metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­pyridine­bis­(sulfamerazinato)nickel(II)–pyridine (1/4)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales
*Correspondence e-mail: acsbd@yahoo.com

(Received 23 August 2006; accepted 18 September 2006; online 27 September 2006)

The title compound, [Ni(C11H11N4O2S)2(C5H5N)2]·4C5H5N, contains the centrosymmetric octa­hedral complex trans-[Ni(smr)2(py)2] (where smr is the sulfamerazinate anion and py is pyridine) linked to four pyridine mol­ecules via N—H⋯N hydrogen bonds. This is the first crystal structure of a metal complex of sulfamerazine.

Comment

The sulfamerazine mol­ecule was introduced into medical therapy because, like many sulfonamide derivatives, it exhibits anti­bacterial activity. The presence of several potential donor sites, namely the amino, pyrimidine and sulfonamide N atoms and the sulfonyl O atoms, make this ligand a versatile complexing agent. Here, we report the structure of the title nickel complex, (I)[link], of the sulfamerazinate anion (Fig. 1[link]). This is the first crystal structure of a metal complex of sulfamerazine.

[Scheme 1]

In complex (I)[link], the Ni atom lies on a centre of inversion, and the complex contains two bidentate N-coordinated sulfamerazinate anions and two pyridine mol­ecules occupying the trans sites. In addition, four pyridine mol­ecules are linked via N—H⋯N hydrogen bonds to the terminal amino groups of the sulfamerazinate ligands (Table 1[link], Fig. 1[link]).

The relative orientations of the sulfamerazinate ligands and the coordinated pyridine mol­ecules are such that they are nearly perpendicular to each other. Such an orientation of the ligands around the Ni atom appears to be dicta­ted more by steric considerations than any other factors.

The Ni—N bond distances involving the sulfonamide atom N11, the pyrimido atom N12 and the pyrimidine atom N1 are very similar, at 2.139 (2), 2.100 (2) and 2.080 (2) Å, respectively. The tetra­hedral coordination at S is distorted, as also found in the neutral sulfamerazine mol­ecule. The endocyclic angle at C11 in complex (I)[link] is 125.2 (2)°, which is somewhat smaller than the corresponding values found in the various polymorphs of the free sulfamerazine mol­ecule [127.5 (2) (Hossain, 2006[Hossain, G. M. G. (2006). Acta Cryst. E62, o2166-o2167.]), 127.1 (7) (Acharya et al., 1982[Acharya, K. R., Kuchela, K. N. & Kartha, G. (1982). J. Crystallogr. Spectrosc. Res. 12, 369-376.]), and 127.1 (4) and 128.2 (4)° (Caria & Mohamed, 1992[Caria, M. R. & Mohamed, R. (1992). Acta Cryst. B48, 492-498.])], due to the coordination to the Ni centre.

The S—O bond distances of 1.4460 (15) and 1.4435 (17) Å in (I)[link] are longer than the corresponding bonds in pure sulfamerazine, where the values obtained are 1.4398 (16) and 1.4293 (17) Å (Hossain, 2006[Hossain, G. M. G. (2006). Acta Cryst. E62, o2166-o2167.]), 1.430 (6) and 1.441 (6) Å (Acharya et al., 1982[Acharya, K. R., Kuchela, K. N. & Kartha, G. (1982). J. Crystallogr. Spectrosc. Res. 12, 369-376.]), and 1.424 (4) and 1.435 (3), and 1.414 (4) and 1.431 (3) Å (Caria & Mohamed, 1992[Caria, M. R. & Mohamed, R. (1992). Acta Cryst. B48, 492-498.]).

The H atoms of the amino groups form inter­molecular hydrogen bonds with the N atoms of four pyridine mol­ecules (Table 1[link], Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms bonded to C atoms have been omitted for clarity. Hydrogen bonds are shown as dashed lines. Atoms marked with a prime are at the symmetry position (1 − x, 1 − y, 1 − z).

Experimental

Solid sulfamerazine (Hsmr) (0.529 g, 2 mmol) was dissolved in hot methanol (50 ml) and a methano­lic solution (10 ml) of NiCl2·6H2O (0.238 g, 1 mmol) was added slowly with constant stirring on a hot plate at 333 K. A pink precipitate formed and stirring of the mixture was continued for 6 h. The precipitate was then filtered off and dried over silica gel. The precipitate was dissolved in a mixture of pyridine and water (10 ml, 1:10 v/v) and stirred for 30 min. The solution was then filtered and left for crystallization, and a week later pale-violet block-shaped crystals of (I)[link] were obtained. These were removed by filtration and dried over silica gel.

Crystal data
  • [Ni(C11H11N4O2S)2(C5H5N)2]·4C5H5N

  • Mr = 1059.91

  • Triclinic, [P \overline 1]

  • a = 9.9781 (2) Å

  • b = 10.0610 (2) Å

  • c = 13.2582 (4) Å

  • α = 89.744 (1)°

  • β = 82.238 (1)°

  • γ = 84.144 (1)°

  • V = 1311.85 (5) Å3

  • Z = 1

  • Dx = 1.342 Mg m−3

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 150 (2) K

  • Block, pale violet

  • 0.18 × 0.16 × 0.06 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.914, Tmax = 0.970

  • 24079 measured reflections

  • 5955 independent reflections

  • 4409 reflections with I > 2σ(I)

  • Rint = 0.159

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.143

  • S = 1.01

  • 5955 reflections

  • 332 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0633P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.50 e Å−3

  • Δρmin = −1.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N14—H14B⋯N31 0.88 2.15 3.029 (3) 173
N14—H14A⋯N21 0.88 2.33 3.067 (3) 141

All H atoms were treated as riding atoms, with C—H = 0.95 Å and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N), or 1.5Ueq(C) for the methyl groups. The mosaicity of the compound was high, so Rint is 0.159. The deepest hole is located 0.90 Å from atom Ni1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

trans-Dipyridinebis(sulfamerazinato)nickel(II)–pyridine (1/4) top
Crystal data top
[Ni(C11H11N4O2S)2(C5H5N)2]·4C5H5NZ = 1
Mr = 1059.91F(000) = 554
Triclinic, P1Dx = 1.342 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9781 (2) ÅCell parameters from 5955 reflections
b = 10.0610 (2) Åθ = 2.9–27.5°
c = 13.2582 (4) ŵ = 0.51 mm1
α = 89.744 (1)°T = 150 K
β = 82.238 (1)°Block, pale violet
γ = 84.144 (1)°0.18 × 0.16 × 0.06 mm
V = 1311.85 (5) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
5955 independent reflections
Radiation source: fine-focus sealed tube4409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.159
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1212
Tmin = 0.914, Tmax = 0.970k = 1313
24079 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0633P)2]
where P = (Fo2 + 2Fc2)/3
5955 reflections(Δ/σ)max = 0.001
332 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 1.13 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.01886 (14)
S110.30067 (5)0.23831 (5)0.59767 (4)0.01937 (16)
O110.16033 (14)0.27796 (16)0.63779 (13)0.0278 (4)
O120.32609 (16)0.18289 (16)0.49588 (13)0.0284 (4)
N110.39181 (17)0.36225 (17)0.59441 (15)0.0192 (4)
N120.48660 (17)0.52862 (18)0.65801 (15)0.0212 (4)
N130.34288 (18)0.40324 (18)0.77429 (15)0.0229 (4)
N140.5484 (2)0.11971 (19)0.89210 (16)0.0283 (5)
H14A0.51070.12010.95600.034*
H14B0.62710.16660.87320.034*
C110.4035 (2)0.4301 (2)0.68068 (18)0.0189 (5)
C120.5123 (2)0.6010 (2)0.7359 (2)0.0267 (5)
H120.56940.67090.72290.032*
C130.4576 (3)0.5769 (3)0.8355 (2)0.0329 (6)
H130.47790.62760.89070.039*
C140.3726 (2)0.4762 (2)0.85134 (19)0.0279 (5)
C150.3652 (2)0.1200 (2)0.68170 (18)0.0206 (5)
C160.3004 (2)0.1118 (2)0.78086 (19)0.0234 (5)
H160.21570.16290.80120.028*
C170.3597 (2)0.0289 (2)0.85028 (19)0.0248 (5)
H170.31460.02340.91780.030*
C180.4849 (2)0.0465 (2)0.82228 (18)0.0217 (5)
C190.5467 (2)0.0405 (2)0.72041 (18)0.0223 (5)
H190.62990.09350.69880.027*
C200.4869 (2)0.0422 (2)0.65170 (18)0.0221 (5)
H200.52960.04570.58340.026*
C1110.3049 (3)0.4424 (3)0.9551 (2)0.0413 (7)
H11A0.20620.46230.95830.062*
H11B0.33760.49561.00670.062*
H11C0.32670.34710.96800.062*
N10.32122 (17)0.62698 (18)0.50398 (15)0.0208 (4)
C10.2067 (2)0.5820 (2)0.47984 (19)0.0260 (5)
H10.20900.49060.46140.031*
C20.0869 (2)0.6628 (3)0.4808 (2)0.0320 (6)
H20.00800.62730.46400.038*
C30.0825 (2)0.7957 (3)0.5065 (2)0.0364 (7)
H30.00080.85340.50730.044*
C40.1997 (2)0.8441 (2)0.5313 (2)0.0327 (6)
H40.19960.93540.54930.039*
C50.3167 (2)0.7563 (2)0.52921 (19)0.0248 (5)
H50.39670.78910.54640.030*
N210.3414 (2)0.2171 (2)1.06138 (17)0.0350 (5)
C210.3501 (2)0.2256 (2)1.1609 (2)0.0293 (6)
H210.43740.22681.18200.035*
C220.2408 (3)0.2326 (3)1.2341 (2)0.0420 (7)
H220.25200.23741.30410.050*
C230.1137 (3)0.2327 (3)1.2042 (3)0.0496 (8)
H230.03570.23851.25310.059*
C240.1019 (3)0.2243 (3)1.1022 (3)0.0455 (7)
H240.01560.22361.07940.055*
C250.2177 (3)0.2168 (3)1.0338 (2)0.0407 (7)
H250.20890.21100.96340.049*
N310.8222 (2)0.2661 (2)0.8118 (2)0.0446 (6)
C310.8988 (3)0.1658 (3)0.8132 (3)0.0470 (8)
H310.85470.07900.82990.056*
C321.0387 (3)0.1806 (3)0.7917 (3)0.0470 (8)
H321.08950.10600.79420.056*
C331.1028 (3)0.3059 (3)0.7665 (2)0.0465 (8)
H331.19890.31910.75040.056*
C341.0269 (3)0.4113 (3)0.7651 (2)0.0431 (7)
H341.06880.49910.74900.052*
C350.8869 (3)0.3863 (3)0.7877 (3)0.0459 (7)
H350.83390.45930.78580.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0162 (2)0.0220 (2)0.0185 (2)0.00321 (15)0.00240 (16)0.00663 (16)
S110.0182 (3)0.0227 (3)0.0185 (3)0.0055 (2)0.0044 (2)0.0051 (2)
O110.0174 (8)0.0374 (10)0.0296 (10)0.0051 (7)0.0052 (7)0.0114 (8)
O120.0352 (9)0.0302 (9)0.0216 (9)0.0076 (7)0.0079 (7)0.0003 (7)
N110.0180 (9)0.0217 (9)0.0186 (10)0.0056 (7)0.0027 (7)0.0045 (7)
N120.0179 (9)0.0235 (10)0.0223 (11)0.0025 (7)0.0030 (8)0.0045 (8)
N130.0255 (10)0.0238 (10)0.0187 (11)0.0006 (8)0.0021 (8)0.0034 (8)
N140.0291 (11)0.0323 (11)0.0211 (11)0.0028 (8)0.0001 (9)0.0103 (9)
C110.0158 (10)0.0206 (11)0.0199 (12)0.0012 (8)0.0036 (9)0.0046 (9)
C120.0285 (12)0.0241 (12)0.0302 (15)0.0061 (9)0.0111 (11)0.0012 (10)
C130.0409 (15)0.0335 (14)0.0263 (15)0.0037 (11)0.0116 (12)0.0059 (11)
C140.0345 (13)0.0292 (13)0.0196 (13)0.0022 (10)0.0064 (10)0.0052 (10)
C150.0240 (11)0.0177 (11)0.0217 (13)0.0066 (8)0.0059 (9)0.0049 (9)
C160.0188 (11)0.0247 (12)0.0262 (14)0.0042 (9)0.0003 (10)0.0035 (10)
C170.0252 (12)0.0270 (12)0.0210 (13)0.0059 (9)0.0032 (10)0.0074 (10)
C180.0243 (11)0.0195 (11)0.0219 (13)0.0062 (9)0.0022 (10)0.0066 (9)
C190.0234 (11)0.0203 (11)0.0223 (13)0.0015 (9)0.0003 (9)0.0031 (9)
C200.0270 (12)0.0214 (11)0.0179 (12)0.0072 (9)0.0002 (9)0.0035 (9)
C1110.0581 (18)0.0446 (16)0.0199 (15)0.0034 (13)0.0016 (13)0.0037 (12)
N10.0171 (9)0.0264 (10)0.0193 (10)0.0039 (7)0.0031 (8)0.0102 (8)
C10.0237 (12)0.0305 (13)0.0252 (14)0.0070 (9)0.0060 (10)0.0114 (10)
C20.0200 (12)0.0444 (15)0.0332 (15)0.0080 (10)0.0067 (10)0.0186 (12)
C30.0261 (13)0.0399 (15)0.0393 (17)0.0095 (11)0.0000 (12)0.0130 (12)
C40.0322 (13)0.0274 (13)0.0368 (16)0.0007 (10)0.0015 (11)0.0079 (11)
C50.0236 (12)0.0275 (12)0.0240 (13)0.0056 (9)0.0031 (10)0.0059 (10)
N210.0359 (12)0.0426 (13)0.0261 (13)0.0107 (10)0.0018 (10)0.0032 (10)
C210.0317 (13)0.0248 (12)0.0315 (15)0.0045 (10)0.0036 (11)0.0038 (11)
C220.0467 (17)0.0500 (17)0.0277 (16)0.0077 (13)0.0025 (13)0.0107 (13)
C230.0403 (17)0.0557 (19)0.049 (2)0.0130 (14)0.0151 (15)0.0062 (15)
C240.0313 (15)0.0487 (18)0.058 (2)0.0070 (12)0.0087 (14)0.0030 (15)
C250.0471 (16)0.0464 (17)0.0304 (16)0.0096 (13)0.0091 (13)0.0043 (13)
N310.0311 (12)0.0375 (13)0.0620 (18)0.0026 (10)0.0003 (12)0.0074 (12)
C310.0454 (17)0.0402 (16)0.052 (2)0.0053 (13)0.0037 (15)0.0046 (14)
C320.0431 (17)0.0534 (19)0.048 (2)0.0146 (14)0.0109 (14)0.0127 (15)
C330.0261 (14)0.071 (2)0.0389 (18)0.0060 (14)0.0019 (12)0.0175 (15)
C340.0381 (16)0.0478 (17)0.0383 (18)0.0132 (13)0.0008 (13)0.0035 (13)
C350.0433 (16)0.0387 (16)0.055 (2)0.0002 (12)0.0061 (14)0.0058 (14)
Geometric parameters (Å, º) top
Ni1—N12.0802 (18)C111—H11C0.9800
Ni1—N1i2.0802 (18)N1—C51.339 (3)
Ni1—N12i2.100 (2)N1—C11.348 (3)
Ni1—N122.100 (2)C1—C21.374 (3)
Ni1—N11i2.1396 (18)C1—H10.9500
Ni1—N112.1396 (18)C2—C31.376 (4)
S11—O121.4429 (18)C2—H20.9500
S11—O111.4456 (16)C3—C41.390 (4)
S11—N111.6137 (18)C3—H30.9500
S11—C151.760 (2)C4—C51.388 (3)
N11—C111.359 (3)C4—H40.9500
N12—C121.334 (3)C5—H50.9500
N12—C111.364 (3)N21—C251.334 (4)
N13—C141.343 (3)N21—C211.336 (3)
N13—C111.344 (3)C21—C221.366 (4)
N14—C181.363 (3)C21—H210.9500
N14—H14A0.8800C22—C231.379 (4)
N14—H14B0.8800C22—H220.9500
C12—C131.389 (4)C23—C241.374 (5)
C12—H120.9500C23—H230.9500
C13—C141.383 (4)C24—C251.377 (4)
C13—H130.9500C24—H240.9500
C14—C1111.502 (4)C25—H250.9500
C15—C201.387 (3)N31—C311.328 (4)
C15—C161.390 (3)N31—C351.330 (3)
C16—C171.390 (3)C31—C321.380 (4)
C16—H160.9500C31—H310.9500
C17—C181.399 (3)C32—C331.376 (4)
C17—H170.9500C32—H320.9500
C18—C191.411 (3)C33—C341.366 (4)
C19—C201.384 (3)C33—H330.9500
C19—H190.9500C34—C351.386 (4)
C20—H200.9500C34—H340.9500
C111—H11A0.9800C35—H350.9500
C111—H11B0.9800
N1—Ni1—N1i180.000 (1)C19—C20—H20119.7
N1—Ni1—N12i92.01 (7)C15—C20—H20119.7
N1i—Ni1—N12i87.99 (7)C14—C111—H11A109.5
N1—Ni1—N1287.99 (7)C14—C111—H11B109.5
N1i—Ni1—N1292.01 (7)H11A—C111—H11B109.5
N12i—Ni1—N12180.000 (16)C14—C111—H11C109.5
N1—Ni1—N11i90.39 (7)H11A—C111—H11C109.5
N1i—Ni1—N11i89.61 (7)H11B—C111—H11C109.5
N12i—Ni1—N11i63.36 (7)C5—N1—C1117.95 (19)
N12—Ni1—N11i116.64 (7)C5—N1—Ni1121.08 (15)
N1—Ni1—N1189.61 (7)C1—N1—Ni1120.96 (15)
N1i—Ni1—N1190.39 (7)N1—C1—C2122.8 (2)
N12i—Ni1—N11116.64 (7)N1—C1—H1118.6
N12—Ni1—N1163.36 (7)C2—C1—H1118.6
N11i—Ni1—N11180.00 (7)C1—C2—C3119.2 (2)
O12—S11—O11116.66 (10)C1—C2—H2120.4
O12—S11—N11104.95 (10)C3—C2—H2120.4
O11—S11—N11111.73 (10)C2—C3—C4118.8 (2)
O12—S11—C15108.81 (10)C2—C3—H3120.6
O11—S11—C15107.21 (10)C4—C3—H3120.6
N11—S11—C15107.11 (10)C5—C4—C3118.7 (2)
C11—N11—S11121.07 (16)C5—C4—H4120.7
C11—N11—Ni192.33 (13)C3—C4—H4120.7
S11—N11—Ni1146.00 (12)N1—C5—C4122.6 (2)
C12—N12—C11116.8 (2)N1—C5—H5118.7
C12—N12—Ni1148.88 (16)C4—C5—H5118.7
C11—N12—Ni193.91 (14)C25—N21—C21116.8 (2)
C14—N13—C11116.5 (2)N21—C21—C22123.9 (3)
C18—N14—H14A120.0N21—C21—H21118.0
C18—N14—H14B120.0C22—C21—H21118.0
H14A—N14—H14B120.0C21—C22—C23118.5 (3)
N13—C11—N11125.0 (2)C21—C22—H22120.7
N13—C11—N12125.2 (2)C23—C22—H22120.7
N11—C11—N12109.76 (19)C24—C23—C22118.8 (3)
N12—C12—C13121.6 (2)C24—C23—H23120.6
N12—C12—H12119.2C22—C23—H23120.6
C13—C12—H12119.2C23—C24—C25118.7 (3)
C14—C13—C12117.6 (2)C23—C24—H24120.7
C14—C13—H13121.2C25—C24—H24120.7
C12—C13—H13121.2N21—C25—C24123.4 (3)
N13—C14—C13122.1 (2)N21—C25—H25118.3
N13—C14—C111115.2 (2)C24—C25—H25118.3
C13—C14—C111122.7 (2)C31—N31—C35116.7 (2)
C20—C15—C16119.7 (2)N31—C31—C32123.7 (3)
C20—C15—S11119.92 (17)N31—C31—H31118.1
C16—C15—S11120.13 (16)C32—C31—H31118.1
C17—C16—C15120.0 (2)C33—C32—C31118.3 (3)
C17—C16—H16120.0C33—C32—H32120.9
C15—C16—H16120.0C31—C32—H32120.9
C16—C17—C18121.0 (2)C34—C33—C32119.4 (3)
C16—C17—H17119.5C34—C33—H33120.3
C18—C17—H17119.5C32—C33—H33120.3
N14—C18—C17121.1 (2)C33—C34—C35118.0 (3)
N14—C18—C19120.7 (2)C33—C34—H34121.0
C17—C18—C19118.2 (2)C35—C34—H34121.0
C20—C19—C18120.4 (2)N31—C35—C34123.9 (3)
C20—C19—H19119.8N31—C35—H35118.0
C18—C19—H19119.8C34—C35—H35118.0
C19—C20—C15120.6 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14B···N310.882.153.029 (3)173
N14—H14A···N210.882.333.067 (3)141
 

Acknowledgements

The authors acknowledge the School of Chemistry, Cardiff University, for support.

References

First citationAcharya, K. R., Kuchela, K. N. & Kartha, G. (1982). J. Crystallogr. Spectrosc. Res. 12, 369–376.  CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCaria, M. R. & Mohamed, R. (1992). Acta Cryst. B48, 492–498.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHossain, G. M. G. (2006). Acta Cryst. E62, o2166–o2167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds