organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(4-Bromo­phen­yl)-3-(4-nitro­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 18 September 2006; accepted 28 September 2006; online 4 October 2006)

In the approximately planar molecule of the title compound, C15H10BrNO3, the dihedral angle between the two benzene rings is 4.97 (18)°. Inter­molecular C—H⋯O inter­actions help to form chains of mol­ecules in the crystal structure.

Comment

Chalcone derivatives show considerable promise as organic non-linear optical materials (Uchida et al., 1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]). As part of our ongoing studies of these compounds (Harrison et al., 2006[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578-o1579.]), the synthesis and structure of the title compound, (I)[link] (Fig. 1[link]), is presented here. Compound (I)[link] is an isomer of the recently reported 3-(4-bromo­phen­yl)-1-(4-nitro­phen­yl)prop-2-en-1-one [(II); Rosli et al., 2006[Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1466-o1468.]], in which the bromo and nitro substituents are exchanged on the benzene rings.

[Scheme 1]

The geometrical parameters for (I)[link] fall within their expected ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The degree of twisting about the C6—C7 and C9—C10 bonds in (I)[link] (Table 1[link]) is almost the same, but in opposite senses. This results in the C1–C6 and C10–C15 benzene-ring mean planes in (I)[link] being close to parallel [dihedral angle = 4.97 (18)°]. By comparison, in compound (II), the dihedral angles between the mean planes of the corresponding benzene rings in the two mol­ecules of the asymmetric unit are 12.83 (7) and 41.15 (7)°. The well ordered nitro group in (I)[link] is slightly twisted away from the C10–C15 benzene ring mean plane [dihedral angle = 3.4 (4)°].

A PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of (I)[link] indicated two possible inter­molecular C—H⋯O inter­actions (Table 2[link]) that result in chains of mol­ecules (Fig. 2[link]) propagating in either [011] or [01[\overline{1}]]. The graph-theory (Bernstein et al., 1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) notation for the closed loop that results is R22(12). Overall, the packing (Fig. 3[link]) results in zigzag (100) sheets of (I)[link]. The packing in (II) is completely different: all mol­ecules are aligned in approximately the same orientation, resulting in a layered structure in the centrosymmetric space group P[\overline{1}].

[Figure 1]
Figure 1
View of the mol­ecular structure of (I)[link] showing 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
Detail of (I)[link], showing the C—H⋯O inter­actions (dashed lines) that link the mol­ecules into [011] and [01[\overline{1}]] chains. Atoms with the suffixes * and % are generated by the symmetry operations (x, y − 1, z + 1) and (x, y + 1, z − 1), respectively.
[Figure 3]
Figure 3
The unit cell contents of (I)[link], viewed down [010]. H atoms have been omitted.

Experimental

A solution of potassium hydroxide (5%, 5 ml) was added slowly with stirring to a mixture of 4-nitro­benzaldehyde (1.51 g, 0.01 mol) and 4-bromo­acetophenone (1.99 g, 0.01 mol) in ethanol (30 ml). The mixture was stirred at room temperature for 24 h. The precipitated solid was filtered, washed with water, dried and crystals of (I)[link] were recrystallized from acetone by slow evaporation (yield: 68%; m.p. 439–441 K). Analysis found (calculated) for C15H10BrNO3 (%): C 54.11 (54.24), H 3.04 (3.03), N 4.10 (4.22).

Crystal data
  • C15H10BrNO3

  • Mr = 332.15

  • Orthorhombic, P n a 21

  • a = 43.007 (3) Å

  • b = 5.9744 (4) Å

  • c = 5.1137 (3) Å

  • V = 1313.92 (15) Å3

  • Z = 4

  • Dx = 1.679 Mg m−3

  • Mo Kα radiation

  • μ = 3.13 mm−1

  • T = 120 (2) K

  • Slab, light yellow

  • 0.48 × 0.34 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.315, Tmax = 0.634

  • 9881 measured reflections

  • 2833 independent reflections

  • 2452 reflections with I > 2σ(I)

  • Rint = 0.034

  • θmax = 27.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.058

  • S = 1.02

  • 2833 reflections

  • 181 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0103P)2 + 0.5147P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1143 Friedel pairs

  • Flack parameter: 0.039 (9)

Table 1
Selected torsion angles (°)

C1—C6—C7—O1 9.1 (4)
C8—C9—C10—C11 −9.3 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.95 2.51 3.218 (3) 131
C15—H15⋯O3ii 0.95 2.46 3.296 (3) 146
Symmetry codes: (i) x, y-1, z+1; (ii) x, y+1, z-1.

The H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier).

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

(2E)-1-(4-Bromophenyl)-3-(4-nitrophenyl)prop-2-en-1-one top
Crystal data top
C15H10BrNO3Dx = 1.679 Mg m3
Mr = 332.15Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 1807 reflections
a = 43.007 (3) Åθ = 2.9–27.5°
b = 5.9744 (4) ŵ = 3.13 mm1
c = 5.1137 (3) ÅT = 120 K
V = 1313.92 (15) Å3Slab, light yellow
Z = 40.48 × 0.34 × 0.16 mm
F(000) = 664
Data collection top
Nonius KappaCCD
diffractometer
2833 independent reflections
Radiation source: fine-focus sealed tube2452 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and φ scansθmax = 27.6°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 5551
Tmin = 0.315, Tmax = 0.634k = 77
9881 measured reflectionsl = 66
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0103P)2 + 0.5147P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2833 reflectionsΔρmax = 0.42 e Å3
181 parametersΔρmin = 0.37 e Å3
1 restraintAbsolute structure: Flack (1983), 1143 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.039 (9)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32687 (6)0.5698 (5)0.0869 (5)0.0226 (6)
H10.33470.71450.12610.027*
C20.30283 (6)0.4845 (4)0.2341 (5)0.0231 (6)
H20.29410.56900.37310.028*
C30.29161 (6)0.2713 (5)0.1749 (5)0.0231 (6)
C40.30431 (6)0.1460 (5)0.0239 (5)0.0242 (6)
H40.29650.00070.06070.029*
C50.32863 (6)0.2330 (4)0.1705 (6)0.0241 (7)
H50.33760.14590.30630.029*
C60.33999 (5)0.4475 (4)0.1197 (8)0.0192 (4)
C70.36493 (6)0.5567 (5)0.2803 (5)0.0224 (6)
C80.38183 (6)0.4199 (5)0.4754 (5)0.0223 (6)
H80.37630.26710.49730.027*
C90.40457 (5)0.5046 (4)0.6208 (8)0.0205 (5)
H90.41020.65600.58900.025*
C100.42189 (6)0.3854 (4)0.8269 (5)0.0180 (5)
C110.41295 (6)0.1732 (4)0.9179 (5)0.0207 (6)
H110.39530.10170.84340.025*
C120.42930 (5)0.0672 (4)1.1133 (8)0.0200 (5)
H120.42330.07691.17330.024*
C130.45468 (5)0.1749 (4)1.2203 (5)0.0164 (5)
C140.46438 (5)0.3842 (4)1.1389 (8)0.0195 (5)
H140.48190.45471.21620.023*
C150.44770 (6)0.4884 (4)0.9408 (5)0.0202 (6)
H150.45400.63230.88170.024*
N10.47161 (5)0.0649 (4)1.4359 (4)0.0193 (5)
O10.37058 (4)0.7549 (3)0.2512 (4)0.0333 (5)
O20.49310 (4)0.1664 (3)1.5394 (4)0.0244 (4)
O30.46321 (4)0.1244 (3)1.5005 (4)0.0251 (4)
Br10.258082 (5)0.14848 (4)0.36943 (8)0.02868 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0198 (12)0.0203 (13)0.0277 (15)0.0006 (11)0.0010 (12)0.0023 (12)
C20.0216 (12)0.0257 (14)0.0220 (13)0.0017 (11)0.0006 (11)0.0021 (12)
C30.0197 (13)0.0262 (14)0.0233 (14)0.0016 (11)0.0001 (11)0.0051 (12)
C40.0222 (13)0.0224 (13)0.0280 (13)0.0008 (11)0.0011 (11)0.0004 (12)
C50.0246 (11)0.0209 (12)0.027 (2)0.0044 (10)0.0038 (12)0.0011 (13)
C60.0152 (9)0.0211 (11)0.0213 (11)0.0035 (9)0.0018 (15)0.0013 (17)
C70.0155 (12)0.0252 (14)0.0264 (14)0.0031 (11)0.0002 (11)0.0019 (13)
C80.0193 (12)0.0201 (14)0.0276 (14)0.0000 (11)0.0008 (11)0.0029 (12)
C90.0181 (10)0.0194 (11)0.0238 (12)0.0001 (8)0.0027 (16)0.0028 (18)
C100.0165 (12)0.0172 (13)0.0202 (13)0.0025 (10)0.0040 (10)0.0003 (11)
C110.0171 (12)0.0209 (14)0.0243 (14)0.0027 (10)0.0002 (11)0.0002 (12)
C120.0214 (10)0.0155 (10)0.0232 (12)0.0007 (9)0.0012 (15)0.0009 (16)
C130.0171 (11)0.0178 (13)0.0143 (11)0.0032 (10)0.0026 (9)0.0019 (10)
C140.0180 (9)0.0199 (12)0.0206 (11)0.0028 (8)0.0017 (18)0.0036 (16)
C150.0205 (12)0.0164 (13)0.0236 (14)0.0009 (10)0.0003 (11)0.0030 (11)
N10.0202 (10)0.0190 (11)0.0186 (11)0.0004 (9)0.0003 (9)0.0001 (10)
O10.0304 (10)0.0221 (10)0.0473 (12)0.0069 (9)0.0132 (10)0.0093 (10)
O20.0241 (9)0.0239 (10)0.0253 (10)0.0015 (8)0.0062 (7)0.0004 (8)
O30.0292 (10)0.0207 (10)0.0254 (10)0.0034 (8)0.0008 (8)0.0090 (8)
Br10.02627 (12)0.03238 (14)0.02741 (13)0.00336 (11)0.00592 (16)0.0030 (2)
Geometric parameters (Å, º) top
C1—C21.377 (4)C9—C101.474 (4)
C1—C61.403 (4)C9—H90.9500
C1—H10.9500C10—C151.396 (3)
C2—C31.395 (4)C10—C111.404 (3)
C2—H20.9500C11—C121.377 (4)
C3—C41.375 (4)C11—H110.9500
C3—Br11.899 (3)C12—C131.380 (4)
C4—C51.388 (4)C12—H120.9500
C4—H40.9500C13—C141.382 (3)
C5—C61.396 (3)C13—N11.476 (3)
C5—H50.9500C14—C151.389 (4)
C6—C71.500 (4)C14—H140.9500
C7—O11.218 (3)C15—H150.9500
C7—C81.481 (4)N1—O21.226 (3)
C8—C91.329 (4)N1—O31.232 (3)
C8—H80.9500
C2—C1—C6121.4 (2)C8—C9—C10126.0 (2)
C2—C1—H1119.3C8—C9—H9117.0
C6—C1—H1119.3C10—C9—H9117.0
C1—C2—C3118.6 (3)C15—C10—C11118.5 (2)
C1—C2—H2120.7C15—C10—C9119.2 (2)
C3—C2—H2120.7C11—C10—C9122.3 (2)
C4—C3—C2121.3 (2)C12—C11—C10121.1 (2)
C4—C3—Br1118.6 (2)C12—C11—H11119.5
C2—C3—Br1120.1 (2)C10—C11—H11119.5
C3—C4—C5119.6 (3)C11—C12—C13118.5 (2)
C3—C4—H4120.2C11—C12—H12120.8
C5—C4—H4120.2C13—C12—H12120.8
C4—C5—C6120.5 (3)C12—C13—C14122.8 (3)
C4—C5—H5119.8C12—C13—N1118.6 (2)
C6—C5—H5119.8C14—C13—N1118.6 (2)
C5—C6—C1118.5 (3)C13—C14—C15118.0 (2)
C5—C6—C7123.2 (3)C13—C14—H14121.0
C1—C6—C7118.3 (2)C15—C14—H14121.0
O1—C7—C8121.4 (2)C14—C15—C10121.2 (2)
O1—C7—C6119.9 (2)C14—C15—H15119.4
C8—C7—C6118.7 (2)C10—C15—H15119.4
C9—C8—C7121.9 (2)O2—N1—O3124.0 (2)
C9—C8—H8119.1O2—N1—C13118.3 (2)
C7—C8—H8119.1O3—N1—C13117.7 (2)
C6—C1—C2—C30.3 (4)C8—C9—C10—C15172.2 (3)
C1—C2—C3—C40.7 (4)C8—C9—C10—C119.3 (5)
C1—C2—C3—Br1179.1 (2)C15—C10—C11—C120.6 (4)
C2—C3—C4—C50.5 (4)C9—C10—C11—C12179.0 (3)
Br1—C3—C4—C5179.4 (2)C10—C11—C12—C130.5 (4)
C3—C4—C5—C60.8 (4)C11—C12—C13—C140.2 (4)
C4—C5—C6—C11.8 (4)C11—C12—C13—N1178.0 (2)
C4—C5—C6—C7176.3 (2)C12—C13—C14—C150.1 (4)
C2—C1—C6—C51.5 (4)N1—C13—C14—C15178.2 (2)
C2—C1—C6—C7176.7 (2)C13—C14—C15—C100.0 (4)
C5—C6—C7—O1169.1 (3)C11—C10—C15—C140.3 (4)
C1—C6—C7—O19.1 (4)C9—C10—C15—C14178.8 (3)
C5—C6—C7—C89.9 (4)C12—C13—N1—O2176.2 (2)
C1—C6—C7—C8172.0 (2)C14—C13—N1—O22.0 (3)
O1—C7—C8—C92.4 (4)C12—C13—N1—O33.9 (3)
C6—C7—C8—C9178.7 (3)C14—C13—N1—O3177.9 (2)
C7—C8—C9—C10177.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.952.513.218 (3)131
C15—H15···O3ii0.952.463.296 (3)146
Symmetry codes: (i) x, y1, z+1; (ii) x, y+1, z1.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection. BKS thanks AICTE, Government of India, New Delhi, for financial assistance under the `Career Award for Young Teachers' scheme.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578–o1579.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1466–o1468.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds