organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Fluoro-1H-indole-2-carbohydrazide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 4 October 2006; accepted 4 October 2006; online 13 October 2006)

The geometric parameters for the essentially planar mol­ecule of the title compound, C9H8FN3O, are normal. A network of N—H⋯O and N—H⋯N hydrogen bonds helps to establish the crystal packing.

Comment

As part of our ongoing research into indole carboxylic acid derivatives (Harrison et al., 2006[Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006). Acta Cryst. E62, o4050-o4051.]), the synthesis and crystal structure of the title compound, (I)[link] (Fig. 1[link]), are now presented.

[Scheme 1]

The geometric paramaters for (I)[link] fall within their expected ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The indole ring system is essentially flat (r.m.s. deviation from the mean plane = 0.005 Å). The mean plane of atoms C9, O1, N2 and N3 of the carbohydrazide side chain is slightly twisted away from the indole mean plane [dihedral angle = 5.27 (9)°]. The bond angle sum about N2 is 359°, suggesting sp2-hybridization for this atom. Conversely, the average bond angle for N3 of 108° suggests sp3-hybridization.

The crystal packing in (I)[link] is influenced by N—H⋯O and N—H⋯N hydrogen bonds (Table 1[link]). Inversion-generated dimeric pairs of mol­ecules are linked by a pair of N3—H3⋯O1iii hydrogen bonds (Fig. 2[link]). Adjacent mol­ecules are then linked into ribbons by a combination of the N2—H2⋯O1ii and N1⋯H1—N3i bonds. In terms of graph theory (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) these two hydrogen-bonding motifs result in R22(10) and R22(8) loops, respectively. Combining the two results in (001) sheets of mol­ecules. Atom H4, attached to N3, does not participate in hydrogen bonds. A PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of (I)[link] indicated a short C—H⋯F contact that may also help to consolidate the crystal packing. In the packing of (I)[link], a zigzag stacking of mol­ecules with respect to the c direction is seen (Fig. 3[link]). Any ππ stacking inter­actions in (I)[link] must be very weak, the shortest inter­molecular ring-centroid separation being 4.08 Å.

[Figure 1]
Figure 1
View of the mol­ecular structure of (I)[link], showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms.
[Figure 2]
Figure 2
Fragment of the crystal structure of (I)[link], showing the hydrogen-bonding (dashed lines) scheme, with C-bound H atoms omitted for clarity. Symmetry codes as in Table 1[link].
[Figure 3]
Figure 3
The packing for (I)[link], with all H atoms omitted for clarity.

Experimental

Methyl-5-fluoroindole-2-carboxyl­ate (2.34 g, 0.01 mol) (Harrison et al., 2006[Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006). Acta Cryst. E62, o4050-o4051.]) in 25 ml of absolute ethanol was refluxed with 1.0 ml of hydrazine hydrate for 2 h, with the reaction progress monitored by thin-layer chromatography. Upon completion, the mixture was cooled to room temperature. The separated solid was filtered off and washed with cold ethanol; cubes of (I)[link] were recrystallized from ethanol (m.p. 505–507 K). Analysis found (calculated) for C9H8FN3O: C 55.70 (55.96), H 4.12 (4.17), N 21.65 (21.75)%.

Crystal data
  • C9H8FN3O

  • Mr = 193.18

  • Orthorhombic, P b c a

  • a = 10.0451 (3) Å

  • b = 9.4978 (2) Å

  • c = 18.5293 (6) Å

  • V = 1767.81 (9) Å3

  • Z = 8

  • Dx = 1.452 Mg m−3

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • Cube, colourless

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.978

  • 11208 measured reflections

  • 1733 independent reflections

  • 1497 reflections with I > 2σ(I)

  • Rint = 0.029

  • θmax = 26.1°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.06

  • 1733 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0434P)2 + 0.7328P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.015 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.898 (16) 2.096 (16) 2.9864 (15) 171.3 (13)
N2—H2⋯O1ii 0.870 (16) 2.073 (16) 2.9193 (14) 163.9 (14)
N3—H3⋯O1iii 0.920 (16) 2.124 (16) 3.0241 (15) 165.8 (13)
C3—H3A⋯F1iv 0.95 2.55 3.2082 (15) 127
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) -x+1, -y+2, -z+1; (iv) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

The N-bound H atoms were located in difference maps and their positions were freely refined with Uiso(H) set equal to 1.2Ueq(N). The C-bound H atoms were placed in idealized locations (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: Collect (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

5-Fluoro-1H-indole-2-carbohydrazide top
Crystal data top
C9H8FN3OF(000) = 800
Mr = 193.18Dx = 1.452 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1996 reflections
a = 10.0451 (3) Åθ = 1.0–26.0°
b = 9.4978 (2) ŵ = 0.11 mm1
c = 18.5293 (6) ÅT = 120 K
V = 1767.81 (9) Å3Cube, colourless
Z = 80.20 × 0.20 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
1733 independent reflections
Radiation source: fine-focus sealed tube1497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 26.1°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1212
Tmin = 0.978, Tmax = 0.978k = 1110
11208 measured reflectionsl = 2218
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap (N-H) and geom (others)
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.7328P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1733 reflectionsΔρmax = 0.25 e Å3
140 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48589 (12)0.44387 (13)0.63425 (6)0.0181 (3)
C20.41098 (13)0.34193 (14)0.67046 (7)0.0217 (3)
H2A0.31660.34100.66760.026*
C30.47908 (13)0.24262 (14)0.71057 (7)0.0228 (3)
H3A0.43190.17130.73580.027*
C40.61805 (13)0.24800 (13)0.71369 (7)0.0216 (3)
C50.69439 (13)0.34626 (13)0.67917 (7)0.0211 (3)
H50.78870.34620.68290.025*
C60.62640 (12)0.44730 (13)0.63784 (6)0.0179 (3)
C70.66864 (12)0.56243 (13)0.59462 (7)0.0192 (3)
H70.75780.59140.58630.023*
C80.55545 (12)0.62391 (13)0.56713 (7)0.0179 (3)
C90.54006 (11)0.74680 (14)0.51939 (7)0.0175 (3)
N10.44498 (10)0.55295 (11)0.59124 (6)0.0186 (3)
H10.3600 (16)0.5719 (15)0.5798 (8)0.022*
N20.65387 (10)0.80349 (11)0.49559 (6)0.0208 (3)
H20.7311 (16)0.7653 (16)0.5037 (8)0.025*
N30.65712 (11)0.91675 (12)0.44592 (6)0.0209 (3)
H30.6249 (15)0.9963 (17)0.4682 (8)0.025*
H40.6008 (16)0.8927 (16)0.4082 (9)0.025*
O10.42915 (8)0.79502 (10)0.50288 (5)0.0217 (2)
F10.67988 (8)0.14679 (8)0.75401 (4)0.0297 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0176 (6)0.0185 (6)0.0182 (6)0.0013 (5)0.0000 (5)0.0022 (5)
C20.0170 (6)0.0236 (7)0.0244 (7)0.0007 (5)0.0022 (5)0.0002 (5)
C30.0228 (7)0.0216 (7)0.0240 (7)0.0022 (5)0.0043 (5)0.0014 (5)
C40.0234 (7)0.0199 (6)0.0216 (6)0.0042 (5)0.0017 (5)0.0022 (5)
C50.0168 (6)0.0237 (7)0.0229 (6)0.0013 (5)0.0006 (5)0.0007 (5)
C60.0172 (6)0.0182 (6)0.0185 (6)0.0007 (5)0.0000 (5)0.0029 (5)
C70.0154 (6)0.0205 (6)0.0216 (6)0.0009 (5)0.0004 (5)0.0014 (5)
C80.0161 (6)0.0181 (6)0.0196 (6)0.0007 (5)0.0008 (5)0.0024 (5)
C90.0154 (6)0.0171 (6)0.0200 (6)0.0000 (5)0.0007 (5)0.0035 (5)
N10.0139 (5)0.0197 (6)0.0223 (6)0.0003 (4)0.0001 (4)0.0013 (4)
N20.0139 (5)0.0206 (6)0.0280 (6)0.0011 (4)0.0002 (4)0.0060 (5)
N30.0191 (6)0.0178 (6)0.0258 (6)0.0006 (4)0.0007 (4)0.0039 (5)
O10.0140 (4)0.0213 (5)0.0297 (5)0.0008 (3)0.0009 (4)0.0023 (4)
F10.0259 (4)0.0281 (5)0.0352 (5)0.0030 (3)0.0019 (3)0.0124 (4)
Geometric parameters (Å, º) top
C1—N11.3702 (17)C7—C81.3759 (17)
C1—C21.3978 (18)C7—H70.9500
C1—C61.4133 (18)C8—N11.3730 (16)
C2—C31.3820 (19)C8—C91.4727 (18)
C2—H2A0.9500C9—O11.2428 (14)
C3—C41.3981 (19)C9—N21.3384 (16)
C3—H3A0.9500N1—H10.898 (16)
C4—F11.3667 (14)N2—N31.4161 (15)
C4—C51.3667 (18)N2—H20.870 (16)
C5—C61.4050 (17)N3—H30.920 (16)
C5—H50.9500N3—H40.927 (17)
C6—C71.4203 (17)
N1—C1—C2129.90 (12)C8—C7—C6106.77 (11)
N1—C1—C6108.02 (11)C8—C7—H7126.6
C2—C1—C6122.08 (11)C6—C7—H7126.6
C3—C2—C1117.67 (12)N1—C8—C7109.83 (11)
C3—C2—H2A121.2N1—C8—C9119.98 (11)
C1—C2—H2A121.2C7—C8—C9130.19 (11)
C2—C3—C4119.44 (12)O1—C9—N2122.44 (12)
C2—C3—H3A120.3O1—C9—C8122.27 (11)
C4—C3—H3A120.3N2—C9—C8115.28 (10)
F1—C4—C5118.76 (11)C1—N1—C8108.54 (10)
F1—C4—C3116.78 (11)C1—N1—H1125.0 (9)
C5—C4—C3124.46 (12)C8—N1—H1126.4 (9)
C4—C5—C6116.66 (12)C9—N2—N3122.64 (10)
C4—C5—H5121.7C9—N2—H2122.5 (10)
C6—C5—H5121.7N3—N2—H2114.1 (10)
C5—C6—C1119.69 (11)N2—N3—H3108.9 (9)
C5—C6—C7133.47 (12)N2—N3—H4106.8 (10)
C1—C6—C7106.84 (11)H3—N3—H4109.0 (14)
N1—C1—C2—C3179.90 (12)C1—C6—C7—C80.22 (13)
C6—C1—C2—C30.06 (18)C6—C7—C8—N10.14 (14)
C1—C2—C3—C40.29 (19)C6—C7—C8—C9179.73 (12)
C2—C3—C4—F1179.81 (11)N1—C8—C9—O14.26 (19)
C2—C3—C4—C50.1 (2)C7—C8—C9—O1175.31 (13)
F1—C4—C5—C6179.40 (11)N1—C8—C9—N2176.29 (11)
C3—C4—C5—C60.27 (19)C7—C8—C9—N24.1 (2)
C4—C5—C6—C10.49 (17)C2—C1—N1—C8179.38 (12)
C4—C5—C6—C7179.26 (13)C6—C1—N1—C80.58 (14)
N1—C1—C6—C5179.69 (11)C7—C8—N1—C10.45 (15)
C2—C1—C6—C50.35 (18)C9—C8—N1—C1179.90 (11)
N1—C1—C6—C70.49 (13)O1—C9—N2—N34.4 (2)
C2—C1—C6—C7179.47 (11)C8—C9—N2—N3176.16 (11)
C5—C6—C7—C8180.00 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.898 (16)2.096 (16)2.9864 (15)171.3 (13)
N2—H2···O1ii0.870 (16)2.073 (16)2.9193 (14)163.9 (14)
N3—H3···O1iii0.920 (16)2.124 (16)3.0241 (15)165.8 (13)
C3—H3A···F1iv0.952.553.2082 (15)127
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x+1, y+2, z+1; (iv) x1/2, y, z+3/2.
 

Acknowledgements

The authors thank the EPSRC National Crystallographic Service (University of Southampton) for data collection. ABV thanks Mangalore University for provision of research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006). Acta Cryst. E62, o4050–o4051.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds