metal-organic compounds
trans-Bis(ethylenediamine)bis(sulfadiazinato)copper(II)
aSchool of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Wales
*Correspondence e-mail: acsbd@yahoo.com
The structure of the title compound, trans-[Cu(C2H8N2)2(C10H9N4O2S)2], consists of neutral molecules. The Cu2+ ion occupies an inversion centre and exhibits an elongated distorted octahedral geometry, with two monodentate sulfadiazinate (sdz) anions and two bidentate ethylenediamine ligands. Both sdz ligands are N-coordinated via an N atom of the sulfonamide group. The is stabilized by hydrogen bonds and weak van der Waals interactions.
Comment
In the structure of the title compound, (I), [Cu(sdz)2(en)2], the CuII ion occupies an inversion centre and is octahedrally coordinated by two en and two sdz ligands, forming a CuN6 coordination environment. The en molecules act as bidentate ligands, forming two five-membered chelate rings with a trans arrangement. The structure has a Jahn–Teller-distorted octahedral geometry around the CuII atom with four N atoms of the two chelating ethylenediamine molecules and two sulfonamide N atoms from sulfadiazine molecules completing the coordination of the elongated octahedral structure.
The two Cu—Nen bond distances are almost equivalent, but significantly shorter than the Cu—Nsdz bond distances, resulting in the formation of a distorted octahedral geometry elongated along the Cu—Nsdz bonds. Thus, the en N atoms form the equatorial plane of the coordination octahedron, while the sulfonamide N atoms of sdz occupy the axial positions.
The Cu1—N1 bond distances of 2.672 (2) Å are elongated as a result of the Jahn–Teller effect. The bond lengths within the sulfadiazine and ethylenediamine are as expected. The Cu—N distances of 2.005 (3) and 2.013 (3) Å, involving the ethylenediamine molecules, are comparable to the corresponding values 1.997 (3) and 2.001 (3) Å (Lokaj et al., 1991), 2.033 (3) and 2.042 (3) Å (Anacona et al., 2002), 1.996 (2) and 2.022 (3) Å (Kovbasyuk et al., 1997), 2.007 (3)–2.024 (3) Å (Kovbasyuk et al., 1997), 2.016 (2) and 2.019 (2) Å (Fun et al., 2002), and 2.007 (3) and 2.010 (3) Å (Kazak et al., 2004). The S1—O bond distances of 1.458 (3) and 1.449 (3) Å are longer than the corresponding bonds in the pure sulfadiazine with values of 1.429 (2) and 1.437 (2) Å.
The ). The amino H atoms form intramolecular hydrogen bonds with the sulfonyl O atoms, as illustrated in Fig. 1. The amine H atoms of the en ligands and terminal amino H are also involved in intermolecular hydrogen bonding with the sulfonyl O atoms of neighbouring sdz ligands (Fig. 2).
of the complex exhibits numerous hydrogen bonds (Table 2Experimental
The sodium salt of sulfadiazine (Nasdz) (0.545 g, 2 mmol) was dissolved in 50 ml of hot methanol and a methanol solution (10 ml) of CuCl2·2H2O (0.171 g, 1 mmol) was added slowly with constant stirring on a hot-plate at 333 K; a red precipitate was formed and the mixture was stirred for 6 h. The precipitate was filtered off and dried over silica gel. The precipitate was dissolved in a 1:10 mixture of ethylenediamine/water (10 ml), stirred for 30 minutes. The solution was then filtered and left for crystallization; a week later, blue block crystals were obtained, which were filtered off and dried over silica gel.
Crystal data
|
Refinement
|
H atoms were placed in calculated positions (C—H = 0.95 and 0.99 Å; N—H = 0.88 and 0.92 Å, respectively, for H atoms on amino N4 (sulfadiazine), and N5 and N6 (ethylenediamine) atoms) and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 times Ueq of their parent atoms.
Data collection: COLLECT (Hooft, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536806038797/ng2098sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806038797/ng2098Isup2.hkl
Data collection: COLLECT (Hooft, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[Cu(C2H8N2)2(C10H9N4O2S)2] | F(000) = 710 |
Mr = 682.29 | Dx = 1.569 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3290 reflections |
a = 10.8610 (5) Å | θ = 2.9–27.5° |
b = 10.6329 (4) Å | µ = 0.96 mm−1 |
c = 12.5227 (6) Å | T = 150 K |
β = 93.302 (2)° | Block, blue |
V = 1443.77 (11) Å3 | 0.15 × 0.12 × 0.10 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 3290 independent reflections |
Radiation source: fine-focus sealed tube | 2428 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.089 |
ω scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (Blessing, 1995) | h = −14→13 |
Tmin = 0.870, Tmax = 0.910 | k = −13→13 |
9385 measured reflections | l = −14→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.144 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0579P)2 + 1.6363P] where P = (Fo2 + 2Fc2)/3 |
3290 reflections | (Δ/σ)max = 0.001 |
196 parameters | Δρmax = 0.77 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.0300 (2) | |
S1 | 0.74294 (7) | 0.28794 (8) | 0.40827 (6) | 0.0270 (2) | |
O1 | 0.7552 (2) | 0.4133 (2) | 0.3629 (2) | 0.0394 (6) | |
O2 | 0.7047 (2) | 0.1936 (2) | 0.32966 (18) | 0.0379 (6) | |
N1 | 0.6557 (2) | 0.3053 (2) | 0.5048 (2) | 0.0243 (6) | |
N2 | 0.6659 (3) | 0.0859 (2) | 0.5436 (2) | 0.0290 (6) | |
N3 | 0.5561 (3) | 0.2321 (3) | 0.6484 (2) | 0.0299 (6) | |
N4 | 1.2330 (3) | 0.1285 (3) | 0.5971 (2) | 0.0392 (8) | |
H4A | 1.2742 | 0.0678 | 0.5674 | 0.047* | |
H4B | 1.2629 | 0.1641 | 0.6565 | 0.047* | |
C1 | 0.6261 (3) | 0.2035 (3) | 0.5656 (2) | 0.0234 (7) | |
C2 | 0.6220 (3) | −0.0065 (3) | 0.6034 (3) | 0.0340 (8) | |
H2 | 0.6466 | −0.0903 | 0.5890 | 0.041* | |
C3 | 0.5442 (3) | 0.0124 (3) | 0.6836 (3) | 0.0334 (8) | |
H3 | 0.5116 | −0.0556 | 0.7224 | 0.040* | |
C4 | 0.5158 (3) | 0.1349 (3) | 0.7050 (3) | 0.0334 (8) | |
H4 | 0.4652 | 0.1519 | 0.7627 | 0.040* | |
C5 | 0.8905 (3) | 0.2446 (3) | 0.4622 (2) | 0.0253 (7) | |
C6 | 0.9564 (3) | 0.1499 (3) | 0.4142 (3) | 0.0295 (7) | |
H6 | 0.9223 | 0.1098 | 0.3515 | 0.035* | |
C7 | 1.0713 (3) | 0.1139 (3) | 0.4571 (3) | 0.0308 (8) | |
H7 | 1.1167 | 0.0513 | 0.4222 | 0.037* | |
C8 | 1.1206 (3) | 0.1680 (3) | 0.5503 (3) | 0.0288 (7) | |
C9 | 1.0573 (4) | 0.2663 (4) | 0.5950 (3) | 0.0463 (10) | |
H9 | 1.0927 | 0.3087 | 0.6561 | 0.056* | |
C10 | 0.9428 (4) | 0.3031 (4) | 0.5512 (3) | 0.0459 (10) | |
H10 | 0.8999 | 0.3698 | 0.5833 | 0.055* | |
N5 | 0.3469 (3) | 0.3931 (3) | 0.4975 (2) | 0.0337 (7) | |
H5A | 0.3668 | 0.3132 | 0.5208 | 0.040* | |
H5B | 0.2917 | 0.4267 | 0.5426 | 0.040* | |
N6 | 0.4818 (3) | 0.4869 (3) | 0.3402 (2) | 0.0327 (7) | |
H6A | 0.4539 | 0.5618 | 0.3111 | 0.039* | |
H6B | 0.5565 | 0.4681 | 0.3130 | 0.039* | |
C11 | 0.2911 (4) | 0.3878 (4) | 0.3888 (4) | 0.0514 (11) | |
H11A | 0.2388 | 0.4629 | 0.3743 | 0.062* | |
H11B | 0.2385 | 0.3120 | 0.3799 | 0.062* | |
C12 | 0.3900 (4) | 0.3834 (4) | 0.3138 (4) | 0.0543 (12) | |
H12A | 0.3547 | 0.3939 | 0.2397 | 0.065* | |
H12B | 0.4319 | 0.3007 | 0.3189 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0355 (4) | 0.0300 (3) | 0.0244 (3) | −0.0055 (2) | 0.0015 (2) | 0.0009 (2) |
S1 | 0.0243 (4) | 0.0329 (4) | 0.0241 (4) | 0.0095 (3) | 0.0058 (3) | 0.0050 (3) |
O1 | 0.0382 (15) | 0.0408 (14) | 0.0409 (15) | 0.0138 (11) | 0.0163 (11) | 0.0189 (12) |
O2 | 0.0363 (14) | 0.0540 (16) | 0.0226 (12) | 0.0115 (12) | −0.0042 (10) | −0.0080 (11) |
N1 | 0.0229 (14) | 0.0223 (13) | 0.0285 (15) | 0.0066 (10) | 0.0089 (11) | 0.0042 (11) |
N2 | 0.0320 (16) | 0.0225 (13) | 0.0329 (16) | 0.0046 (11) | 0.0059 (12) | 0.0002 (12) |
N3 | 0.0303 (15) | 0.0311 (15) | 0.0294 (15) | 0.0068 (12) | 0.0118 (12) | 0.0050 (12) |
N4 | 0.0280 (16) | 0.053 (2) | 0.0366 (17) | 0.0071 (14) | −0.0023 (13) | −0.0027 (15) |
C1 | 0.0195 (16) | 0.0266 (16) | 0.0241 (16) | 0.0036 (12) | 0.0008 (12) | 0.0023 (13) |
C2 | 0.039 (2) | 0.0224 (17) | 0.041 (2) | 0.0024 (14) | 0.0022 (16) | −0.0004 (15) |
C3 | 0.032 (2) | 0.0307 (18) | 0.037 (2) | −0.0051 (14) | 0.0020 (15) | 0.0086 (15) |
C4 | 0.0324 (19) | 0.0367 (19) | 0.0323 (18) | 0.0054 (15) | 0.0110 (15) | 0.0063 (15) |
C5 | 0.0244 (16) | 0.0297 (17) | 0.0224 (16) | 0.0044 (13) | 0.0060 (13) | 0.0029 (13) |
C6 | 0.0275 (18) | 0.0293 (17) | 0.0317 (18) | 0.0045 (13) | 0.0003 (14) | −0.0022 (14) |
C7 | 0.0292 (18) | 0.0257 (17) | 0.038 (2) | 0.0038 (13) | 0.0062 (15) | −0.0026 (15) |
C8 | 0.0239 (17) | 0.0360 (18) | 0.0273 (17) | 0.0015 (14) | 0.0081 (13) | 0.0038 (15) |
C9 | 0.034 (2) | 0.070 (3) | 0.034 (2) | 0.0128 (19) | −0.0041 (16) | −0.019 (2) |
C10 | 0.035 (2) | 0.062 (3) | 0.041 (2) | 0.0196 (19) | 0.0022 (17) | −0.0236 (19) |
N5 | 0.0321 (16) | 0.0248 (14) | 0.0441 (18) | 0.0021 (12) | −0.0002 (14) | 0.0052 (13) |
N6 | 0.0339 (17) | 0.0356 (16) | 0.0284 (15) | 0.0109 (12) | −0.0006 (13) | 0.0002 (12) |
C11 | 0.053 (3) | 0.043 (2) | 0.056 (3) | −0.0060 (19) | −0.014 (2) | 0.001 (2) |
C12 | 0.059 (3) | 0.057 (3) | 0.045 (2) | 0.004 (2) | −0.014 (2) | −0.015 (2) |
Cu1—N1 | 2.672 (2) | C4—H4 | 0.9500 |
Cu1—N1i | 2.672 (2) | C5—C6 | 1.392 (4) |
Cu1—N5 | 2.013 (3) | C5—C10 | 1.370 (5) |
Cu1—N5i | 2.013 (3) | C6—C7 | 1.384 (5) |
Cu1—N6 | 2.005 (3) | C6—H6 | 0.9500 |
Cu1—N6i | 2.005 (3) | C7—C8 | 1.381 (5) |
S1—O1 | 1.458 (3) | C7—H7 | 0.9500 |
S1—O2 | 1.449 (3) | C8—C9 | 1.386 (5) |
S1—N1 | 1.589 (3) | C9—C10 | 1.387 (5) |
S1—C5 | 1.764 (3) | C9—H9 | 0.9500 |
N1—C1 | 1.372 (4) | C10—H10 | 0.9500 |
N2—C1 | 1.356 (4) | N5—C11 | 1.459 (5) |
N2—C2 | 1.339 (4) | N5—H5A | 0.9200 |
N3—C1 | 1.355 (4) | N5—H5B | 0.9200 |
N3—C4 | 1.342 (4) | N6—C12 | 1.508 (5) |
N4—C8 | 1.388 (4) | N6—H6A | 0.9200 |
N4—H4A | 0.8800 | N6—H6B | 0.9200 |
N4—H4B | 0.8800 | C11—C12 | 1.468 (6) |
C2—C3 | 1.365 (5) | C11—H11A | 0.9900 |
C2—H2 | 0.9500 | C11—H11B | 0.9900 |
C3—C4 | 1.368 (5) | C12—H12A | 0.9900 |
C3—H3 | 0.9500 | C12—H12B | 0.9900 |
N1i—Cu1—N1 | 180.000 (1) | C10—C5—S1 | 121.1 (3) |
N5i—Cu1—N5 | 180.000 (1) | C6—C5—S1 | 120.1 (2) |
N6i—Cu1—N6 | 180.000 (1) | C5—C6—C7 | 120.4 (3) |
N1i—Cu1—N5 | 85.20 (10) | C7—C6—H6 | 119.8 |
N1—Cu1—N5 | 94.80 (10) | C5—C6—H6 | 119.8 |
N1i—Cu1—N5i | 94.80 (10) | C6—C7—C8 | 120.7 (3) |
N1—Cu1—N5i | 85.20 (10) | C8—C7—H7 | 119.7 |
N1i—Cu1—N6 | 90.32 (10) | C6—C7—H7 | 119.7 |
N1—Cu1—N6 | 89.68 (10) | C7—C8—C9 | 118.5 (3) |
N1i—Cu1—N6i | 89.68 (10) | C7—C8—N4 | 121.3 (3) |
N1—Cu1—N6i | 90.32 (10) | C9—C8—N4 | 120.1 (3) |
N5i—Cu1—N6i | 84.90 (12) | C8—C9—C10 | 120.5 (3) |
N5—Cu1—N6i | 95.10 (12) | C8—C9—H9 | 119.7 |
N5i—Cu1—N6 | 95.10 (12) | C10—C9—H9 | 119.7 |
N5—Cu1—N6 | 84.90 (12) | C5—C10—C9 | 120.9 (3) |
O1—S1—O2 | 113.38 (15) | C5—C10—H10 | 119.6 |
O1—S1—N1 | 105.22 (14) | C9—C10—H10 | 119.6 |
O2—S1—N1 | 115.90 (15) | C11—N5—Cu1 | 109.6 (2) |
O2—S1—C5 | 107.32 (15) | C11—N5—H5A | 109.8 |
O1—S1—C5 | 106.65 (16) | Cu1—N5—H5A | 109.8 |
N1—S1—C5 | 107.91 (14) | C11—N5—H5B | 109.8 |
C1—N1—S1 | 120.0 (2) | Cu1—N5—H5B | 109.8 |
C1—N1—Cu1 | 117.11 (19) | H5A—N5—H5B | 108.2 |
S1—N1—Cu1 | 118.50 (13) | C12—N6—Cu1 | 107.2 (2) |
C1—N2—C2 | 115.8 (3) | C12—N6—H6A | 110.3 |
C1—N3—C4 | 116.5 (3) | Cu1—N6—H6A | 110.3 |
C8—N4—H4A | 120.0 | C12—N6—H6B | 110.3 |
C8—N4—H4B | 120.0 | Cu1—N6—H6B | 110.3 |
H4A—N4—H4B | 120.0 | H6A—N6—H6B | 108.5 |
N2—C1—N3 | 124.2 (3) | N5—C11—C12 | 108.5 (3) |
N1—C1—N3 | 114.0 (3) | N5—C11—H11A | 110.0 |
N1—C1—N2 | 121.8 (3) | C12—C11—H11A | 110.0 |
N2—C2—C3 | 123.9 (3) | N5—C11—H11B | 110.0 |
N2—C2—H2 | 118.0 | C12—C11—H11B | 110.0 |
C3—C2—H2 | 118.0 | H11A—C11—H11B | 108.4 |
C2—C3—C4 | 116.1 (3) | C11—C12—N6 | 109.6 (3) |
C2—C3—H3 | 121.9 | C11—C12—H12A | 109.7 |
C4—C3—H3 | 121.9 | N6—C12—H12A | 109.7 |
N3—C4—C3 | 123.1 (3) | C11—C12—H12B | 109.7 |
N3—C4—H4 | 118.5 | N6—C12—H12B | 109.7 |
C3—C4—H4 | 118.5 | H12A—C12—H12B | 108.2 |
C6—C5—C10 | 118.7 (3) | ||
O2—S1—N1—C1 | 54.3 (3) | O1—S1—C5—C10 | 69.3 (3) |
O1—S1—N1—C1 | −179.5 (2) | N1—S1—C5—C10 | −43.3 (3) |
C5—S1—N1—C1 | −66.0 (3) | O2—S1—C5—C6 | 11.5 (3) |
O2—S1—N1—Cu1 | −101.41 (16) | O1—S1—C5—C6 | −110.3 (3) |
O1—S1—N1—Cu1 | 24.70 (19) | N1—S1—C5—C6 | 137.0 (3) |
C5—S1—N1—Cu1 | 138.27 (15) | C10—C5—C6—C7 | 1.4 (5) |
N6i—Cu1—N1—C1 | 56.7 (2) | S1—C5—C6—C7 | −178.9 (3) |
N6—Cu1—N1—C1 | −123.3 (2) | C5—C6—C7—C8 | 2.3 (5) |
N5i—Cu1—N1—C1 | 141.5 (2) | C6—C7—C8—C9 | −5.2 (5) |
N5—Cu1—N1—C1 | −38.5 (2) | C6—C7—C8—N4 | 176.8 (3) |
N6i—Cu1—N1—S1 | −146.87 (17) | C7—C8—C9—C10 | 4.6 (6) |
N6—Cu1—N1—S1 | 33.13 (17) | N4—C8—C9—C10 | −177.4 (4) |
N5i—Cu1—N1—S1 | −62.01 (17) | C6—C5—C10—C9 | −2.1 (6) |
N5—Cu1—N1—S1 | 117.99 (17) | S1—C5—C10—C9 | 178.2 (3) |
C4—N3—C1—N2 | −6.2 (5) | C8—C9—C10—C5 | −0.9 (7) |
C4—N3—C1—N1 | 174.6 (3) | N6i—Cu1—N5—C11 | 167.5 (3) |
C2—N2—C1—N3 | 6.3 (5) | N6—Cu1—N5—C11 | −12.5 (3) |
C2—N2—C1—N1 | −174.6 (3) | N1i—Cu1—N5—C11 | 78.2 (3) |
S1—N1—C1—N3 | 176.9 (2) | N1—Cu1—N5—C11 | −101.8 (3) |
Cu1—N1—C1—N3 | −27.0 (3) | N5i—Cu1—N6—C12 | 166.2 (2) |
S1—N1—C1—N2 | −2.3 (4) | N5—Cu1—N6—C12 | −13.8 (2) |
Cu1—N1—C1—N2 | 153.7 (2) | N1i—Cu1—N6—C12 | −99.0 (2) |
C1—N2—C2—C3 | −1.4 (5) | N1—Cu1—N6—C12 | 81.0 (2) |
N2—C2—C3—C4 | −3.0 (6) | Cu1—N5—C11—C12 | 37.1 (4) |
C1—N3—C4—C3 | 1.2 (5) | N5—C11—C12—N6 | −50.1 (4) |
C2—C3—C4—N3 | 3.1 (6) | Cu1—N6—C12—C11 | 38.3 (4) |
O2—S1—C5—C10 | −168.8 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6B···O1 | 0.92 | 2.29 | 3.068 (4) | 142 |
N6—H6A···N3i | 0.92 | 2.25 | 3.021 (4) | 141 |
N5—H5B···O1i | 0.92 | 2.15 | 2.958 (4) | 146 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
The authors acknowledge the School of Chemistry, Cardiff University.
References
Anacona, J. R., Ramos, N., Delgado, G. D. D. & Roque, E. M. (2002). J. Coord. Chem. 55, 901–908. Web of Science CSD CrossRef CAS Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Hao, Q.-L., Wu, J., Yang, X.-J., Lu, L.-D., Wang, X., Chantrapromma, S., Razak, I. A. & Usman, A. (2002). Acta Cryst. C58, m87–m88. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hooft, R. W. W. (1998). COLLECT. Bruker AXS Inc., Delft, The Netherlands. Google Scholar
Kazak, C., Yilmaz, V. T. & Yazicilar, T. K. (2004). Acta Cryst. E60, m593–m595. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kovbasyuk, L. A., Frisky, I. O., Kokozay, V. N. & Iskenderov, T. S. (1997). Polyhedron, 16, 1723–172. CSD CrossRef CAS Web of Science Google Scholar
Lokaj, J., Gyerová, K., Sopková, A., Sivý, J., Kettman, V. & Vrabel, V. (1991). Acta Cryst. C47, 2447–2448. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.