metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(ethyl­enedi­amine)bis­­(sulfadiazinato)­copper(II)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Wales
*Correspondence e-mail: acsbd@yahoo.com

(Received 15 September 2006; accepted 22 September 2006; online 27 September 2006)

The structure of the title compound, trans-[Cu(C2H8N2)2(C10H9N4O2S)2], consists of neutral mol­ecules. The Cu2+ ion occupies an inversion centre and exhibits an elongated distorted octa­hedral geometry, with two monodentate sulfadiazinate (sdz) anions and two bidentate ethyl­enediamine ligands. Both sdz ligands are N-coordinated via an N atom of the sulfonamide group. The crystal structure is stabilized by hydrogen bonds and weak van der Waals inter­actions.

Comment

In the structure of the title compound, (I)[link], [Cu(sdz)2(en)2], the CuII ion occupies an inversion centre and is octa­hedrally coordinated by two en and two sdz ligands, forming a CuN6 coordination environment. The en mol­ecules act as bidentate ligands, forming two five-membered chelate rings with a trans arrangement. The structure has a Jahn–Teller-distorted octa­hedral geometry around the CuII atom with four N atoms of the two chelating ethyl­enediamine mol­ecules and two sulfon­amide N atoms from sulfadiazine mol­ecules completing the coordination of the elongated octa­hedral structure.

[Scheme 1]

The two Cu—Nen bond distances are almost equivalent, but significantly shorter than the Cu—Nsdz bond distances, resulting in the formation of a distorted octa­hedral geometry elongated along the Cu—Nsdz bonds. Thus, the en N atoms form the equatorial plane of the coordination octa­hedron, while the sulfonamide N atoms of sdz occupy the axial positions.

The Cu1—N1 bond distances of 2.672 (2) Å are elongated as a result of the Jahn–Teller effect. The bond lengths within the sulfadiazine and ethyl­ene­diamine are as expected. The Cu—N distances of 2.005 (3) and 2.013 (3) Å, involving the ethyl­enediamine mol­ecules, are comparable to the corresponding values 1.997 (3) and 2.001 (3) Å (Lokaj et al., 1991[Lokaj, J., Gyerová, K., Sopková, A., Sivý, J., Kettman, V. & Vrabel, V. (1991). Acta Cryst. C47, 2447-2448.]), 2.033 (3) and 2.042 (3) Å (Anacona et al., 2002[Anacona, J. R., Ramos, N., Delgado, G. D. D. & Roque, E. M. (2002). J. Coord. Chem. 55, 901-908.]), 1.996 (2) and 2.022 (3) Å (Kovbasyuk et al., 1997[Kovbasyuk, L. A., Frisky, I. O., Kokozay, V. N. & Iskenderov, T. S. (1997). Polyhedron, 16, 1723-172.]), 2.007 (3)–2.024 (3) Å (Kovbasyuk et al., 1997[Kovbasyuk, L. A., Frisky, I. O., Kokozay, V. N. & Iskenderov, T. S. (1997). Polyhedron, 16, 1723-172.]), 2.016 (2) and 2.019 (2) Å (Fun et al., 2002[Fun, H.-K., Hao, Q.-L., Wu, J., Yang, X.-J., Lu, L.-D., Wang, X., Chantrapromma, S., Razak, I. A. & Usman, A. (2002). Acta Cryst. C58, m87-m88.]), and 2.007 (3) and 2.010 (3) Å (Kazak et al., 2004[Kazak, C., Yilmaz, V. T. & Yazicilar, T. K. (2004). Acta Cryst. E60, m593-m595.]). The S1—O bond distances of 1.458 (3) and 1.449 (3) Å are longer than the corresponding bonds in the pure sulfadiazine with values of 1.429 (2) and 1.437 (2) Å.

The crystal structure of the complex exhibits numerous hydrogen bonds (Table 2[link]). The amino H atoms form intra­molecular hydrogen bonds with the sulfonyl O atoms, as illustrated in Fig. 1[link]. The amine H atoms of the en ligands and terminal amino H are also involved in inter­molecular hydrogen bonding with the sulfonyl O atoms of neighbouring sdz ligands (Fig. 2[link]).

[Figure 1]
Figure 1
The molecular structure, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. Symmetry code as in Table 1[link]. Dashed lines indicate hydrogen bonds.
[Figure 2]
Figure 2
The mol­ecular packing of (I)[link] viewed along the b axis. Dashed lines indicate the hydrogen-bonding inter­actions.

Experimental

The sodium salt of sulfadiazine (Nasdz) (0.545 g, 2 mmol) was dissolved in 50 ml of hot methanol and a methanol solution (10 ml) of CuCl2·2H2O (0.171 g, 1 mmol) was added slowly with constant stirring on a hot-plate at 333 K; a red precipitate was formed and the mixture was stirred for 6 h. The precipitate was filtered off and dried over silica gel. The precipitate was dissolved in a 1:10 mixture of ethyl­enediamine/water (10 ml), stirred for 30 minutes. The solution was then filtered and left for crystallization; a week later, blue block crystals were obtained, which were filtered off and dried over silica gel.

Crystal data
  • [Cu(C2H8N2)2(C10H9N4O2S)2]

  • Mr = 682.29

  • Monoclinic, P 21 /n

  • a = 10.8610 (5) Å

  • b = 10.6329 (4) Å

  • c = 12.5227 (6) Å

  • β = 93.302 (2)°

  • V = 1443.77 (11) Å3

  • Z = 2

  • Dx = 1.569 Mg m−3

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 150 (2) K

  • Block, blue

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.870, Tmax = 0.910

  • 9385 measured reflections

  • 3290 independent reflections

  • 2428 reflections with I > 2σ(I)

  • Rint = 0.089

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.144

  • S = 1.03

  • 3290 reflections

  • 196 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0579P)2 + 1.6363P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 2.672 (2)
Cu1—N5 2.013 (3)
Cu1—N6 2.005 (3)
N1i—Cu1—N1 180
N5i—Cu1—N5 180
N6i—Cu1—N6 180
N1—Cu1—N5 94.80 (10)
N1i—Cu1—N6 90.32 (10)
N1—Cu1—N6 89.68 (10)
N5i—Cu1—N6 95.10 (12)
N5—Cu1—N6 84.90 (12)
N1i—Cu1—N5 85.20 (10)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6B⋯O1 0.92 2.29 3.068 (4) 142
N6—H6A⋯N3i 0.92 2.25 3.021 (4) 141
N5—H5B⋯O1i 0.92 2.15 2.958 (4) 146
Symmetry code: (i) -x+1, -y+1, -z+1.

H atoms were placed in calculated positions (C—H = 0.95 and 0.99 Å; N—H = 0.88 and 0.92 Å, respectively, for H atoms on amino N4 (sulfadiazine), and N5 and N6 (ethyl­enediamine) atoms) and refined using a riding model. H atoms were given isotropic displace­ment parameters equal to 1.2 times Ueq of their parent atoms.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Bruker AXS Inc., Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

trans-Bis(ethylenediamine)bis(sulfadiazinato)copper(II) top
Crystal data top
[Cu(C2H8N2)2(C10H9N4O2S)2]F(000) = 710
Mr = 682.29Dx = 1.569 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3290 reflections
a = 10.8610 (5) Åθ = 2.9–27.5°
b = 10.6329 (4) ŵ = 0.96 mm1
c = 12.5227 (6) ÅT = 150 K
β = 93.302 (2)°Block, blue
V = 1443.77 (11) Å30.15 × 0.12 × 0.10 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3290 independent reflections
Radiation source: fine-focus sealed tube2428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1413
Tmin = 0.870, Tmax = 0.910k = 1313
9385 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0579P)2 + 1.6363P]
where P = (Fo2 + 2Fc2)/3
3290 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.0300 (2)
S10.74294 (7)0.28794 (8)0.40827 (6)0.0270 (2)
O10.7552 (2)0.4133 (2)0.3629 (2)0.0394 (6)
O20.7047 (2)0.1936 (2)0.32966 (18)0.0379 (6)
N10.6557 (2)0.3053 (2)0.5048 (2)0.0243 (6)
N20.6659 (3)0.0859 (2)0.5436 (2)0.0290 (6)
N30.5561 (3)0.2321 (3)0.6484 (2)0.0299 (6)
N41.2330 (3)0.1285 (3)0.5971 (2)0.0392 (8)
H4A1.27420.06780.56740.047*
H4B1.26290.16410.65650.047*
C10.6261 (3)0.2035 (3)0.5656 (2)0.0234 (7)
C20.6220 (3)0.0065 (3)0.6034 (3)0.0340 (8)
H20.64660.09030.58900.041*
C30.5442 (3)0.0124 (3)0.6836 (3)0.0334 (8)
H30.51160.05560.72240.040*
C40.5158 (3)0.1349 (3)0.7050 (3)0.0334 (8)
H40.46520.15190.76270.040*
C50.8905 (3)0.2446 (3)0.4622 (2)0.0253 (7)
C60.9564 (3)0.1499 (3)0.4142 (3)0.0295 (7)
H60.92230.10980.35150.035*
C71.0713 (3)0.1139 (3)0.4571 (3)0.0308 (8)
H71.11670.05130.42220.037*
C81.1206 (3)0.1680 (3)0.5503 (3)0.0288 (7)
C91.0573 (4)0.2663 (4)0.5950 (3)0.0463 (10)
H91.09270.30870.65610.056*
C100.9428 (4)0.3031 (4)0.5512 (3)0.0459 (10)
H100.89990.36980.58330.055*
N50.3469 (3)0.3931 (3)0.4975 (2)0.0337 (7)
H5A0.36680.31320.52080.040*
H5B0.29170.42670.54260.040*
N60.4818 (3)0.4869 (3)0.3402 (2)0.0327 (7)
H6A0.45390.56180.31110.039*
H6B0.55650.46810.31300.039*
C110.2911 (4)0.3878 (4)0.3888 (4)0.0514 (11)
H11A0.23880.46290.37430.062*
H11B0.23850.31200.37990.062*
C120.3900 (4)0.3834 (4)0.3138 (4)0.0543 (12)
H12A0.35470.39390.23970.065*
H12B0.43190.30070.31890.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0355 (4)0.0300 (3)0.0244 (3)0.0055 (2)0.0015 (2)0.0009 (2)
S10.0243 (4)0.0329 (4)0.0241 (4)0.0095 (3)0.0058 (3)0.0050 (3)
O10.0382 (15)0.0408 (14)0.0409 (15)0.0138 (11)0.0163 (11)0.0189 (12)
O20.0363 (14)0.0540 (16)0.0226 (12)0.0115 (12)0.0042 (10)0.0080 (11)
N10.0229 (14)0.0223 (13)0.0285 (15)0.0066 (10)0.0089 (11)0.0042 (11)
N20.0320 (16)0.0225 (13)0.0329 (16)0.0046 (11)0.0059 (12)0.0002 (12)
N30.0303 (15)0.0311 (15)0.0294 (15)0.0068 (12)0.0118 (12)0.0050 (12)
N40.0280 (16)0.053 (2)0.0366 (17)0.0071 (14)0.0023 (13)0.0027 (15)
C10.0195 (16)0.0266 (16)0.0241 (16)0.0036 (12)0.0008 (12)0.0023 (13)
C20.039 (2)0.0224 (17)0.041 (2)0.0024 (14)0.0022 (16)0.0004 (15)
C30.032 (2)0.0307 (18)0.037 (2)0.0051 (14)0.0020 (15)0.0086 (15)
C40.0324 (19)0.0367 (19)0.0323 (18)0.0054 (15)0.0110 (15)0.0063 (15)
C50.0244 (16)0.0297 (17)0.0224 (16)0.0044 (13)0.0060 (13)0.0029 (13)
C60.0275 (18)0.0293 (17)0.0317 (18)0.0045 (13)0.0003 (14)0.0022 (14)
C70.0292 (18)0.0257 (17)0.038 (2)0.0038 (13)0.0062 (15)0.0026 (15)
C80.0239 (17)0.0360 (18)0.0273 (17)0.0015 (14)0.0081 (13)0.0038 (15)
C90.034 (2)0.070 (3)0.034 (2)0.0128 (19)0.0041 (16)0.019 (2)
C100.035 (2)0.062 (3)0.041 (2)0.0196 (19)0.0022 (17)0.0236 (19)
N50.0321 (16)0.0248 (14)0.0441 (18)0.0021 (12)0.0002 (14)0.0052 (13)
N60.0339 (17)0.0356 (16)0.0284 (15)0.0109 (12)0.0006 (13)0.0002 (12)
C110.053 (3)0.043 (2)0.056 (3)0.0060 (19)0.014 (2)0.001 (2)
C120.059 (3)0.057 (3)0.045 (2)0.004 (2)0.014 (2)0.015 (2)
Geometric parameters (Å, º) top
Cu1—N12.672 (2)C4—H40.9500
Cu1—N1i2.672 (2)C5—C61.392 (4)
Cu1—N52.013 (3)C5—C101.370 (5)
Cu1—N5i2.013 (3)C6—C71.384 (5)
Cu1—N62.005 (3)C6—H60.9500
Cu1—N6i2.005 (3)C7—C81.381 (5)
S1—O11.458 (3)C7—H70.9500
S1—O21.449 (3)C8—C91.386 (5)
S1—N11.589 (3)C9—C101.387 (5)
S1—C51.764 (3)C9—H90.9500
N1—C11.372 (4)C10—H100.9500
N2—C11.356 (4)N5—C111.459 (5)
N2—C21.339 (4)N5—H5A0.9200
N3—C11.355 (4)N5—H5B0.9200
N3—C41.342 (4)N6—C121.508 (5)
N4—C81.388 (4)N6—H6A0.9200
N4—H4A0.8800N6—H6B0.9200
N4—H4B0.8800C11—C121.468 (6)
C2—C31.365 (5)C11—H11A0.9900
C2—H20.9500C11—H11B0.9900
C3—C41.368 (5)C12—H12A0.9900
C3—H30.9500C12—H12B0.9900
N1i—Cu1—N1180.000 (1)C10—C5—S1121.1 (3)
N5i—Cu1—N5180.000 (1)C6—C5—S1120.1 (2)
N6i—Cu1—N6180.000 (1)C5—C6—C7120.4 (3)
N1i—Cu1—N585.20 (10)C7—C6—H6119.8
N1—Cu1—N594.80 (10)C5—C6—H6119.8
N1i—Cu1—N5i94.80 (10)C6—C7—C8120.7 (3)
N1—Cu1—N5i85.20 (10)C8—C7—H7119.7
N1i—Cu1—N690.32 (10)C6—C7—H7119.7
N1—Cu1—N689.68 (10)C7—C8—C9118.5 (3)
N1i—Cu1—N6i89.68 (10)C7—C8—N4121.3 (3)
N1—Cu1—N6i90.32 (10)C9—C8—N4120.1 (3)
N5i—Cu1—N6i84.90 (12)C8—C9—C10120.5 (3)
N5—Cu1—N6i95.10 (12)C8—C9—H9119.7
N5i—Cu1—N695.10 (12)C10—C9—H9119.7
N5—Cu1—N684.90 (12)C5—C10—C9120.9 (3)
O1—S1—O2113.38 (15)C5—C10—H10119.6
O1—S1—N1105.22 (14)C9—C10—H10119.6
O2—S1—N1115.90 (15)C11—N5—Cu1109.6 (2)
O2—S1—C5107.32 (15)C11—N5—H5A109.8
O1—S1—C5106.65 (16)Cu1—N5—H5A109.8
N1—S1—C5107.91 (14)C11—N5—H5B109.8
C1—N1—S1120.0 (2)Cu1—N5—H5B109.8
C1—N1—Cu1117.11 (19)H5A—N5—H5B108.2
S1—N1—Cu1118.50 (13)C12—N6—Cu1107.2 (2)
C1—N2—C2115.8 (3)C12—N6—H6A110.3
C1—N3—C4116.5 (3)Cu1—N6—H6A110.3
C8—N4—H4A120.0C12—N6—H6B110.3
C8—N4—H4B120.0Cu1—N6—H6B110.3
H4A—N4—H4B120.0H6A—N6—H6B108.5
N2—C1—N3124.2 (3)N5—C11—C12108.5 (3)
N1—C1—N3114.0 (3)N5—C11—H11A110.0
N1—C1—N2121.8 (3)C12—C11—H11A110.0
N2—C2—C3123.9 (3)N5—C11—H11B110.0
N2—C2—H2118.0C12—C11—H11B110.0
C3—C2—H2118.0H11A—C11—H11B108.4
C2—C3—C4116.1 (3)C11—C12—N6109.6 (3)
C2—C3—H3121.9C11—C12—H12A109.7
C4—C3—H3121.9N6—C12—H12A109.7
N3—C4—C3123.1 (3)C11—C12—H12B109.7
N3—C4—H4118.5N6—C12—H12B109.7
C3—C4—H4118.5H12A—C12—H12B108.2
C6—C5—C10118.7 (3)
O2—S1—N1—C154.3 (3)O1—S1—C5—C1069.3 (3)
O1—S1—N1—C1179.5 (2)N1—S1—C5—C1043.3 (3)
C5—S1—N1—C166.0 (3)O2—S1—C5—C611.5 (3)
O2—S1—N1—Cu1101.41 (16)O1—S1—C5—C6110.3 (3)
O1—S1—N1—Cu124.70 (19)N1—S1—C5—C6137.0 (3)
C5—S1—N1—Cu1138.27 (15)C10—C5—C6—C71.4 (5)
N6i—Cu1—N1—C156.7 (2)S1—C5—C6—C7178.9 (3)
N6—Cu1—N1—C1123.3 (2)C5—C6—C7—C82.3 (5)
N5i—Cu1—N1—C1141.5 (2)C6—C7—C8—C95.2 (5)
N5—Cu1—N1—C138.5 (2)C6—C7—C8—N4176.8 (3)
N6i—Cu1—N1—S1146.87 (17)C7—C8—C9—C104.6 (6)
N6—Cu1—N1—S133.13 (17)N4—C8—C9—C10177.4 (4)
N5i—Cu1—N1—S162.01 (17)C6—C5—C10—C92.1 (6)
N5—Cu1—N1—S1117.99 (17)S1—C5—C10—C9178.2 (3)
C4—N3—C1—N26.2 (5)C8—C9—C10—C50.9 (7)
C4—N3—C1—N1174.6 (3)N6i—Cu1—N5—C11167.5 (3)
C2—N2—C1—N36.3 (5)N6—Cu1—N5—C1112.5 (3)
C2—N2—C1—N1174.6 (3)N1i—Cu1—N5—C1178.2 (3)
S1—N1—C1—N3176.9 (2)N1—Cu1—N5—C11101.8 (3)
Cu1—N1—C1—N327.0 (3)N5i—Cu1—N6—C12166.2 (2)
S1—N1—C1—N22.3 (4)N5—Cu1—N6—C1213.8 (2)
Cu1—N1—C1—N2153.7 (2)N1i—Cu1—N6—C1299.0 (2)
C1—N2—C2—C31.4 (5)N1—Cu1—N6—C1281.0 (2)
N2—C2—C3—C43.0 (6)Cu1—N5—C11—C1237.1 (4)
C1—N3—C4—C31.2 (5)N5—C11—C12—N650.1 (4)
C2—C3—C4—N33.1 (6)Cu1—N6—C12—C1138.3 (4)
O2—S1—C5—C10168.8 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6B···O10.922.293.068 (4)142
N6—H6A···N3i0.922.253.021 (4)141
N5—H5B···O1i0.922.152.958 (4)146
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the School of Chemistry, Cardiff University.

References

First citationAnacona, J. R., Ramos, N., Delgado, G. D. D. & Roque, E. M. (2002). J. Coord. Chem. 55, 901–908.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hao, Q.-L., Wu, J., Yang, X.-J., Lu, L.-D., Wang, X., Chantrapromma, S., Razak, I. A. & Usman, A. (2002). Acta Cryst. C58, m87–m88.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Bruker AXS Inc., Delft, The Netherlands.  Google Scholar
First citationKazak, C., Yilmaz, V. T. & Yazicilar, T. K. (2004). Acta Cryst. E60, m593–m595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKovbasyuk, L. A., Frisky, I. O., Kokozay, V. N. & Iskenderov, T. S. (1997). Polyhedron, 16, 1723–172.  CSD CrossRef CAS Web of Science Google Scholar
First citationLokaj, J., Gyerová, K., Sopková, A., Sivý, J., Kettman, V. & Vrabel, V. (1991). Acta Cryst. C47, 2447–2448.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds