge the School of Chemistry, Cardiff University, for support.
References
Acharya, K. R., Kuchela, K. N. & Kartha, G. (1982). J. Crystallogr. Spectrosc. Res. 12, 369–376. CAS Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Caria, M. R. & Mohamed, R. (1992). Acta Cryst. B48, 492–498. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hossain, G. M. G. (2006). Acta Cryst. E62, o2166–o2167. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.