metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridyl-κ2N,N′)bis­­(O,O′-diiso­propyl di­thio­phosphato-κ2S,S′)nickel(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bDepartment of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE,Scotland, and cComplexo Tecnológico de Medicamentos Farmanguinhos, Av. Comandante Guaranys 447, Jacarepaguá, Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@utsa.edu

(Received 15 September 2006; accepted 18 September 2006; online 22 September 2006)

The monomeric title compound, [Ni(C6H14O2PS2)2(C10H8N2)], has the Ni atom within a distorted octa­hedral cis-N2S4 geometry. The crystal structure is stabilized by C—H⋯S inter­actions, leading to the formation of a linear chain.

Comment

In continuation of our inter­est in the structural chemistry of bipyridine adducts of nickel(II) dithio­phosphates, with general formula Ni[S2P(OR)2]2(2,2′-bipyridine) (Berdugo & Tiekink, 2006[Berdugo, E. & Tiekink, E. R. T. (2006). Acta Cryst. E62, m2218-m2220.]), the title complex, where R = iPr, (I)[link], was investigated. The distorted octa­hedral geometry in (I)[link] (Fig. 1[link]) is based on a cis-N2S4 donor set and is in agreement with those found in related structures, namely R = Me (Arora et al., 1977[Arora, S. K., Carter, D. E., Fernando, Q. & Seff, K. (1977). Acta Cryst. B33, 3230-3232.]), R = nBu [You et al., 1986[You, X., Xu, Z., Yu, Y., Liu, S. & Lin, C. (1986). Jiegou Huaxue, 5, 154-158.]; see Hu (1999[Hu, S.-Z. (1999). Jiegou Huaxue, 18, 476-482.]) for space group revision] and R = iBu (Berdugo & Tiekink, 2006[Berdugo, E. & Tiekink, E. R. T. (2006). Acta Cryst. E62, m2218-m2220.]). The Ni—S distances (Table 1[link]) lie in the relatively narrow range 2.4548 (9) (Ni—S1) to 2.4964 (9) Å (Ni—S4) and the P—S distances follow the expected trends in that the shorter bond is always associated with the less tightly bound S atom. Distortions from the ideal octa­hedral geometry may be attributed to the acute chelate angles. The 2,2′-bipyridine mol­ecule features a small twist about the central C—C bond (Table 1[link]).

[Scheme 1]

The most prominent inter­molecular contact in the structure is of the type Caromatic—H⋯S [H16⋯S3i = 2.70 Å, C16⋯S3i = 3.514 (4) Å and C16—H16⋯S3i = 144°; symmetry code: (i) 1 + x, y, z]. These inter­actions lead to the formation of a linear chain as illustrated in Fig. 2[link]. There are intra­molecular C—H⋯π inter­actions of note involving the methine C1/H1 and C10/H10 atoms with the ring centroids of the N1- and N2-pyridine rings, respectively, with distances and angles of 2.75 Å and 109°, and 2.78 Å and 108°, respectively. In the recently determined structure of the R = iBu analogue (Berdugo & Tiekink, 2006[Berdugo, E. & Tiekink, E. R. T. (2006). Acta Cryst. E62, m2218-m2220.]), related C—H⋯π contacts were present, but owing to the greater reach of the isobutyl ligand, these inter­actions were inter­molecular and served to stabilize the chain mediated by C—H⋯S inter­actions.

[Figure 1]
Figure 1
Mol­ecular structure and crystallographic numbering scheme for (I)[link]. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2]
Figure 2
The chain in (I)[link], running parallel to a, mediated by C—H⋯S inter­actions, shown as dashed orange lines. Colour code: Ni (brown), S (yellow), P (light blue), O (red), N (blue), C (grey) and H (green).

Experimental

The title compound was prepared by refluxing the parent nickel dithio­phosphate with 2,2′-bipyridine (Acros Organics) following a literature procedure (Lai et al., 2004[Lai, C. S., Liu, S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 221-226.]). Green crystals were isolated by the slow evaporation of a CHCl3 solution of the compound; m.p. 463 K (decompostion). IR (KBr disk): ν(C—O) 1174, ν(P—O) 954, ν(P—S)asymm 657, ν(P—S)sym 535 cm−1.

Crystal data
  • [Ni(C6H14O2PS2)2(C10H8N2)]

  • Mr = 641.42

  • Monoclinic, P 21 /n

  • a = 9.1585 (3) Å

  • b = 30.6703 (12) Å

  • c = 11.6407 (4) Å

  • β = 110.808 (1)°

  • V = 3056.53 (19) Å3

  • Z = 4

  • Dx = 1.394 Mg m−3

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 120 (2) K

  • Rod, green

  • 0.48 × 0.06 × 0.03 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.793, Tmax = 1

  • 29206 measured reflections

  • 6997 independent reflections

  • 5541 reflections with I > 2σ(I)

  • Rint = 0.072

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.133

  • S = 1.05

  • 6997 reflections

  • 316 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0675P)2 + 3.279P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni—S1 2.4548 (9)
Ni—S2 2.4840 (8)
Ni—S3 2.4839 (9)
Ni—S4 2.4964 (9)
Ni—N1 2.071 (2)
Ni—N2 2.088 (3)
S1—P1 1.9907 (11)
S2—P1 1.9929 (11)
S3—P2 1.9790 (11)
S4—P2 1.9890 (11)
S1—Ni—S2 81.50 (3)
S1—Ni—S4 174.11 (3)
S2—Ni—N1 167.00 (8)
S3—Ni—S4 81.48 (3)
S3—Ni—N2 165.22 (8)
N1—Ni—N2 78.82 (10)
N1—C17—C18—N2 −6.2 (4)

H atoms were included in the riding-model approximation with C—H distances = 0.95–1.00 Å, and with Uiso(H) = 1.5Ueq(methyl C) and Uiso(H) = 1.2Ueq(remaining C).

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Release 3.1. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

(2,2'-Bipyridyl-κ2N,N')bis(O,O'-diisopropyl dithiophosphato-κ2S,S')nickel(II) top
Crystal data top
[Ni(C6H14O2PS2)2(C10H8N2)]F(000) = 1344
Mr = 641.42Dx = 1.394 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 6812 reflections
a = 9.1585 (3) Åθ = 2.9–27.5°
b = 30.6703 (12) ŵ = 1.04 mm1
c = 11.6407 (4) ÅT = 120 K
β = 110.808 (1)°Rod, green
V = 3056.53 (19) Å30.48 × 0.06 × 0.03 mm
Z = 4
Data collection top
Bruker–Nonius KappaCD
diffractometer
6997 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode5541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
φ and ω scansh = 118
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 3937
Tmin = 0.793, Tmax = 1l = 1514
29206 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0675P)2 + 3.279P]
where P = (Fo2 + 2Fc2)/3
6997 reflections(Δ/σ)max = 0.002
316 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.49 e Å3
Special details top

Experimental. IR (KBr disk): ν(C—O) 1174, ν(P—O) 954, ν(P—S)asymm 657, ν(P—S)sym 535 cm-1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.32652 (4)0.878909 (13)0.11621 (4)0.01529 (12)
S10.37235 (9)0.94928 (3)0.22367 (8)0.02038 (18)
S20.22284 (9)0.86035 (3)0.28044 (7)0.01862 (17)
S30.06932 (9)0.90159 (2)0.03429 (7)0.01779 (17)
S40.25069 (9)0.80864 (3)0.00226 (8)0.02103 (18)
P10.28068 (9)0.92140 (3)0.33698 (7)0.01687 (18)
P20.05795 (9)0.84093 (3)0.09480 (8)0.01730 (18)
O10.3930 (2)0.92490 (8)0.4760 (2)0.0226 (5)
O20.1408 (2)0.94779 (7)0.3539 (2)0.0203 (5)
O30.0975 (2)0.81962 (7)0.0903 (2)0.0204 (5)
O40.0249 (3)0.83740 (8)0.2381 (2)0.0230 (5)
N10.4483 (3)0.90291 (8)0.0102 (2)0.0168 (5)
N20.5464 (3)0.85112 (8)0.2038 (2)0.0172 (5)
C10.5577 (4)0.91228 (11)0.5106 (3)0.0232 (7)
H10.57750.90190.43600.028*
C20.5883 (5)0.87564 (12)0.6019 (4)0.0345 (9)
H2A0.52220.85070.56370.052*
H2B0.56430.88530.67350.052*
H2C0.69840.86710.62810.052*
C30.6544 (4)0.95263 (11)0.5606 (3)0.0284 (8)
H3A0.62870.97510.49650.043*
H3B0.76560.94530.58610.043*
H3C0.63150.96360.63140.043*
C40.0137 (4)0.94983 (11)0.2568 (3)0.0215 (7)
H40.03070.92290.20520.026*
C50.0227 (4)0.98933 (12)0.1769 (4)0.0326 (8)
H5A0.05560.98680.13780.049*
H5B0.00261.01570.22770.049*
H5C0.12710.99110.11350.049*
C60.1306 (4)0.95096 (15)0.3207 (4)0.0386 (10)
H6A0.11940.92470.37090.058*
H6B0.23640.95220.25920.058*
H6C0.11200.97680.37350.058*
C70.1345 (4)0.77380 (11)0.1276 (3)0.0239 (7)
H70.04470.76110.14600.029*
C80.1507 (6)0.74988 (14)0.0225 (4)0.0483 (12)
H8A0.05350.75240.04870.072*
H8B0.17220.71910.04430.072*
H8C0.23700.76230.00210.072*
C90.2755 (6)0.77242 (14)0.2421 (4)0.0554 (13)
H9A0.25540.78890.30690.083*
H9B0.36440.78530.22610.083*
H9C0.29960.74210.26840.083*
C100.1447 (4)0.85094 (12)0.2873 (3)0.0276 (8)
H100.23960.86120.21860.033*
C110.0795 (6)0.88761 (15)0.3760 (4)0.0466 (11)
H11A0.05510.91230.33260.070*
H11B0.01590.87790.44150.070*
H11C0.15670.89660.41190.070*
C120.1854 (6)0.81163 (15)0.3467 (5)0.0529 (13)
H12A0.22720.78880.28490.079*
H12B0.26400.81960.38210.079*
H12C0.09140.80090.41180.079*
C130.3972 (4)0.93320 (11)0.0782 (3)0.0228 (7)
H130.29240.94310.10110.027*
C140.4908 (4)0.95061 (11)0.1373 (3)0.0257 (7)
H140.45170.97240.19860.031*
C150.6422 (4)0.93569 (12)0.1056 (3)0.0258 (7)
H150.70900.94690.14490.031*
C160.6945 (4)0.90436 (11)0.0163 (3)0.0230 (7)
H160.79780.89330.00550.028*
C170.5968 (3)0.88875 (10)0.0423 (3)0.0176 (6)
C180.6483 (3)0.85807 (10)0.1460 (3)0.0179 (6)
C190.7945 (4)0.83808 (11)0.1853 (3)0.0250 (7)
H190.86460.84300.14300.030*
C200.8359 (4)0.81109 (12)0.2863 (4)0.0295 (8)
H200.93580.79760.31520.035*
C210.7305 (4)0.80370 (11)0.3458 (3)0.0273 (8)
H210.75620.78500.41520.033*
C220.5873 (4)0.82442 (11)0.3009 (3)0.0221 (7)
H220.51460.81950.34080.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0146 (2)0.0137 (2)0.0195 (2)0.00014 (14)0.00844 (16)0.00082 (15)
S10.0245 (4)0.0158 (4)0.0238 (4)0.0041 (3)0.0121 (3)0.0013 (3)
S20.0197 (4)0.0148 (4)0.0240 (4)0.0006 (3)0.0110 (3)0.0014 (3)
S30.0165 (4)0.0139 (4)0.0244 (4)0.0003 (3)0.0091 (3)0.0002 (3)
S40.0200 (4)0.0159 (4)0.0258 (4)0.0032 (3)0.0064 (3)0.0018 (3)
P10.0172 (4)0.0155 (4)0.0186 (4)0.0007 (3)0.0073 (3)0.0003 (3)
P20.0172 (4)0.0169 (4)0.0188 (4)0.0004 (3)0.0077 (3)0.0009 (3)
O10.0198 (11)0.0268 (13)0.0205 (12)0.0024 (9)0.0064 (9)0.0020 (10)
O20.0182 (11)0.0204 (12)0.0217 (12)0.0038 (9)0.0065 (9)0.0018 (9)
O30.0209 (11)0.0156 (11)0.0260 (12)0.0024 (9)0.0099 (10)0.0023 (9)
O40.0251 (12)0.0269 (13)0.0194 (12)0.0007 (10)0.0106 (10)0.0013 (10)
N10.0162 (12)0.0172 (13)0.0196 (13)0.0013 (10)0.0094 (11)0.0012 (11)
N20.0147 (12)0.0151 (13)0.0223 (14)0.0017 (10)0.0074 (11)0.0003 (11)
C10.0177 (15)0.0245 (18)0.0238 (17)0.0033 (13)0.0029 (13)0.0029 (14)
C20.036 (2)0.024 (2)0.036 (2)0.0046 (16)0.0035 (17)0.0017 (16)
C30.0244 (17)0.0228 (18)0.034 (2)0.0002 (14)0.0051 (15)0.0043 (15)
C40.0165 (15)0.0210 (17)0.0241 (17)0.0035 (13)0.0037 (13)0.0001 (13)
C50.0281 (18)0.027 (2)0.036 (2)0.0039 (15)0.0025 (16)0.0071 (16)
C60.0221 (18)0.053 (3)0.043 (2)0.0071 (17)0.0151 (17)0.004 (2)
C70.0295 (17)0.0152 (16)0.0268 (18)0.0036 (13)0.0097 (15)0.0007 (13)
C80.080 (3)0.031 (2)0.035 (2)0.020 (2)0.021 (2)0.0006 (18)
C90.068 (3)0.028 (2)0.043 (3)0.014 (2)0.013 (2)0.0027 (19)
C100.0333 (19)0.0288 (19)0.0274 (19)0.0023 (15)0.0190 (16)0.0004 (15)
C110.060 (3)0.046 (3)0.045 (3)0.009 (2)0.032 (2)0.021 (2)
C120.071 (3)0.044 (3)0.062 (3)0.008 (2)0.046 (3)0.009 (2)
C130.0229 (16)0.0212 (17)0.0265 (18)0.0003 (13)0.0116 (14)0.0042 (14)
C140.0285 (18)0.0242 (18)0.0272 (18)0.0025 (14)0.0133 (15)0.0059 (14)
C150.0250 (17)0.035 (2)0.0228 (17)0.0074 (15)0.0153 (14)0.0012 (15)
C160.0161 (15)0.0306 (19)0.0247 (17)0.0023 (13)0.0100 (13)0.0025 (14)
C170.0158 (14)0.0176 (16)0.0206 (16)0.0020 (12)0.0078 (12)0.0054 (12)
C180.0145 (14)0.0153 (16)0.0232 (16)0.0030 (12)0.0058 (12)0.0058 (13)
C190.0193 (16)0.0239 (18)0.0328 (19)0.0005 (13)0.0106 (14)0.0030 (15)
C200.0210 (16)0.0271 (19)0.037 (2)0.0044 (14)0.0063 (15)0.0001 (16)
C210.0255 (17)0.0212 (18)0.032 (2)0.0054 (14)0.0064 (15)0.0079 (15)
C220.0245 (16)0.0174 (16)0.0250 (17)0.0001 (13)0.0094 (14)0.0020 (13)
Geometric parameters (Å, º) top
Ni—S12.4548 (9)C6—H6B0.9800
Ni—S22.4840 (8)C6—H6C0.9800
Ni—S32.4839 (9)C7—C81.479 (5)
Ni—S42.4964 (9)C7—C91.491 (5)
Ni—N12.071 (2)C7—H71.0000
Ni—N22.088 (3)C8—H8A0.9800
S1—P11.9907 (11)C8—H8B0.9800
S2—P11.9929 (11)C8—H8C0.9800
S3—P21.9790 (11)C9—H9A0.9800
S4—P21.9890 (11)C9—H9B0.9800
P1—O11.583 (2)C9—H9C0.9800
P1—O21.586 (2)C10—C111.500 (5)
P2—O31.584 (2)C10—C121.500 (5)
P2—O41.590 (2)C10—H101.0000
O1—C11.469 (4)C11—H11A0.9800
O2—C41.465 (4)C11—H11B0.9800
O3—C71.474 (4)C11—H11C0.9800
O4—C101.467 (4)C12—H12A0.9800
N1—C131.341 (4)C12—H12B0.9800
N1—C171.348 (4)C12—H12C0.9800
N2—C221.337 (4)C13—C141.384 (4)
N2—C181.347 (4)C13—H130.9500
C1—C21.503 (5)C14—C151.379 (5)
C1—C31.512 (5)C14—H140.9500
C1—H11.0000C15—C161.371 (5)
C2—H2A0.9800C15—H150.9500
C2—H2B0.9800C16—C171.389 (4)
C2—H2C0.9800C16—H160.9500
C3—H3A0.9800C17—C181.471 (5)
C3—H3B0.9800C18—C191.394 (4)
C3—H3C0.9800C19—C201.376 (5)
C4—C61.505 (5)C19—H190.9500
C4—C51.511 (5)C20—C211.392 (5)
C4—H41.0000C20—H200.9500
C5—H5A0.9800C21—C221.382 (5)
C5—H5B0.9800C21—H210.9500
C5—H5C0.9800C22—H220.9500
C6—H6A0.9800
N1—Ni—S187.73 (7)C4—C6—H6B109.5
N2—Ni—S198.58 (8)H6A—C6—H6B109.5
N1—Ni—S393.25 (8)C4—C6—H6C109.5
S1—Ni—S393.49 (3)H6A—C6—H6C109.5
N2—Ni—S295.54 (7)H6B—C6—H6C109.5
S1—Ni—S281.50 (3)O3—C7—C8108.0 (3)
S1—Ni—S4174.11 (3)O3—C7—C9109.0 (3)
S2—Ni—N1167.00 (8)C8—C7—C9114.6 (4)
S3—Ni—S481.48 (3)O3—C7—H7108.4
S3—Ni—N2165.22 (8)C8—C7—H7108.4
S3—Ni—S294.64 (3)C9—C7—H7108.4
N1—Ni—S495.58 (8)C7—C8—H8A109.5
N2—Ni—S486.86 (7)C7—C8—H8B109.5
S2—Ni—S495.79 (3)H8A—C8—H8B109.5
N1—Ni—N278.82 (10)C7—C8—H8C109.5
P1—S1—Ni85.64 (4)H8A—C8—H8C109.5
P1—S2—Ni84.81 (4)H8B—C8—H8C109.5
P2—S3—Ni84.52 (4)C7—C9—H9A109.5
P2—S4—Ni83.99 (4)C7—C9—H9B109.5
O1—P1—O295.66 (12)H9A—C9—H9B109.5
O1—P1—S1112.00 (9)C7—C9—H9C109.5
O2—P1—S1114.35 (10)H9A—C9—H9C109.5
O1—P1—S2113.66 (10)H9B—C9—H9C109.5
O2—P1—S2112.89 (9)O4—C10—C11108.1 (3)
S1—P1—S2108.05 (5)O4—C10—C12107.1 (3)
O3—P2—O499.69 (12)C11—C10—C12112.9 (4)
O3—P2—S3108.09 (9)O4—C10—H10109.5
O4—P2—S3113.81 (10)C11—C10—H10109.5
O3—P2—S4113.74 (10)C12—C10—H10109.5
O4—P2—S4111.21 (9)C10—C11—H11A109.5
S3—P2—S4110.00 (5)C10—C11—H11B109.5
C1—O1—P1119.56 (19)H11A—C11—H11B109.5
C4—O2—P1121.8 (2)C10—C11—H11C109.5
C7—O3—P2119.92 (19)H11A—C11—H11C109.5
C10—O4—P2120.1 (2)H11B—C11—H11C109.5
C13—N1—C17118.6 (3)C10—C12—H12A109.5
C13—N1—Ni126.0 (2)C10—C12—H12B109.5
C17—N1—Ni115.1 (2)H12A—C12—H12B109.5
C22—N2—C18118.9 (3)C10—C12—H12C109.5
C22—N2—Ni126.5 (2)H12A—C12—H12C109.5
C18—N2—Ni114.2 (2)H12B—C12—H12C109.5
O1—C1—C2107.8 (3)N1—C13—C14122.6 (3)
O1—C1—C3107.1 (3)N1—C13—H13118.7
C2—C1—C3113.8 (3)C14—C13—H13118.7
O1—C1—H1109.3C15—C14—C13118.7 (3)
C2—C1—H1109.3C15—C14—H14120.6
C3—C1—H1109.3C13—C14—H14120.6
C1—C2—H2A109.5C16—C15—C14118.9 (3)
C1—C2—H2B109.5C16—C15—H15120.5
H2A—C2—H2B109.5C14—C15—H15120.5
C1—C2—H2C109.5C15—C16—C17120.0 (3)
H2A—C2—H2C109.5C15—C16—H16120.0
H2B—C2—H2C109.5C17—C16—H16120.0
C1—C3—H3A109.5N1—C17—C16121.0 (3)
C1—C3—H3B109.5N1—C17—C18115.5 (3)
H3A—C3—H3B109.5C16—C17—C18123.3 (3)
C1—C3—H3C109.5N2—C18—C19121.5 (3)
H3A—C3—H3C109.5N2—C18—C17115.8 (3)
H3B—C3—H3C109.5C19—C18—C17122.8 (3)
O2—C4—C6106.3 (3)C20—C19—C18119.1 (3)
O2—C4—C5109.6 (3)C20—C19—H19120.5
C6—C4—C5113.1 (3)C18—C19—H19120.5
O2—C4—H4109.2C19—C20—C21119.6 (3)
C6—C4—H4109.2C19—C20—H20120.2
C5—C4—H4109.2C21—C20—H20120.2
C4—C5—H5A109.5C22—C21—C20118.0 (3)
C4—C5—H5B109.5C22—C21—H21121.0
H5A—C5—H5B109.5C20—C21—H21121.0
C4—C5—H5C109.5N2—C22—C21123.0 (3)
H5A—C5—H5C109.5N2—C22—H22118.5
H5B—C5—H5C109.5C21—C22—H22118.5
C4—C6—H6A109.5
N1—Ni—S1—P1172.58 (8)S3—Ni—N1—C17164.8 (2)
N2—Ni—S1—P194.24 (8)S2—Ni—N1—C1767.9 (4)
S3—Ni—S1—P194.31 (4)S4—Ni—N1—C1783.0 (2)
S2—Ni—S1—P10.13 (4)N1—Ni—N2—C22178.8 (3)
N1—Ni—S2—P134.2 (3)S1—Ni—N2—C2295.3 (3)
N2—Ni—S2—P197.76 (8)S3—Ni—N2—C22120.3 (3)
S1—Ni—S2—P10.13 (4)S2—Ni—N2—C2213.1 (3)
S3—Ni—S2—P192.97 (4)S4—Ni—N2—C2282.4 (3)
N1—Ni—S3—P295.71 (8)N1—Ni—N2—C186.0 (2)
N2—Ni—S3—P238.8 (3)S1—Ni—N2—C1892.0 (2)
S1—Ni—S3—P2176.37 (4)S3—Ni—N2—C1852.5 (4)
S2—Ni—S3—P294.63 (4)S2—Ni—N2—C18174.2 (2)
S4—Ni—S3—P20.54 (3)S4—Ni—N2—C1890.3 (2)
N1—Ni—S4—P293.00 (8)P1—O1—C1—C2119.8 (3)
N2—Ni—S4—P2171.44 (8)P1—O1—C1—C3117.4 (3)
S3—Ni—S4—P20.54 (3)P1—O2—C4—C6145.6 (2)
S2—Ni—S4—P293.31 (4)P1—O2—C4—C591.9 (3)
Ni—S1—P1—O1125.77 (10)P2—O3—C7—C8121.7 (3)
Ni—S1—P1—O2126.79 (10)P2—O3—C7—C9113.2 (3)
Ni—S1—P1—S20.16 (5)P2—O4—C10—C11118.8 (3)
Ni—S2—P1—O1124.80 (10)P2—O4—C10—C12119.3 (3)
Ni—S2—P1—O2127.64 (10)C17—N1—C13—C140.2 (5)
Ni—S2—P1—S10.16 (5)Ni—N1—C13—C14173.8 (3)
Ni—S3—P2—O3124.00 (10)N1—C13—C14—C151.1 (5)
Ni—S3—P2—O4126.27 (10)C13—C14—C15—C160.3 (5)
Ni—S3—P2—S40.72 (5)C14—C15—C16—C171.3 (5)
Ni—S4—P2—O3120.68 (10)C13—N1—C17—C161.4 (5)
Ni—S4—P2—O4127.73 (10)Ni—N1—C17—C16176.0 (2)
Ni—S4—P2—S30.72 (5)C13—N1—C17—C18175.5 (3)
O2—P1—O1—C1168.6 (2)Ni—N1—C17—C180.9 (3)
S1—P1—O1—C149.5 (2)C15—C16—C17—N12.1 (5)
S2—P1—O1—C173.4 (2)C15—C16—C17—C18174.5 (3)
O1—P1—O2—C4169.9 (2)C22—N2—C18—C190.0 (5)
S1—P1—O2—C472.9 (2)Ni—N2—C18—C19173.4 (2)
S2—P1—O2—C451.2 (2)C22—N2—C18—C17178.4 (3)
O4—P2—O3—C762.4 (2)Ni—N2—C18—C178.3 (3)
S3—P2—O3—C7178.5 (2)N1—C17—C18—N26.2 (4)
S4—P2—O3—C756.0 (2)C16—C17—C18—N2170.6 (3)
O3—P2—O4—C10176.0 (2)N1—C17—C18—C19175.5 (3)
S3—P2—O4—C1069.2 (2)C16—C17—C18—C197.7 (5)
S4—P2—O4—C1055.7 (2)N2—C18—C19—C200.8 (5)
N2—Ni—N1—C13171.5 (3)C17—C18—C19—C20177.5 (3)
S1—Ni—N1—C1372.3 (3)C18—C19—C20—C211.1 (5)
S3—Ni—N1—C1321.0 (3)C19—C20—C21—C220.6 (5)
S2—Ni—N1—C13106.3 (4)C18—N2—C22—C210.5 (5)
S4—Ni—N1—C13102.8 (3)Ni—N2—C22—C21173.0 (3)
N2—Ni—N1—C172.6 (2)C20—C21—C22—N20.2 (5)
S1—Ni—N1—C17101.9 (2)
 

Acknowledgements

This work was supported by the departmental research grant AX-0026 from The Robert A. Welch Foundation. Cheminova is thanked for the gift of the dithiophosphate ligand used in this study. The authors also thank the EPSRC X-ray Crystallographic Service, University of Southampton, England, for the data collection.

References

First citationArora, S. K., Carter, D. E., Fernando, Q. & Seff, K. (1977). Acta Cryst. B33, 3230–3232.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBerdugo, E. & Tiekink, E. R. T. (2006). Acta Cryst. E62, m2218–m2220.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Release 3.1. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHu, S.-Z. (1999). Jiegou Huaxue, 18, 476–482.  CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLai, C. S., Liu, S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 221–226.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYou, X., Xu, Z., Yu, Y., Liu, S. & Lin, C. (1986). Jiegou Huaxue, 5, 154–158.  CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds