organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl N-(phosphino­yl­oxy)carbamate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, and bGlaxoSmithKline Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, England
*Correspondence e-mail: andy.whiting@durham.ac.uk

(Received 18 October 2006; accepted 26 October 2006; online 31 October 2006)

The title compound, C17H20NO4P, contains pyramidal N atoms and adopts similar conformations in its three independent mol­ecules (A, B and C). Mol­ecules A and B form a dimer in the crystal structure by way of a pair of N—H⋯O hydrogen bonds, as does C with its inversion-generated partner.

Comment

N-Alkyl-O-(diphenyl­phosphor­yl)hydroxy­lamines have been reported to be potentially useful electrophilic aminating agents, for example in Schmidt reactions (Harger, 1981[Harger, M. J. P. (1981). J. Chem. Soc. Perkin Trans. I, pp. 3284-3287.]; Boche & Schrott, 1982a[Boche, G. & Schrott, W. (1982a). Tetrahedron Lett. 51, 5399-5402.],b[Boche, G. & Schrott, W. (1982b). Tetrahedron Lett. 51, 5403-5406.]; Boche et al., 1988[Boche, G., Meier, C. & Kleemiss, W. (1988). Tetrahedron Lett. 29, 1777-1780.]). It was not unreasonable to infer that such systems would act as nitro­gen peracid equivalents and could be widely applicable reagents in organic synthesis (Masse & Sturtz, 1988a[Masse, G. & Sturtz, G. (1988a). Synthesis, pp. 904-907.],b[Masse, G. & Sturtz, G. (1988b). Synthesis, pp. 907-908.]). In the course of exploring this possibility, we prepared the title compound, (I)[link].

[Scheme 1]

The asymmetric unit of (I)[link] comprises three independent mol­ecules (Fig. 1[link], Table 1[link]). Mol­ecules A and B are related by an approximate local inversion centre and are linked into a dimer by a pair of N—H⋯O hydrogen bonds (Table 2[link]). The third independent mol­ecule (C) forms a similar hydrogen-bonded dimer with its symmetry-equivalent partner, generated by a crystallographic inversion centre. The geometries and conformations of all three mol­ecules are essentially the same. The P atoms have tetra­hedral geometry. The P—O single bond in (I)[link] is substanti­ally longer [mean 1.616 (2) Å] than in diphenyl­phosphinic acid Ph2P(=O)OH [1.550 (1) Å; Lyssenko et al., 2002[Lyssenko, K. A., Grintselev-Knyazev, G. V. & Antipin, M. Yu. (2002). Mendeleev Commun. pp. 128-130.]] or in Ph2P(=O)OBu-t [1.569 (3) Å; Grice et al., 2004[Grice, I. D., Jenkins, I. D., Busfield, W. K., Byriel, K. A. & Kennard, C. H. L. (2004). Acta Cryst. E60, o2384-o2385.]], but comparable to the values in Ph2P(=O)ONEt2 [1.599 (1) Å; Spek & Veldman, 1999[Spek, A. L. & Veldman, N. (1999). Private communication to Cambridge Structural Database. Refcode HIGPAO, CCDC-113905.]] or Ph2P(=O)ON=C(Cl)Pr-i [1.613 (3) Å; Martynov et al., 1988[Martynov, I. V., Chekhlov, A. N., Ivanov, A. N., Epishkina, T. A., Makhaev, V. D. & Sokolov, V. B. (1988). Bull. Acad. Sci. USSR Div. Chem. Sci. 36, 2410-2412.]]. It is noteworthy that the difference between the P=O and the P—OR bond lengths is increased from 0.048 (1) Å in Ph2P(=O)OH and 0.093 (4) Å in Ph2P(=O)OBu-t to 0.136 (2) Å in (I)[link], 0.128 (1) Å in Ph2P(=O)ONEt2 and 0.151 (4) Å in Ph2P(=O)ON=C(Cl)Pr-i. Thus. we may conclude that bonding to an N atom reduces the additional π-component of the (formally) single P—O bond. The P—C(Ph) distances in (I)[link] [mean 1.786 (2) Å] are as expected.

The N atoms are substanti­ally pyramidal (sp3) in all three independent mol­ecules in (I)[link]: atoms H1N, H2N and H3N deviate from the corresponding O—N—C planes by 0.68 (2), 0.70 (2) and 0.63 (2) Å, respectively (see also Table 1[link]). Similar geometry has been observed in TosOONHC(=O)OBu-t (Tos = p-toluene­sulfonyl; Boche et al., 1994[Boche, G., Boie, C., Bosold, F., Harms, K. & Marsch, M. (1994). Angew. Chem. Int. Ed. Engl. 33, 115-117.]; Blatch et al., 2006[Blatch, A. J., Howard, J. A. K., Probert, M. R., Smethurst, C. A. & Whiting, A. (2006). Private communication to Cambridge Structural Database. CCDC-299397.]) and in (O2N)Cl2C6H2—ONHC(=O)OBu-t (Boyles et al., 2002[Boyles, D. C., Curran, T. T., Greene, D., Macikenas, D. & Parlett, R. V. IV (2002). Tetrahedron Lett. 43, 6735-6737.]), whereas in Me3ONHC(=O)OBu-t the N atom has a planar configuration (Mortl et al., 1995[Mortl, M., Knaausz, D., Bocskei, Z., Kolos, Z., Ujszaszy, K., Szakacs, L. & Sohar, P. (1995). J. Organomet. Chem. 492, 115-119.]).

[Figure 1]
Figure 1
The structures of the constituent mol­ecules of (I)[link] showing 50% displacement ellipsoids (arbitrary spheres for the H atoms) and hydrogen bonding (dashed lines) inter­actions. Top: mol­ecules A and B. Bottom: mol­ecule C and its symmetry equivalent by inversion (symmetry code for primed atom labels: 1 − x, 2 − y, 1 − z).

Experimental

A solution of t-BuOC(O)NHOH (6.39 g, 0.048 mol) in an anhydrous mixture of CH2Cl2 (160 ml) and toluene (320 ml) was cooled to 273 K under argon, treated with 1.2 equivalents of triethyl­amine (6.021 g, 0.0595 mol) and stirred for 30 min. Diphenyl­phosphinyl chloride (9.16 ml, 0.048 mol) was added; the solution was warmed to room temperature, stirred for another 72 h and evaporated. The solid residue was recrystallized from CH2Cl2 to give colourless crystals of (I)[link] (12.14 g, 76%). Mass-spectrum, m/z ES (+): 233.3 (Ph2PO2NH2, 82%) and 356.33 (45%). The melting point was not measured because of the thermal instability and explosive nature of (I)[link].

Crystal data
  • C17H20NO4P

  • Mr = 333.31

  • Triclinic, [P \overline 1]

  • a = 12.181 (1) Å

  • b = 13.734 (1) Å

  • c = 16.532 (1) Å

  • α = 101.10 (1)°

  • β = 96.77 (1)°

  • γ = 92.93 (1)°

  • V = 2687.3 (3) Å3

  • Z = 6

  • Dx = 1.236 Mg m−3

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART 6K CCD diffractometer

  • ω scans

  • Absorption correction: none

  • 11843 measured reflections

  • 11796 independent reflections

  • 9155 reflections with I > 2σ(I)

  • Rint = 0.040

  • θmax = 30.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.00

  • 11796 reflections

  • 652 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0824P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected geometric parameters (Å, °)

P1—O2 1.4808 (9)
P1—O1 1.6144 (11)
P2—O6 1.4783 (10)
P2—O5 1.6162 (11)
P3—O10 1.4813 (10)
P3—O9 1.6187 (11)
C13—N1—O1 111.09 (10)
C13—N1—H1N 114.4 (11)
O1—N1—H1N 107.8 (11)
C30—N2—O5 111.24 (10)
C30—N2—H2N 115.3 (12)
O5—N2—H2N 109.6 (11)
C47—N3—O9 111.97 (11)
C47—N3—H3N 117.6 (12)
O9—N3—H3N 110.6 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O6 0.886 (17) 1.836 (17) 2.7138 (16) 170.0 (15)
N2—H2N⋯O2 0.95 (2) 1.83 (2) 2.7688 (16) 168.4 (17)
N3—H3N⋯O10i 0.923 (18) 1.855 (19) 2.7666 (16) 169.0 (16)
Symmetry code: (i) -x+1, -y+2, -z+1.

The amino H atoms were located in difference maps and their positions and Uiso values were freely refined. The phenyl H atoms were treated as riding on their C atoms with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The methyl groups were refined as rigid bodies (C—H = 0.98 Å) allowed to rotate around their linking C—C bonds, with a common refined Uiso for the three H atoms.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL (Bruker, 2003); software used to prepare material for publication: SHELXTL.

tert-Butyl N-(phosphinoyloxy)carbamate top
Crystal data top
C17H20NO4PZ = 6
Mr = 333.31F(000) = 1056
Triclinic, P1Dx = 1.236 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.181 (1) ÅCell parameters from 5811 reflections
b = 13.734 (1) Åθ = 2.2–34.4°
c = 16.532 (1) ŵ = 0.17 mm1
α = 101.10 (1)°T = 120 K
β = 96.77 (1)°Block, colourless
γ = 92.93 (1)°0.23 × 0.21 × 0.19 mm
V = 2687.3 (3) Å3
Data collection top
Bruker SMART CCD 6K
diffractometer
9155 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 30.0°, θmin = 1.5°
Detector resolution: 8 pixels mm-1h = 1613
ω scansk = 1619
11843 measured reflectionsl = 2316
11796 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0824P)2]
where P = (Fo2 + 2Fc2)/3
11796 reflections(Δ/σ)max = 0.001
652 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.53 e Å3
Special details top

Experimental. The data collection nominally covered a hemisphere of reciprocal Space, by 1 run of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering 0.3° in ω. Crystal to detector distance 4.85 cm.

1H NMR (200 MHz, CDCl3): δ 1.39 (s, 9 H, CMe3), 7.44–7.48 (m, 4 H, ArH) 7.53–7.57 (m, 2 H, ArH), 7.94–7.99 (m, 4 H, ArH) and 8.63 (broad s, 1 H, NH). 13 C NMR (100 MHz, CDCl3): δ 27.9 (CH3), 83.1 (CMe3), 128.4 (ArH), 128.5 (ArH), 129.5 [ARP(O)], 132.4 (ArH), 132.8 (ArH) and 156.2 (ArH). 31P NMR (81 MHz, CDCl3): δ 40.96. Mass-spectrum, m/z ES (+): 233.3 (Ph2PO2NH2, 82%) and 356.33 (45%).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.10055 (3)0.26988 (3)0.27389 (2)0.01775 (10)
O10.18559 (8)0.36743 (7)0.30630 (6)0.0210 (2)
O20.08405 (8)0.23290 (7)0.18273 (6)0.0207 (2)
O40.18353 (11)0.55106 (8)0.39437 (6)0.0342 (3)
O30.14394 (10)0.60494 (7)0.27240 (6)0.0274 (3)
N10.14437 (11)0.44524 (9)0.26621 (7)0.0209 (3)
H1N0.1747 (14)0.4421 (12)0.2197 (10)0.022 (4)*
C10.02620 (12)0.30120 (11)0.31342 (8)0.0210 (3)
C20.12504 (14)0.25301 (12)0.26970 (10)0.0290 (4)
H20.12430.20660.21910.035*
C30.22496 (15)0.27315 (14)0.30047 (12)0.0372 (4)
H30.29260.24080.27060.045*
C40.22558 (16)0.33991 (14)0.37421 (13)0.0411 (5)
H40.29380.35230.39540.049*
C50.12866 (16)0.38862 (13)0.41741 (11)0.0376 (4)
H50.13020.43490.46790.045*
C60.02786 (14)0.37012 (12)0.38722 (9)0.0289 (4)
H60.03920.40430.41670.035*
C70.16770 (12)0.18519 (11)0.32898 (8)0.0196 (3)
C80.20979 (12)0.10244 (11)0.28261 (9)0.0211 (3)
H80.20230.09260.22370.025*
C90.26281 (12)0.03471 (11)0.32361 (9)0.0239 (3)
H90.29200.02130.29250.029*
C100.27309 (13)0.04875 (11)0.40974 (9)0.0261 (4)
H100.30910.00220.43730.031*
C110.23058 (13)0.13071 (12)0.45561 (9)0.0270 (4)
H110.23740.14000.51450.032*
C120.17830 (13)0.19906 (11)0.41571 (9)0.0248 (3)
H120.14970.25520.44720.030*
C130.16195 (13)0.53720 (11)0.32002 (9)0.0230 (3)
C140.14467 (16)0.71156 (11)0.31001 (10)0.0310 (4)
C150.25948 (18)0.74960 (13)0.35381 (12)0.0452 (5)
H1510.31400.73400.31500.055 (4)*
H1520.27690.71760.40140.055 (4)*
H1530.26190.82180.37340.055 (4)*
C160.11550 (18)0.75684 (13)0.23410 (11)0.0417 (5)
H1610.17210.74350.19670.052 (4)*
H1620.11240.82890.25160.052 (4)*
H1630.04320.72740.20500.052 (4)*
C170.05589 (19)0.72724 (14)0.36741 (12)0.0479 (5)
H1710.01450.69280.33850.060 (4)*
H1720.04670.79860.38360.060 (4)*
H1730.07790.70040.41720.060 (4)*
P20.24725 (3)0.38635 (3)0.04178 (2)0.01939 (10)
O50.16717 (9)0.28576 (7)0.00742 (6)0.0223 (2)
O60.25685 (9)0.42489 (8)0.13240 (6)0.0246 (2)
O70.21538 (10)0.05117 (7)0.04486 (6)0.0263 (3)
O80.19732 (11)0.10585 (9)0.07767 (7)0.0375 (3)
N20.20689 (11)0.21047 (9)0.05057 (7)0.0210 (3)
H2N0.1694 (16)0.2106 (14)0.0977 (12)0.039 (5)*
C180.17804 (12)0.46636 (11)0.01717 (9)0.0211 (3)
C190.14058 (13)0.55285 (11)0.02770 (10)0.0250 (3)
H190.15230.56660.08680.030*
C200.08625 (14)0.61845 (12)0.01490 (11)0.0310 (4)
H200.06060.67710.01530.037*
C210.06930 (14)0.59849 (13)0.10092 (11)0.0346 (4)
H210.03260.64380.12950.042*
C220.10585 (15)0.51247 (14)0.14566 (10)0.0344 (4)
H220.09370.49900.20470.041*
C230.16013 (13)0.44597 (12)0.10403 (9)0.0281 (4)
H230.18490.38710.13450.034*
C240.38035 (12)0.36019 (11)0.01099 (9)0.0214 (3)
C250.47290 (14)0.40633 (12)0.06499 (10)0.0288 (4)
H250.46390.44940.11570.035*
C260.57862 (15)0.38912 (13)0.04411 (12)0.0378 (4)
H260.64210.41990.08090.045*
C270.59084 (15)0.32707 (14)0.03009 (13)0.0405 (5)
H270.66310.31620.04440.049*
C280.49962 (15)0.28076 (14)0.08368 (11)0.0377 (4)
H280.50920.23800.13440.045*
C290.39359 (14)0.29679 (12)0.06343 (9)0.0295 (4)
H290.33050.26470.10000.035*
C300.20366 (13)0.11913 (11)0.00321 (9)0.0234 (3)
C310.21882 (16)0.05516 (12)0.00805 (10)0.0333 (4)
C320.1093 (2)0.09396 (15)0.04397 (13)0.0540 (6)
H3210.04890.08000.01010.079 (5)*
H3220.10930.16590.06380.079 (5)*
H3230.09860.06110.09170.079 (5)*
C330.3164 (2)0.07041 (16)0.04069 (15)0.0645 (7)
H3310.38390.03740.00600.064 (4)*
H3320.30330.04180.09060.064 (4)*
H3330.32530.14180.05700.064 (4)*
C340.2348 (2)0.10051 (13)0.08505 (12)0.0458 (5)
H3410.17300.08590.11730.060 (4)*
H3420.30460.07230.11920.060 (4)*
H3430.23710.17280.06840.060 (4)*
P30.58759 (3)1.05685 (3)0.38744 (2)0.01867 (10)
O90.51367 (8)0.95294 (7)0.35097 (6)0.0216 (2)
O100.58442 (8)1.09867 (7)0.47662 (6)0.0214 (2)
O110.56502 (10)0.72252 (8)0.39681 (7)0.0302 (3)
O120.57720 (12)0.77787 (9)0.27653 (7)0.0420 (3)
N30.55055 (11)0.88095 (9)0.39871 (7)0.0215 (3)
H3N0.5092 (15)0.8805 (14)0.4420 (11)0.034 (5)*
C350.52414 (12)1.13203 (11)0.32102 (9)0.0206 (3)
C360.48845 (13)1.22263 (11)0.36013 (9)0.0252 (3)
H360.49841.24140.41910.030*
C370.43820 (14)1.28491 (12)0.31187 (11)0.0307 (4)
H370.41391.34640.33800.037*
C380.42358 (14)1.25756 (14)0.22619 (11)0.0344 (4)
H380.38911.30030.19370.041*
C390.45897 (14)1.16801 (14)0.18714 (10)0.0340 (4)
H390.44901.14990.12820.041*
C400.50918 (13)1.10465 (12)0.23440 (9)0.0272 (4)
H400.53301.04320.20780.033*
C410.72615 (12)1.03390 (11)0.36752 (8)0.0209 (3)
C420.81257 (13)1.08015 (12)0.42822 (9)0.0260 (3)
H420.79641.12200.47750.031*
C430.92164 (13)1.06508 (13)0.41655 (10)0.0322 (4)
H430.98021.09580.45820.039*
C440.94527 (14)1.00512 (13)0.34412 (10)0.0328 (4)
H441.02020.99480.33640.039*
C450.86058 (14)0.96007 (13)0.28310 (10)0.0328 (4)
H450.87740.91980.23320.039*
C460.75090 (13)0.97382 (12)0.29476 (9)0.0282 (4)
H460.69260.94230.25320.034*
C470.56398 (14)0.79048 (11)0.34854 (9)0.0265 (4)
C480.59500 (19)0.62056 (12)0.36590 (12)0.0426 (5)
C490.7133 (2)0.62491 (16)0.34395 (15)0.0647 (7)
H4910.71590.65750.29630.088 (5)*
H4920.73660.55720.32970.088 (5)*
H4930.76330.66270.39170.088 (5)*
C500.5102 (3)0.56827 (15)0.29476 (15)0.0728 (8)
H5010.43580.57330.31150.079 (5)*
H5020.52490.49800.27990.079 (5)*
H5030.51480.59960.24670.079 (5)*
C510.5900 (2)0.57414 (14)0.44159 (14)0.0577 (7)
H5110.51590.57900.45900.068 (4)*
H5120.64530.60950.48700.068 (4)*
H5130.60560.50400.42790.068 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0196 (2)0.01637 (19)0.01840 (16)0.00518 (17)0.00190 (13)0.00567 (13)
O10.0230 (6)0.0164 (5)0.0252 (5)0.0036 (5)0.0011 (4)0.0088 (4)
O20.0238 (6)0.0196 (5)0.0199 (4)0.0056 (5)0.0029 (4)0.0059 (4)
O40.0536 (8)0.0245 (6)0.0235 (5)0.0055 (6)0.0024 (5)0.0031 (4)
O30.0420 (7)0.0143 (5)0.0257 (5)0.0028 (5)0.0027 (5)0.0045 (4)
N10.0293 (7)0.0143 (6)0.0206 (5)0.0050 (6)0.0024 (5)0.0068 (4)
C10.0230 (8)0.0187 (7)0.0246 (6)0.0066 (7)0.0055 (5)0.0093 (5)
C20.0270 (9)0.0265 (8)0.0344 (8)0.0044 (8)0.0038 (6)0.0080 (6)
C30.0231 (9)0.0338 (10)0.0584 (11)0.0032 (9)0.0102 (8)0.0151 (8)
C40.0325 (10)0.0335 (10)0.0659 (12)0.0109 (9)0.0270 (9)0.0169 (9)
C50.0482 (12)0.0278 (9)0.0425 (9)0.0108 (9)0.0259 (8)0.0073 (7)
C60.0338 (9)0.0258 (8)0.0286 (7)0.0063 (8)0.0086 (6)0.0051 (6)
C70.0187 (7)0.0186 (7)0.0231 (6)0.0032 (7)0.0009 (5)0.0085 (5)
C80.0201 (8)0.0187 (7)0.0254 (6)0.0030 (7)0.0021 (5)0.0071 (5)
C90.0189 (8)0.0192 (7)0.0348 (8)0.0037 (7)0.0023 (6)0.0088 (6)
C100.0201 (8)0.0244 (8)0.0364 (8)0.0030 (7)0.0021 (6)0.0157 (6)
C110.0264 (8)0.0299 (8)0.0265 (7)0.0032 (7)0.0021 (6)0.0130 (6)
C120.0256 (8)0.0250 (8)0.0244 (7)0.0048 (7)0.0002 (6)0.0078 (6)
C130.0263 (8)0.0182 (7)0.0254 (7)0.0014 (7)0.0051 (6)0.0054 (5)
C140.0455 (11)0.0134 (7)0.0332 (8)0.0051 (8)0.0038 (7)0.0031 (6)
C150.0547 (13)0.0258 (9)0.0499 (11)0.0040 (10)0.0042 (9)0.0032 (8)
C160.0629 (14)0.0209 (8)0.0424 (10)0.0056 (9)0.0029 (9)0.0106 (7)
C170.0632 (14)0.0338 (10)0.0518 (11)0.0211 (10)0.0206 (10)0.0083 (8)
P20.0207 (2)0.0181 (2)0.02074 (16)0.00477 (18)0.00170 (13)0.00693 (13)
O50.0228 (6)0.0195 (5)0.0265 (5)0.0044 (5)0.0007 (4)0.0101 (4)
O60.0302 (6)0.0220 (5)0.0228 (5)0.0041 (5)0.0044 (4)0.0060 (4)
O70.0382 (7)0.0150 (5)0.0262 (5)0.0041 (5)0.0048 (4)0.0045 (4)
O80.0616 (9)0.0279 (6)0.0230 (5)0.0044 (6)0.0055 (5)0.0044 (4)
N20.0278 (7)0.0155 (6)0.0220 (5)0.0047 (6)0.0034 (5)0.0088 (4)
C180.0173 (7)0.0204 (7)0.0276 (7)0.0009 (7)0.0017 (5)0.0108 (6)
C190.0198 (8)0.0199 (8)0.0367 (8)0.0026 (7)0.0025 (6)0.0098 (6)
C200.0224 (9)0.0208 (8)0.0515 (10)0.0034 (8)0.0006 (7)0.0139 (7)
C210.0245 (9)0.0302 (9)0.0526 (10)0.0003 (8)0.0067 (7)0.0245 (8)
C220.0311 (9)0.0400 (10)0.0340 (8)0.0011 (9)0.0067 (7)0.0188 (7)
C230.0270 (9)0.0288 (8)0.0297 (7)0.0039 (8)0.0007 (6)0.0108 (6)
C240.0219 (8)0.0192 (7)0.0252 (6)0.0034 (7)0.0016 (5)0.0102 (5)
C250.0265 (9)0.0251 (8)0.0347 (8)0.0009 (8)0.0022 (6)0.0100 (6)
C260.0214 (9)0.0312 (10)0.0607 (12)0.0020 (8)0.0033 (8)0.0152 (8)
C270.0235 (9)0.0393 (11)0.0653 (12)0.0088 (9)0.0141 (8)0.0204 (9)
C280.0336 (10)0.0390 (10)0.0439 (10)0.0122 (9)0.0139 (8)0.0090 (8)
C290.0275 (9)0.0328 (9)0.0283 (7)0.0083 (8)0.0028 (6)0.0051 (6)
C300.0245 (8)0.0201 (7)0.0257 (7)0.0007 (7)0.0031 (6)0.0052 (5)
C310.0506 (11)0.0162 (7)0.0346 (8)0.0081 (8)0.0127 (7)0.0034 (6)
C320.0709 (16)0.0287 (10)0.0549 (12)0.0107 (11)0.0033 (11)0.0008 (9)
C330.0868 (18)0.0432 (12)0.0805 (16)0.0340 (13)0.0522 (14)0.0213 (11)
C340.0753 (15)0.0216 (9)0.0448 (10)0.0126 (10)0.0128 (10)0.0122 (7)
P30.0186 (2)0.01860 (19)0.02017 (16)0.00437 (17)0.00114 (13)0.00722 (13)
O90.0215 (6)0.0196 (5)0.0252 (5)0.0028 (5)0.0006 (4)0.0098 (4)
O100.0218 (5)0.0215 (5)0.0219 (5)0.0041 (5)0.0022 (4)0.0067 (4)
O110.0423 (7)0.0173 (5)0.0343 (6)0.0073 (5)0.0120 (5)0.0078 (4)
O120.0706 (10)0.0278 (6)0.0289 (6)0.0067 (7)0.0131 (6)0.0042 (5)
N30.0261 (7)0.0170 (6)0.0239 (6)0.0046 (6)0.0038 (5)0.0090 (5)
C350.0161 (7)0.0222 (7)0.0259 (7)0.0008 (7)0.0012 (5)0.0121 (5)
C360.0219 (8)0.0223 (8)0.0327 (7)0.0031 (7)0.0002 (6)0.0106 (6)
C370.0233 (9)0.0239 (8)0.0481 (10)0.0021 (8)0.0002 (7)0.0180 (7)
C380.0241 (9)0.0386 (10)0.0465 (10)0.0015 (8)0.0030 (7)0.0284 (8)
C390.0282 (9)0.0477 (11)0.0302 (8)0.0017 (9)0.0015 (6)0.0213 (7)
C400.0239 (8)0.0325 (9)0.0267 (7)0.0032 (8)0.0016 (6)0.0105 (6)
C410.0205 (8)0.0208 (7)0.0236 (6)0.0038 (7)0.0024 (5)0.0100 (5)
C420.0239 (8)0.0286 (8)0.0262 (7)0.0022 (7)0.0030 (6)0.0069 (6)
C430.0205 (8)0.0391 (10)0.0365 (8)0.0010 (8)0.0006 (6)0.0088 (7)
C440.0233 (9)0.0362 (10)0.0432 (9)0.0085 (8)0.0104 (7)0.0135 (7)
C450.0321 (9)0.0342 (9)0.0348 (8)0.0105 (8)0.0127 (7)0.0063 (7)
C460.0262 (8)0.0305 (9)0.0277 (7)0.0065 (8)0.0027 (6)0.0046 (6)
C470.0307 (9)0.0201 (8)0.0291 (7)0.0021 (7)0.0043 (6)0.0055 (6)
C480.0671 (14)0.0170 (8)0.0494 (10)0.0134 (9)0.0228 (9)0.0092 (7)
C490.0791 (17)0.0465 (13)0.0849 (17)0.0339 (13)0.0472 (14)0.0244 (12)
C500.124 (3)0.0217 (10)0.0651 (15)0.0023 (14)0.0042 (15)0.0025 (10)
C510.0944 (19)0.0274 (10)0.0640 (13)0.0241 (12)0.0337 (13)0.0215 (9)
Geometric parameters (Å, º) top
P1—O21.4808 (9)C24—C291.395 (2)
P1—O11.6144 (11)C25—C261.392 (2)
P1—C71.7835 (13)C25—H250.9500
P1—C11.7871 (15)C26—C271.381 (3)
O1—N11.4430 (14)C26—H260.9500
O4—C131.2020 (17)C27—C281.379 (3)
O3—C131.3400 (17)C27—H270.9501
O3—C141.4757 (17)C28—C291.390 (2)
N1—C131.3883 (18)C28—H280.9501
N1—H1N0.886 (17)C29—H290.9500
C1—C21.392 (2)C31—C321.511 (3)
C1—C61.396 (2)C31—C331.514 (3)
C2—C31.394 (2)C31—C341.518 (2)
C2—H20.9500C32—H3210.9801
C3—C41.378 (3)C32—H3220.9800
C3—H30.9500C32—H3230.9799
C4—C51.374 (3)C33—H3310.9803
C4—H40.9500C33—H3320.9802
C5—C61.396 (2)C33—H3330.9804
C5—H50.9501C34—H3410.9802
C6—H60.9501C34—H3420.9801
C7—C121.3992 (18)C34—H3430.9801
C7—C81.3995 (18)P3—O101.4813 (10)
C8—C91.3939 (18)P3—O91.6187 (11)
C8—H80.9502P3—C351.7853 (13)
C9—C101.389 (2)P3—C411.7895 (15)
C9—H90.9500O9—N31.4367 (14)
C10—C111.391 (2)O11—C471.3393 (18)
C10—H100.9500O11—C481.4752 (18)
C11—C121.3864 (18)O12—C471.2007 (18)
C11—H110.9500N3—C471.3837 (18)
C12—H120.9501N3—H3N0.923 (18)
C14—C151.515 (3)C35—C401.3961 (19)
C14—C171.518 (3)C35—C361.4026 (19)
C14—C161.518 (2)C36—C371.3942 (19)
C15—H1510.9800C36—H360.9500
C15—H1520.9802C37—C381.381 (2)
C15—H1530.9802C37—H370.9500
C16—H1610.9802C38—C391.389 (2)
C16—H1620.9801C38—H380.9500
C16—H1630.9800C39—C401.395 (2)
C17—H1710.9805C39—H390.9499
C17—H1720.9807C40—H400.9502
C17—H1730.9804C41—C461.3954 (19)
P2—O61.4783 (10)C41—C421.399 (2)
P2—O51.6162 (11)C42—C431.385 (2)
P2—C181.7836 (14)C42—H420.9500
P2—C241.7890 (15)C43—C441.386 (2)
O5—N21.4374 (14)C43—H430.9500
O7—C301.3400 (17)C44—C451.383 (2)
O7—C311.4748 (18)C44—H440.9501
O8—C301.2018 (17)C45—C461.389 (2)
N2—C301.3867 (18)C45—H450.9501
N2—H2N0.95 (2)C46—H460.9499
C18—C231.3976 (19)C48—C501.509 (3)
C18—C191.4019 (19)C48—C511.516 (3)
C19—C201.3932 (19)C48—C491.528 (3)
C19—H190.9501C49—H4910.9801
C20—C211.384 (2)C49—H4920.9800
C20—H200.9500C49—H4930.9801
C21—C221.391 (2)C50—H5010.9803
C21—H210.9500C50—H5020.9802
C22—C231.393 (2)C50—H5030.9801
C22—H220.9500C51—H5110.9804
C23—H230.9500C51—H5120.9803
C24—C251.393 (2)C51—H5130.9803
O2—P1—O1115.19 (6)C25—C26—H26120.1
O2—P1—C7112.68 (6)C28—C27—C26120.93 (16)
O1—P1—C799.91 (6)C28—C27—H27119.5
O2—P1—C1112.18 (6)C26—C27—H27119.5
O1—P1—C1105.79 (6)C27—C28—C29119.93 (16)
C7—P1—C1110.27 (7)C27—C28—H28120.1
N1—O1—P1107.68 (8)C29—C28—H28120.0
C13—O3—C14120.86 (11)C28—C29—C24119.56 (16)
C13—N1—O1111.09 (10)C28—C29—H29120.2
C13—N1—H1N114.4 (11)C24—C29—H29120.2
O1—N1—H1N107.8 (11)O8—C30—O7127.79 (14)
C2—C1—C6119.87 (14)O8—C30—N2125.97 (14)
C2—C1—P1118.31 (11)O7—C30—N2106.14 (11)
C6—C1—P1121.80 (12)O7—C31—C32109.70 (14)
C1—C2—C3119.72 (15)O7—C31—C33110.27 (16)
C1—C2—H2120.1C32—C31—C33112.80 (18)
C3—C2—H2120.2O7—C31—C34101.63 (12)
C4—C3—C2120.01 (17)C32—C31—C34110.71 (18)
C4—C3—H3120.1C33—C31—C34111.16 (16)
C2—C3—H3119.9C31—C32—H321109.5
C5—C4—C3120.74 (16)C31—C32—H322109.4
C5—C4—H4119.7H321—C32—H322109.5
C3—C4—H4119.6C31—C32—H323109.5
C4—C5—C6120.10 (16)H321—C32—H323109.5
C4—C5—H5120.0H322—C32—H323109.5
C6—C5—H5119.9C31—C33—H331109.4
C1—C6—C5119.55 (17)C31—C33—H332109.5
C1—C6—H6120.2H331—C33—H332109.5
C5—C6—H6120.3C31—C33—H333109.6
C12—C7—C8120.03 (12)H331—C33—H333109.4
C12—C7—P1122.08 (10)H332—C33—H333109.5
C8—C7—P1117.89 (10)C31—C34—H341109.5
C9—C8—C7119.44 (13)C31—C34—H342109.5
C9—C8—H8120.3H341—C34—H342109.5
C7—C8—H8120.2C31—C34—H343109.4
C10—C9—C8120.33 (13)H341—C34—H343109.5
C10—C9—H9119.9H342—C34—H343109.5
C8—C9—H9119.8O10—P3—O9115.30 (6)
C9—C10—C11120.09 (13)O10—P3—C35112.54 (6)
C9—C10—H10119.9O9—P3—C3599.52 (6)
C11—C10—H10120.0O10—P3—C41111.02 (6)
C12—C11—C10120.22 (14)O9—P3—C41106.13 (6)
C12—C11—H11119.9C35—P3—C41111.72 (7)
C10—C11—H11119.9N3—O9—P3108.44 (8)
C11—C12—C7119.88 (13)C47—O11—C48120.81 (12)
C11—C12—H12120.1C47—N3—O9111.97 (11)
C7—C12—H12120.0C47—N3—H3N117.6 (12)
O4—C13—O3128.10 (14)O9—N3—H3N110.6 (11)
O4—C13—N1126.01 (14)C40—C35—C36120.06 (13)
O3—C13—N1105.80 (11)C40—C35—P3123.37 (11)
O3—C14—C15109.68 (13)C36—C35—P3116.57 (11)
O3—C14—C17109.88 (15)C37—C36—C35119.50 (14)
C15—C14—C17112.75 (16)C37—C36—H36120.2
O3—C14—C16101.85 (12)C35—C36—H36120.3
C15—C14—C16111.39 (16)C38—C37—C36120.25 (15)
C17—C14—C16110.74 (15)C38—C37—H37119.9
C14—C15—H151109.4C36—C37—H37119.9
C14—C15—H152109.5C37—C38—C39120.48 (14)
H151—C15—H152109.5C37—C38—H38119.8
C14—C15—H153109.5C39—C38—H38119.8
H151—C15—H153109.5C38—C39—C40120.07 (15)
H152—C15—H153109.5C38—C39—H39120.0
C14—C16—H161109.5C40—C39—H39120.0
C14—C16—H162109.5C39—C40—C35119.63 (15)
H161—C16—H162109.5C39—C40—H40120.2
C14—C16—H163109.5C35—C40—H40120.2
H161—C16—H163109.5C46—C41—C42119.44 (14)
H162—C16—H163109.5C46—C41—P3123.19 (11)
C14—C17—H171109.5C42—C41—P3117.37 (11)
C14—C17—H172109.6C43—C42—C41120.11 (14)
H171—C17—H172109.4C43—C42—H42120.0
C14—C17—H173109.5C41—C42—H42119.9
H171—C17—H173109.4C42—C43—C44119.96 (15)
H172—C17—H173109.4C42—C43—H43120.0
O6—P2—O5115.40 (6)C44—C43—H43120.0
O6—P2—C18112.66 (6)C45—C44—C43120.48 (15)
O5—P2—C1899.07 (6)C45—C44—H44119.8
O6—P2—C24110.56 (6)C43—C44—H44119.8
O5—P2—C24106.56 (6)C44—C45—C46119.92 (15)
C18—P2—C24112.02 (7)C44—C45—H45120.1
N2—O5—P2108.19 (8)C46—C45—H45120.0
C30—O7—C31121.02 (11)C45—C46—C41120.08 (15)
C30—N2—O5111.24 (10)C45—C46—H46120.0
C30—N2—H2N115.3 (12)C41—C46—H46119.9
O5—N2—H2N109.6 (11)O12—C47—O11127.51 (14)
C23—C18—C19120.06 (13)O12—C47—N3125.58 (15)
C23—C18—P2123.04 (11)O11—C47—N3106.82 (12)
C19—C18—P2116.90 (11)O11—C48—C50110.23 (16)
C20—C19—C18119.55 (14)O11—C48—C51101.75 (14)
C20—C19—H19120.3C50—C48—C51110.8 (2)
C18—C19—H19120.2O11—C48—C49109.18 (16)
C21—C20—C19120.30 (15)C50—C48—C49113.8 (2)
C21—C20—H20119.9C51—C48—C49110.39 (18)
C19—C20—H20119.8C48—C49—H491109.5
C20—C21—C22120.31 (14)C48—C49—H492109.4
C20—C21—H21119.8H491—C49—H492109.5
C22—C21—H21119.9C48—C49—H493109.5
C21—C22—C23120.13 (15)H491—C49—H493109.5
C21—C22—H22119.9H492—C49—H493109.5
C23—C22—H22119.9C48—C50—H501109.4
C22—C23—C18119.64 (15)C48—C50—H502109.6
C22—C23—H23120.2H501—C50—H502109.5
C18—C23—H23120.2C48—C50—H503109.4
C25—C24—C29120.18 (14)H501—C50—H503109.5
C25—C24—P2117.08 (11)H502—C50—H503109.5
C29—C24—P2122.74 (12)C48—C51—H511109.6
C26—C25—C24119.62 (16)C48—C51—H512109.4
C26—C25—H25120.2H511—C51—H512109.4
C24—C25—H25120.2C48—C51—H513109.5
C27—C26—C25119.77 (16)H511—C51—H513109.4
C27—C26—H26120.2H512—C51—H513109.5
O2—P1—O1—N158.18 (9)C18—P2—C24—C25106.65 (13)
C7—P1—O1—N1179.16 (8)O6—P2—C24—C29160.14 (12)
C1—P1—O1—N166.33 (9)O5—P2—C24—C2934.01 (14)
P1—O1—N1—C13142.58 (11)C18—P2—C24—C2973.30 (14)
O2—P1—C1—C226.47 (14)C31—O7—C30—O81.8 (3)
O1—P1—C1—C2152.85 (12)C31—O7—C30—N2178.31 (14)
C7—P1—C1—C2100.00 (13)O5—N2—C30—O818.3 (2)
O2—P1—C1—C6155.13 (12)O5—N2—C30—O7165.15 (12)
O1—P1—C1—C628.76 (14)C30—O7—C31—C3263.8 (2)
C7—P1—C1—C678.40 (14)C30—O7—C31—C3361.0 (2)
O2—P1—C7—C12171.40 (12)C30—O7—C31—C34179.00 (15)
O1—P1—C7—C1265.83 (14)O10—P3—O9—N357.91 (9)
C1—P1—C7—C1245.21 (15)C35—P3—O9—N3178.52 (8)
O2—P1—C7—C88.16 (15)C41—P3—O9—N365.44 (9)
O1—P1—C7—C8114.61 (12)P3—O9—N3—C47133.94 (12)
C1—P1—C7—C8134.35 (12)O10—P3—C35—C40174.95 (12)
C14—O3—C13—O42.6 (3)O9—P3—C35—C4052.35 (14)
C14—O3—C13—N1174.07 (14)C41—P3—C35—C4059.37 (15)
O1—N1—C13—O416.6 (2)O10—P3—C35—C364.97 (15)
O1—N1—C13—O3166.69 (11)O9—P3—C35—C36127.57 (12)
C13—O3—C14—C1564.6 (2)C41—P3—C35—C36120.72 (13)
C13—O3—C14—C1759.9 (2)O10—P3—C41—C46164.23 (12)
C13—O3—C14—C16177.33 (15)O9—P3—C41—C4638.23 (14)
O6—P2—O5—N257.27 (9)C35—P3—C41—C4669.26 (15)
C18—P2—O5—N2177.79 (8)O10—P3—C41—C4216.56 (14)
C24—P2—O5—N265.88 (9)O9—P3—C41—C42142.56 (12)
P2—O5—N2—C30138.18 (11)C35—P3—C41—C42109.96 (13)
O6—P2—C18—C23179.38 (13)C48—O11—C47—O126.2 (3)
O5—P2—C18—C2358.11 (14)C48—O11—C47—N3170.61 (15)
C24—P2—C18—C2353.97 (16)O9—N3—C47—O1221.4 (2)
O6—P2—C18—C190.87 (15)O9—N3—C47—O11161.75 (12)
O5—P2—C18—C19121.64 (13)C47—O11—C48—C5064.9 (2)
C24—P2—C18—C19126.28 (13)C47—O11—C48—C51177.42 (17)
O6—P2—C24—C2519.90 (14)C47—O11—C48—C4960.7 (2)
O5—P2—C24—C25146.03 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O60.886 (17)1.836 (17)2.7138 (16)170.0 (15)
N2—H2N···O20.95 (2)1.83 (2)2.7688 (16)168.4 (17)
N3—H3N···O10i0.923 (18)1.855 (19)2.7666 (16)169.0 (16)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

We thank both the EPSRC and GlaxoSmithKline Pharmaceuticals for a CASE award (to AJB).

References

First citationBlatch, A. J., Howard, J. A. K., Probert, M. R., Smethurst, C. A. & Whiting, A. (2006). Private communication to Cambridge Structural Database. CCDC-299397.  Google Scholar
First citationBoche, G., Boie, C., Bosold, F., Harms, K. & Marsch, M. (1994). Angew. Chem. Int. Ed. Engl. 33, 115–117.  CSD CrossRef Web of Science Google Scholar
First citationBoche, G., Meier, C. & Kleemiss, W. (1988). Tetrahedron Lett. 29, 1777–1780.  CrossRef CAS Web of Science Google Scholar
First citationBoche, G. & Schrott, W. (1982a). Tetrahedron Lett. 51, 5399–5402.  CrossRef Google Scholar
First citationBoche, G. & Schrott, W. (1982b). Tetrahedron Lett. 51, 5403–5406.  CrossRef Google Scholar
First citationBoyles, D. C., Curran, T. T., Greene, D., Macikenas, D. & Parlett, R. V. IV (2002). Tetrahedron Lett. 43, 6735–6737.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrice, I. D., Jenkins, I. D., Busfield, W. K., Byriel, K. A. & Kennard, C. H. L. (2004). Acta Cryst. E60, o2384–o2385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarger, M. J. P. (1981). J. Chem. Soc. Perkin Trans. I, pp. 3284–3287.  CrossRef Google Scholar
First citationLyssenko, K. A., Grintselev-Knyazev, G. V. & Antipin, M. Yu. (2002). Mendeleev Commun. pp. 128–130.  Web of Science CSD CrossRef Google Scholar
First citationMartynov, I. V., Chekhlov, A. N., Ivanov, A. N., Epishkina, T. A., Makhaev, V. D. & Sokolov, V. B. (1988). Bull. Acad. Sci. USSR Div. Chem. Sci. 36, 2410–2412.  CrossRef Web of Science Google Scholar
First citationMasse, G. & Sturtz, G. (1988a). Synthesis, pp. 904–907.  CrossRef Google Scholar
First citationMasse, G. & Sturtz, G. (1988b). Synthesis, pp. 907–908.  CrossRef Google Scholar
First citationMortl, M., Knaausz, D., Bocskei, Z., Kolos, Z., Ujszaszy, K., Szakacs, L. & Sohar, P. (1995). J. Organomet. Chem. 492, 115–119.  CSD CrossRef Web of Science Google Scholar
First citationSpek, A. L. & Veldman, N. (1999). Private communication to Cambridge Structural Database. Refcode HIGPAO, CCDC-113905.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds