organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Fluoro­phen­yl)-3-methyl-1-phenyl­indeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one: sheets built from C—H⋯N, C—H⋯O and C—H⋯π(arene) hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 5 October 2006; accepted 11 October 2006; online 25 October 2006)

The mol­ecules of the title compound, C26H16FN3O, are linked into chains of edge-fused rings by a combination of C—H⋯N and C—H⋯O hydrogen bonds, and these chains are linked into sheets by a single C—H⋯π(arene) hydrogen bond.

Comment

We have recently reported several different methodologies for the synthesis of biologically active compounds containing pyrazolo[3,4-b]pyridine skeletons using 5-amino­pyrazoles as starting materials (Quiroga et al., 1998[Quiroga, J., Hormaza, A., Insuasty, B. & Márquez, M. (1998). J. Heterocycl. Chem. 35, 409-412.]; Quiroga, Cruz et al., 2001[Quiroga, J., Cruz, S., Insuasty, B., Abonía, R., Cobo, J., Sánchez, A., Nogueras, M. & Low, J. N. (2001). J. Heterocycl. Chem. 38, 53-60.]; Quiroga, Mejía et al., 2001[Quiroga, J., Mejía, D., Insuasty, B., Abonía, R., Nogueras, M., Sánchez, A. & Cobo, J. (2001). Tetrahedron, 57, 6947-6953.]). We now report the mol­ecular structure of (I)[link] (Fig. 1[link]) which was prepared by a three-component reaction between 5-amino-3-methyl-1-phenyl­pyrazole, 4-fluoro­benzaldehyde and 1,3-indandione. To the best of our knowledge, this is the first reported structure of an indeno[1,2-b]pyrazolo[4,3-e]pyridine system.

[Scheme 1]

The bond distances within the fused tetra­cyclic core of the mol­ecule (Table 1[link]) provide strong evidence for aromatic-type delocalization in both the aryl ring and the pyridine ring, with strong bond fixation in the pyrazole ring. The bonds C4A—C5, C5—C5A and C9A—C9B are all quite long for their types, while C5—O5 is quite short, indicating the lack of any π-delocalization or charge separation within the five-membered carbocyclic ring.

The mol­ecules are linked into chains of edge-fused rings by two hydrogen bonds, one each of C—H⋯N and C—H⋯O types (Table 2[link]). The aryl atom C46 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to the pyridine atom N10 in the mol­ecule at (1 − x, 1 − y, 1 − z), so generating by inversion an R22(14) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) motif centred at (½, ½, ½). This dimeric motif in reinforced by a ππ stacking inter­action involving the two pyridyl rings: these are strictly parallel with an inter­planar spacing of 3.463 (2) Å, and a ring-centroid separation of 3.647 (2) Å, corresponding to a ring-centroid offset of 1.144 (2) Å. In addition, aryl atom C14 at (x, y, z) acts as hydrogen-bond donor to atom O5 in the mol­ecule at (−1 + x, y, 1 + z), so generating by translation a C(12) chain running parallel to the [10[\overline{1}]] direction. The propagation by translation and inversion of these two hydrogen bonds then generates a chain of edge-fused centrosymmetric rings parallel to [10[\overline{1}]] with R22(14) rings centred at (½ + n, ½, ½ − n) (n = zero or an integer) and R44(30) rings centred at (n, ½, 1 − n) (n = zero or an integer) (Fig. 2[link]). These chains are in turn linked by a C—H⋯π(arene) hydrogen bond (Table 2[link]) to form sheets parallel to (101).

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A stereoview of part of the crystal structure of compound (I)[link], showing the formation of a chain of edge-fused rings along [10[\overline{1}]]. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

Experimental

A solution of 5-amino-3-methyl-1-phenyl­pyrazole (1 mmol), 4-fluoro­benzaldehyde (1 mmol) and 1,3-indandione (1 mmol) in dimethyl­formamide (10 ml) containing a catalytic amount of triethyl­amine was heated under reflux for 7 h. The resulting solid product (I)[link] was collected by filtration, washed with ethanol, dried and finally recrystallized from dimethyl­formamide to afford yellow crystals which were suitable for single-crystal X-ray diffraction [yield 54%, m.p. 528–530 K]. MS m/z (%): 406 (36), 405 (100, M+), 404 (41), 390 [15, (M—CH3)+].

Crystal data
  • C26H16FN3O

  • Mr = 405.42

  • Triclinic, [P \overline 1]

  • a = 8.7566 (3) Å

  • b = 9.9924 (2) Å

  • c = 11.9100 (4) Å

  • α = 73.359 (2)°

  • β = 78.009 (2)°

  • γ = 81.238 (2)°

  • V = 971.88 (5) Å3

  • Z = 2

  • Dx = 1.385 Mg m−3

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.66 × 0.26 × 0.24 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS, Version 2.10. University of Göttingen, Germany.]) Tmin = 0.922, Tmax = 0.978

  • 19619 measured reflections

  • 4446 independent reflections

  • 3446 reflections with I > 2σ(I)

  • Rint = 0.032

  • θmax = 27.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.06

  • 4446 reflections

  • 281 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.059P)2 + 0.2111P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected bond lengths (Å)

N1—N2 1.3800 (15)
N2—C3 1.3213 (16)
C3—C3A 1.4342 (17)
C3A—C4 1.4147 (16)
C4—C4A 1.3910 (17)
C4A—C5 1.4998 (17)
C5—C5A 1.4914 (18)
C5A—C6 1.3868 (17)
C6—C7 1.3917 (19)
C7—C8 1.3905 (19)
C8—C9 1.3968 (18)
C9—C9A 1.3856 (18)
C9A—C9B 1.4812 (17)
C9B—N10 1.3266 (15)
N10—C10A 1.3506 (16)
C10A—N1 1.3686 (15)
C3A—C10A 1.4127 (18)
C4A—C9B 1.4209 (17)
C5A—C9A 1.3989 (17)
C5—O5 1.2162 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O5i 0.95 2.48 3.4065 (19) 164
C46—H46⋯N10ii 0.95 2.60 3.4657 (17) 152
C43—H43⋯Cgiii 0.95 2.65 3.5060 (16) 150
Symmetry codes: (i) x-1, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1.

All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 (aromatic) or 0.98 Å (meth­yl) and with Uiso(H) = kUeq(C), where k = 1.5 for methyl H atoms and 1.2 for all other H atoms.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT); program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

4-(4-fluorophenyl)-3-methyl-1- phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one top
Crystal data top
C26H16FN3OZ = 2
Mr = 405.42F(000) = 420
Triclinic, P1Dx = 1.385 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7566 (3) ÅCell parameters from 4446 reflections
b = 9.9924 (2) Åθ = 3.2–27.6°
c = 11.9100 (4) ŵ = 0.09 mm1
α = 73.359 (2)°T = 120 K
β = 78.009 (2)°Block, yellow
γ = 81.238 (2)°0.66 × 0.26 × 0.24 mm
V = 971.88 (5) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4446 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.2°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.922, Tmax = 0.978l = 1515
19619 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.059P)2 + 0.2111P]
where P = (Fo2 + 2Fc2)/3
4446 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.23 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.36566 (12)0.75883 (11)0.65474 (9)0.0169 (2)
C110.29292 (15)0.71861 (13)0.77628 (11)0.0180 (3)
C120.38176 (16)0.65357 (14)0.86418 (12)0.0236 (3)
C130.30792 (19)0.61248 (15)0.98194 (13)0.0300 (3)
C140.14663 (19)0.63630 (15)1.01238 (14)0.0320 (4)
C150.05945 (18)0.70400 (17)0.92378 (14)0.0338 (4)
C160.13120 (16)0.74590 (15)0.80567 (13)0.0270 (3)
N20.30324 (12)0.87608 (11)0.57809 (9)0.0179 (2)
C30.38539 (14)0.88295 (13)0.47050 (11)0.0167 (3)
C310.34501 (16)1.00099 (13)0.36834 (12)0.0212 (3)
C3A0.50539 (14)0.76762 (12)0.47334 (11)0.0154 (3)
C40.61854 (14)0.71496 (12)0.38884 (11)0.0153 (3)
C410.64260 (14)0.78615 (13)0.25961 (11)0.0167 (3)
C420.68933 (15)0.92146 (13)0.21801 (12)0.0207 (3)
C430.71361 (16)0.98765 (14)0.09729 (12)0.0235 (3)
C440.68743 (16)0.91716 (14)0.02086 (12)0.0227 (3)
F440.71087 (11)0.98124 (9)0.09786 (7)0.0363 (2)
C450.63971 (16)0.78401 (14)0.05820 (12)0.0235 (3)
C460.61907 (15)0.71766 (13)0.17850 (11)0.0199 (3)
C4A0.70336 (14)0.58952 (12)0.43718 (11)0.0154 (3)
C50.83913 (14)0.50600 (13)0.38070 (11)0.0173 (3)
O50.90225 (11)0.53006 (10)0.27685 (8)0.0248 (2)
C5A0.88441 (14)0.38623 (13)0.47984 (11)0.0171 (3)
C61.00240 (15)0.27703 (13)0.47665 (12)0.0206 (3)
C71.02158 (15)0.17763 (14)0.58304 (13)0.0226 (3)
C80.92587 (15)0.18869 (13)0.68953 (13)0.0224 (3)
C90.80669 (15)0.29830 (13)0.69327 (12)0.0196 (3)
C9A0.78745 (14)0.39640 (12)0.58696 (11)0.0164 (3)
C9B0.67604 (14)0.52408 (12)0.56136 (11)0.0152 (3)
N100.57050 (12)0.56973 (10)0.64300 (9)0.0165 (2)
C10A0.48785 (14)0.69040 (12)0.59408 (11)0.0155 (3)
H120.49250.63720.84400.028*
H130.36870.56751.04230.036*
H140.09640.60671.09290.038*
H150.05110.72200.94430.041*
H160.07060.79270.74560.032*
H31A0.23921.04490.39030.032*
H31B0.34870.96480.29940.032*
H31C0.42061.07070.34820.032*
H420.70470.96880.27290.025*
H430.74741.07920.06830.028*
H450.62140.73890.00270.028*
H460.58870.62490.20620.024*
H61.06830.27030.40390.025*
H71.10100.10140.58290.027*
H80.94190.12030.76120.027*
H90.74120.30530.76610.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0184 (5)0.0156 (5)0.0149 (6)0.0015 (4)0.0015 (4)0.0039 (4)
C110.0223 (6)0.0154 (6)0.0153 (7)0.0032 (5)0.0021 (5)0.0059 (5)
C120.0264 (7)0.0212 (7)0.0190 (7)0.0031 (5)0.0002 (6)0.0045 (5)
C130.0422 (9)0.0226 (7)0.0183 (8)0.0030 (6)0.0015 (6)0.0024 (6)
C140.0424 (9)0.0283 (8)0.0209 (8)0.0105 (6)0.0109 (6)0.0076 (6)
C150.0240 (7)0.0453 (9)0.0342 (9)0.0110 (7)0.0087 (6)0.0195 (7)
C160.0213 (7)0.0356 (8)0.0264 (8)0.0032 (6)0.0004 (6)0.0144 (6)
N20.0202 (5)0.0157 (5)0.0171 (6)0.0007 (4)0.0048 (4)0.0034 (4)
C30.0181 (6)0.0155 (6)0.0176 (7)0.0012 (5)0.0044 (5)0.0055 (5)
C310.0246 (7)0.0184 (6)0.0193 (7)0.0031 (5)0.0066 (5)0.0033 (5)
C3A0.0168 (6)0.0139 (6)0.0158 (6)0.0023 (5)0.0031 (5)0.0039 (5)
C40.0171 (6)0.0138 (6)0.0156 (6)0.0039 (5)0.0027 (5)0.0039 (5)
C410.0155 (6)0.0166 (6)0.0164 (7)0.0003 (4)0.0017 (5)0.0038 (5)
C420.0256 (7)0.0174 (6)0.0185 (7)0.0013 (5)0.0041 (5)0.0042 (5)
C430.0291 (7)0.0180 (6)0.0198 (7)0.0044 (5)0.0020 (6)0.0002 (5)
C440.0244 (7)0.0282 (7)0.0102 (7)0.0016 (5)0.0011 (5)0.0015 (5)
F440.0490 (6)0.0413 (5)0.0142 (4)0.0116 (4)0.0043 (4)0.0028 (4)
C450.0256 (7)0.0295 (7)0.0175 (7)0.0041 (6)0.0029 (5)0.0090 (6)
C460.0216 (7)0.0194 (6)0.0182 (7)0.0034 (5)0.0016 (5)0.0047 (5)
C4A0.0164 (6)0.0146 (6)0.0149 (6)0.0030 (5)0.0008 (5)0.0041 (5)
C50.0174 (6)0.0164 (6)0.0188 (7)0.0033 (5)0.0014 (5)0.0060 (5)
O50.0260 (5)0.0261 (5)0.0182 (5)0.0007 (4)0.0026 (4)0.0057 (4)
C5A0.0163 (6)0.0159 (6)0.0197 (7)0.0026 (5)0.0024 (5)0.0057 (5)
C60.0177 (6)0.0209 (6)0.0236 (7)0.0009 (5)0.0014 (5)0.0086 (5)
C70.0197 (6)0.0186 (6)0.0292 (8)0.0025 (5)0.0067 (6)0.0064 (6)
C80.0220 (7)0.0183 (6)0.0248 (8)0.0005 (5)0.0073 (6)0.0006 (5)
C90.0194 (6)0.0192 (6)0.0186 (7)0.0018 (5)0.0028 (5)0.0028 (5)
C9A0.0153 (6)0.0152 (6)0.0188 (7)0.0029 (5)0.0028 (5)0.0043 (5)
C9B0.0155 (6)0.0142 (6)0.0168 (7)0.0028 (5)0.0027 (5)0.0047 (5)
N100.0175 (5)0.0144 (5)0.0169 (6)0.0012 (4)0.0021 (4)0.0039 (4)
C10A0.0162 (6)0.0151 (6)0.0159 (6)0.0022 (5)0.0019 (5)0.0053 (5)
Geometric parameters (Å, º) top
N1—N21.3800 (15)C11—C161.3904 (19)
N2—C31.3213 (16)C12—C131.3885 (19)
C3—C3A1.4342 (17)C12—H120.95
C3A—C41.4147 (16)C13—C141.385 (2)
C4—C4A1.3910 (17)C13—H130.95
C4A—C51.4998 (17)C14—C151.387 (2)
C5—C5A1.4914 (18)C14—H140.95
C5A—C61.3868 (17)C15—C161.387 (2)
C6—C71.3917 (19)C15—H150.95
C7—C81.3905 (19)C16—H160.95
C8—C91.3968 (18)C3—C311.4921 (18)
C9—C9A1.3856 (18)C31—H31A0.98
C9A—C9B1.4812 (17)C31—H31B0.98
C9B—N101.3266 (15)C31—H31C0.98
N10—C10A1.3506 (16)C4—C411.4842 (17)
C10A—N11.3686 (15)C41—C421.3934 (17)
C3A—C10A1.4127 (18)C41—C461.3959 (17)
C4A—C9B1.4209 (17)C42—C431.3860 (19)
C5A—C9A1.3989 (17)C42—H420.95
C5—O51.2162 (15)C43—C441.3713 (19)
C6—H60.95C43—H430.95
C7—H70.95C44—F441.3610 (15)
C8—H80.95C44—C451.3769 (19)
C9—H90.95C45—C461.3820 (18)
N1—C111.4228 (16)C45—H450.95
C11—C121.3850 (19)C46—H460.95
C10A—N1—N2110.56 (10)C44—C43—C42118.06 (12)
C10A—N1—C11129.34 (11)C44—C43—H43121.0
N2—N1—C11119.85 (10)C42—C43—H43121.0
C12—C11—C16120.41 (12)F44—C44—C43118.53 (12)
C12—C11—N1120.56 (11)F44—C44—C45118.25 (12)
C16—C11—N1119.03 (12)C43—C44—C45123.22 (12)
C11—C12—C13119.58 (13)C44—C45—C46118.30 (12)
C11—C12—H12120.2C44—C45—H45120.8
C13—C12—H12120.2C46—C45—H45120.8
C14—C13—C12120.70 (15)C45—C46—C41120.39 (12)
C14—C13—H13119.6C45—C46—H46119.8
C12—C13—H13119.6C41—C46—H46119.8
C13—C14—C15119.10 (14)C4—C4A—C9B121.28 (11)
C13—C14—H14120.4C4—C4A—C5130.78 (12)
C15—C14—H14120.4C9B—C4A—C5107.77 (11)
C14—C15—C16120.99 (14)O5—C5—C5A126.40 (12)
C14—C15—H15119.5O5—C5—C4A128.21 (12)
C16—C15—H15119.5C5A—C5—C4A105.38 (10)
C15—C16—C11119.19 (14)C6—C5A—C9A120.98 (12)
C15—C16—H16120.4C6—C5A—C5129.33 (12)
C11—C16—H16120.4C9A—C5A—C5109.69 (11)
C3—N2—N1107.25 (10)C5A—C6—C7118.15 (12)
N2—C3—C3A110.61 (11)C5A—C6—H6120.9
N2—C3—C31119.36 (11)C7—C6—H6120.9
C3A—C3—C31130.02 (11)C8—C7—C6120.73 (12)
C3—C31—H31A109.5C8—C7—H7119.6
C3—C31—H31B109.5C6—C7—H7119.6
H31A—C31—H31B109.5C7—C8—C9121.38 (13)
C3—C31—H31C109.5C7—C8—H8119.3
H31A—C31—H31C109.5C9—C8—H8119.3
H31B—C31—H31C109.5C9A—C9—C8117.63 (12)
C10A—C3A—C4118.83 (11)C9A—C9—H9121.2
C10A—C3A—C3104.60 (10)C8—C9—H9121.2
C4—C3A—C3136.41 (12)C9—C9A—C5A121.13 (12)
C4A—C4—C3A114.14 (11)C9—C9A—C9B130.83 (12)
C4A—C4—C41122.97 (11)C5A—C9A—C9B108.03 (11)
C3A—C4—C41122.88 (11)N10—C9B—C4A126.27 (11)
C42—C41—C46119.37 (12)N10—C9B—C9A124.63 (11)
C42—C41—C4120.48 (11)C4A—C9B—C9A109.09 (10)
C46—C41—C4120.15 (11)C9B—N10—C10A111.53 (11)
C43—C42—C41120.63 (12)N10—C10A—N1125.08 (12)
C43—C42—H42119.7N10—C10A—C3A127.92 (11)
C41—C42—H42119.7N1—C10A—C3A106.98 (11)
C10A—N1—C11—C1238.33 (18)C41—C4—C4A—C55.9 (2)
N2—N1—C11—C12148.03 (12)C4—C4A—C5—O52.1 (2)
C10A—N1—C11—C16141.84 (13)C9B—C4A—C5—O5177.21 (12)
N2—N1—C11—C1631.80 (16)C4—C4A—C5—C5A176.82 (12)
C16—C11—C12—C131.57 (19)C9B—C4A—C5—C5A1.72 (12)
N1—C11—C12—C13178.61 (11)O5—C5—C5A—C61.4 (2)
C11—C12—C13—C140.2 (2)C4A—C5—C5A—C6179.67 (12)
C12—C13—C14—C151.0 (2)O5—C5—C5A—C9A178.16 (12)
C13—C14—C15—C161.0 (2)C4A—C5—C5A—C9A0.80 (13)
C14—C15—C16—C110.3 (2)C9A—C5A—C6—C70.08 (18)
C12—C11—C16—C151.62 (19)C5—C5A—C6—C7179.57 (12)
N1—C11—C16—C15178.56 (11)C5A—C6—C7—C80.63 (19)
C10A—N1—N2—C30.59 (13)C6—C7—C8—C90.7 (2)
C11—N1—N2—C3175.34 (10)C7—C8—C9—C9A0.29 (19)
N1—N2—C3—C3A0.51 (13)C8—C9—C9A—C5A0.26 (18)
N1—N2—C3—C31179.51 (10)C8—C9—C9A—C9B178.77 (12)
N2—C3—C3A—C10A0.26 (13)C6—C5A—C9A—C90.37 (18)
C31—C3—C3A—C10A179.77 (12)C5—C5A—C9A—C9179.21 (11)
N2—C3—C3A—C4174.82 (13)C6—C5A—C9A—C9B179.18 (11)
C31—C3—C3A—C45.1 (2)C5—C5A—C9A—C9B0.40 (13)
C10A—C3A—C4—C4A0.80 (16)C4—C4A—C9B—N101.11 (18)
C3—C3A—C4—C4A175.37 (13)C5—C4A—C9B—N10176.77 (11)
C10A—C3A—C4—C41178.18 (10)C4—C4A—C9B—C9A177.66 (10)
C3—C3A—C4—C413.6 (2)C5—C4A—C9B—C9A2.01 (13)
C4A—C4—C41—C42119.63 (13)C9—C9A—C9B—N101.4 (2)
C3A—C4—C41—C4261.48 (16)C5A—C9A—C9B—N10177.27 (11)
C4A—C4—C41—C4660.13 (16)C9—C9A—C9B—C4A179.81 (12)
C3A—C4—C41—C46118.76 (13)C5A—C9A—C9B—C4A1.53 (13)
C46—C41—C42—C430.49 (19)C4A—C9B—N10—C10A0.10 (17)
C4—C41—C42—C43179.28 (12)C9A—C9B—N10—C10A178.50 (10)
C41—C42—C43—C441.2 (2)C9B—N10—C10A—N1176.48 (11)
C42—C43—C44—F44179.98 (12)C9B—N10—C10A—C3A1.49 (17)
C42—C43—C44—C450.6 (2)N2—N1—C10A—N10177.90 (11)
F44—C44—C45—C46178.65 (11)C11—N1—C10A—N103.8 (2)
C43—C44—C45—C460.8 (2)N2—N1—C10A—C3A0.42 (13)
C44—C45—C46—C411.54 (19)C11—N1—C10A—C3A174.53 (11)
C42—C41—C46—C450.91 (19)C4—C3A—C10A—N102.02 (18)
C4—C41—C46—C45179.32 (11)C3—C3A—C10A—N10178.15 (11)
C3A—C4—C4A—C9B0.56 (16)C4—C3A—C10A—N1176.24 (10)
C41—C4—C4A—C9B179.54 (10)C3—C3A—C10A—N10.11 (12)
C3A—C4—C4A—C5175.09 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O5i0.952.483.4065 (19)164
C46—H46···N10ii0.952.603.4657 (17)152
C43—H43···Cgiii0.952.653.5060 (16)150
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1.
 

Acknowledgements

X-ray data were collected at the EPSRC National X-ray Crystallography Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. DC and JQ thank COLCIENCIAS, UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationQuiroga, J., Cruz, S., Insuasty, B., Abonía, R., Cobo, J., Sánchez, A., Nogueras, M. & Low, J. N. (2001). J. Heterocycl. Chem. 38, 53–60.  CrossRef CAS Google Scholar
First citationQuiroga, J., Hormaza, A., Insuasty, B. & Márquez, M. (1998). J. Heterocycl. Chem. 35, 409–412.  CrossRef CAS Google Scholar
First citationQuiroga, J., Mejía, D., Insuasty, B., Abonía, R., Nogueras, M., Sánchez, A. & Cobo, J. (2001). Tetrahedron, 57, 6947–6953.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS, Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds