organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydro­chloro­thia­zide N-methyl-2-pyrrolidone disolvate

CROSSMARK_Color_square_no_text.svg

aSolid State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 20 September 2006; accepted 15 October 2006; online 25 October 2006)

Hydro­chloro­thia­zide forms a 1:2 solvate with N-methyl­pyrrolidone (systematic name: 6-chloro-3,4-dihydro-2H-1,2,4-benzothia­diazine-7-sulfonamide 1,1-dioxide N-methyl-2-pyrrolidone disolvate), C7H8ClN3O4S2·2C5H9NO. The compound crystallizes with one hydro­chloro­thia­zide and two solvent mol­ecules, one of which is disordered, in the asymmetric unit. The crystal structure is isostructural with the previously reported hydro­chloro­thia­zide N,N-dimethyl­acetamide disolvate.

Comment

Hydro­chloro­thia­zide (HCT) is a thia­zide diuretic which is known to crystallize in at least two non-solvated forms, form I (Dupont & Dideberg, 1972[Dupont, L. & Dideberg, O. (1972). Acta Cryst. B28, 2340-2347.]) and form II (Florence et al., 2005[Florence, A., Johnston, A., Fernandes, P., Shankland, K., Stevens, H. N. E., Osmunsden, S. & Mullen, A. B. (2005). Acta Cryst. E61, o2798-o2800.]). The title compound of this report, (I)[link], was produced during an automated parallel crystallization study of HCT (Johnston, Florence, Shankland et al., 2006[Johnston, A., Florence, A. J., Shankland, N., Kennedy, A. R., Shankland, K. & Price, S. L. (2006). Cryst. Growth Des. Submitted.]). The sample was identified as a novel form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]). Subsequent manual recrystallization from a saturated N-methyl­pyrrolidone (NMP) solution by slow evaporation at 298 K yielded samples of (I)[link] suitable for single-crystal diffraction (Fig. 1[link]).

[Scheme 1]

It is notable that the crystal structure of (I)[link] is isostructural with that of the previously reported HCT N,N-dimethyl­acetamide (DMA) disolvate (Johnston, Florence & Kennedy, 2006[Johnston, A., Florence, A. J. & Kennedy, A. R. (2006). Acta Cryst. E62, o2926-o2928.]), with the same space group and very similar unit-cell parameters and packing arrangements. Adjacent HCT chains pack as layers in the ab plane and form an alternating stacked arrangement with layers of solvent mol­ecules in the direction of the c axis (Fig. 2[link]). The structures differ slightly in the extent of solvent disorder, with both solvent mol­ecules disordered in the HCT–DMA disolvate, compared with a single mol­ecule in (I)[link]. The structure also contains four N—H⋯O hydrogen bonds, with N1, N2 and N3 of HCT donating contacts to adjacent O atoms of NMP (Table 1[link]).

[Figure 1]
Figure 1
The asymmetric unit contents of (I)[link], with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Minor disorder components have been omitted for clarity.
[Figure 2]
Figure 2
The crystal packing in the structure of (I)[link], viewed down the b axis, showing the alternating layers of HCT and NMP mol­ecules.

Experimental

A single-crystal sample of the title compound was recrystallized from a saturated N-methyl­pyrrolidone solution by isothermal solvent evaporation at 298 K.

Crystal data
  • C7H8ClN3O4S2·2C5H9NO

  • Mr = 496.00

  • Monoclinic, P 21 /c

  • a = 17.0756 (6) Å

  • b = 7.4819 (3) Å

  • c = 17.9978 (6) Å

  • β = 105.211 (2)°

  • V = 2218.81 (14) Å3

  • Z = 4

  • Dx = 1.485 Mg m−3

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 123 (2) K

  • Cut from prism, colourless

  • 0.32 × 0.20 × 0.12 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: none

  • 24804 measured reflections

  • 4852 independent reflections

  • 3673 reflections with I > 2σ(I)

  • Rint = 0.093

  • θmax = 27.1°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.174

  • S = 1.08

  • 4852 reflections

  • 296 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.1041P)2 + 0.892P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O6i 0.79 (5) 2.01 (5) 2.799 (4) 177 (5)
N2—H2N⋯O6ii 0.80 (4) 2.35 (4) 2.929 (4) 130 (3)
N3—H3N⋯O5 0.84 (3) 2.12 (4) 2.891 (4) 153 (4)
N3—H4N⋯O5iii 0.86 (4) 2.04 (4) 2.884 (4) 169 (3)
C1—H1A⋯O6ii 0.99 2.58 3.075 (4) 111
C7—H7⋯O2iv 0.95 2.33 3.249 (4) 164
C11—H11B⋯O3v 0.99 2.52 3.423 (4) 152
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Three C atoms (C14, C15 and C16) and the associated H atoms of one solvent mol­ecule were treated as disordered over two sites. Isotropic refinement gave a refined occupancy of 0.52 (3):0.48 (3). All amine H atoms were found by difference synthesis and refined isotropically. All other H atoms were positioned geometrically at distances of 0.95 (CH), 0.98 (CH3) or 0.99 Å (CH2); a riding model was used during refinement, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for all others.

Data collection: COLLECT (Nonius, 1988[Nonius (1988). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1988) and DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide N-methyl-2-pyrrolidone disolvate top
Crystal data top
C7H8ClN3O4S2·2C5H9NOF(000) = 1040
Mr = 496.00Dx = 1.485 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5023 reflections
a = 17.0756 (6) Åθ = 1.0–27.1°
b = 7.4819 (3) ŵ = 0.41 mm1
c = 17.9978 (6) ÅT = 123 K
β = 105.211 (2)°Cut from prism, colourless
V = 2218.81 (14) Å30.32 × 0.20 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
3673 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.093
Graphite monochromatorθmax = 27.1°, θmin = 1.2°
φ and ω scansh = 2121
24804 measured reflectionsk = 99
4852 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.1041P)2 + 0.892P]
where P = (Fo2 + 2Fc2)/3
4852 reflections(Δ/σ)max = 0.001
296 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.55 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.83783 (4)0.43550 (10)0.16447 (4)0.0287 (2)
S10.65205 (4)0.18853 (10)0.27397 (4)0.0237 (2)
S20.89965 (4)0.01810 (10)0.15514 (4)0.0210 (2)
O10.69144 (13)0.2471 (3)0.35033 (12)0.0372 (6)
O20.63256 (13)0.3193 (3)0.21369 (13)0.0310 (5)
O30.88310 (12)0.0813 (3)0.07722 (11)0.0273 (5)
O40.90847 (11)0.1695 (3)0.16923 (11)0.0247 (5)
O50.98030 (12)0.0406 (3)0.35009 (12)0.0286 (5)
O60.54188 (14)1.0488 (3)0.13077 (13)0.0361 (6)
N10.56794 (15)0.0889 (3)0.27559 (16)0.0248 (5)
N20.62120 (16)0.2066 (4)0.28470 (16)0.0304 (6)
N30.97927 (15)0.1167 (4)0.20314 (16)0.0249 (5)
N40.90110 (15)0.0930 (4)0.41855 (14)0.0288 (6)
N50.63002 (18)0.9495 (4)0.02142 (15)0.0378 (7)
C10.58148 (19)0.0752 (4)0.32033 (18)0.0289 (7)
H1A0.52880.12290.32470.035*
H1B0.61540.04940.37290.035*
C20.68438 (17)0.1647 (4)0.25432 (16)0.0238 (6)
C30.70834 (16)0.0145 (4)0.24753 (16)0.0214 (6)
C40.77418 (16)0.0536 (4)0.21818 (16)0.0219 (6)
H40.79050.17440.21580.026*
C50.81629 (16)0.0808 (4)0.19233 (16)0.0210 (6)
C60.79023 (16)0.2571 (4)0.19616 (16)0.0229 (6)
C70.72558 (17)0.2987 (4)0.22588 (17)0.0256 (6)
H70.70900.41970.22700.031*
C80.93403 (18)0.0472 (4)0.39273 (17)0.0264 (7)
C90.90442 (19)0.2160 (4)0.42372 (18)0.0309 (7)
H9A0.95020.29750.44610.037*
H9B0.86430.27980.38260.037*
C100.8654 (2)0.1475 (5)0.48563 (19)0.0368 (8)
H10A0.81620.21740.48570.044*
H10B0.90400.15500.53730.044*
C110.84395 (19)0.0454 (4)0.46353 (18)0.0314 (7)
H11A0.78710.05620.43220.038*
H11B0.85180.12200.50970.038*
C120.91140 (19)0.2762 (4)0.39683 (18)0.0320 (7)
H12A0.95030.28010.36540.048*
H12B0.93170.34850.44330.048*
H12C0.85910.32370.36710.048*
C130.56205 (19)0.9407 (4)0.07679 (18)0.0295 (7)
C14A0.5044 (7)0.7798 (12)0.0695 (6)0.032 (3)*0.52 (3)
H14A0.45080.82210.06530.039*0.52 (3)
H14B0.49690.69570.11320.039*0.52 (3)
C15A0.5546 (8)0.6956 (12)0.0066 (5)0.035 (2)*0.52 (3)
H15A0.55680.56410.00110.042*0.52 (3)
H15B0.52920.72270.04880.042*0.52 (3)
C16A0.6444 (5)0.7776 (18)0.0258 (6)0.045 (3)*0.52 (3)
H16A0.66560.80270.08140.054*0.52 (3)
H16B0.68230.69690.00890.054*0.52 (3)
C14B0.5226 (8)0.7851 (14)0.0571 (7)0.033 (3)*0.48 (3)
H14C0.51070.69950.10060.040*0.48 (3)
H14D0.47070.81930.04610.040*0.48 (3)
C15B0.5793 (10)0.6982 (14)0.0145 (6)0.045 (3)*0.48 (3)
H15C0.55010.67090.05390.055*0.48 (3)
H15D0.60370.58680.00080.055*0.48 (3)
C16B0.6381 (6)0.829 (2)0.0403 (7)0.048 (3)*0.48 (3)
H16C0.69300.77500.05430.058*0.48 (3)
H16D0.62920.89060.08600.058*0.48 (3)
C170.6911 (2)1.0796 (6)0.0191 (2)0.0549 (11)
H17A0.73741.02360.03260.082*
H17B0.70891.12990.03290.082*
H17C0.66921.17510.05590.082*
H1N0.538 (3)0.080 (6)0.234 (3)0.061 (14)*
H2N0.613 (2)0.310 (5)0.290 (2)0.035 (10)*
H3N0.994 (2)0.092 (5)0.250 (2)0.044 (11)*
H4N0.986 (2)0.224 (5)0.189 (2)0.032 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0261 (4)0.0232 (4)0.0392 (4)0.0011 (3)0.0127 (3)0.0036 (3)
S10.0181 (4)0.0252 (4)0.0282 (4)0.0008 (3)0.0066 (3)0.0044 (3)
S20.0179 (4)0.0233 (4)0.0224 (4)0.0000 (3)0.0066 (3)0.0006 (3)
O10.0254 (11)0.0485 (14)0.0340 (12)0.0007 (11)0.0010 (9)0.0174 (11)
O20.0282 (11)0.0253 (11)0.0422 (12)0.0012 (9)0.0139 (10)0.0033 (9)
O30.0282 (11)0.0337 (12)0.0205 (10)0.0016 (9)0.0073 (9)0.0022 (9)
O40.0213 (10)0.0242 (11)0.0303 (11)0.0019 (8)0.0097 (9)0.0018 (9)
O50.0278 (11)0.0301 (11)0.0312 (11)0.0022 (9)0.0133 (10)0.0012 (9)
O60.0296 (12)0.0368 (13)0.0369 (13)0.0007 (10)0.0003 (10)0.0083 (10)
N10.0177 (12)0.0294 (14)0.0269 (13)0.0008 (10)0.0053 (11)0.0001 (11)
N20.0270 (14)0.0262 (15)0.0425 (16)0.0012 (11)0.0171 (12)0.0038 (12)
N30.0198 (12)0.0260 (14)0.0283 (14)0.0016 (11)0.0054 (11)0.0013 (12)
N40.0261 (13)0.0316 (14)0.0295 (14)0.0009 (11)0.0086 (11)0.0002 (11)
N50.0433 (17)0.0437 (17)0.0254 (14)0.0050 (13)0.0071 (13)0.0052 (12)
C10.0277 (15)0.0299 (16)0.0321 (16)0.0015 (13)0.0131 (13)0.0050 (13)
C20.0195 (14)0.0259 (15)0.0258 (14)0.0014 (12)0.0053 (11)0.0024 (12)
C70.0211 (14)0.0210 (14)0.0345 (16)0.0022 (12)0.0072 (12)0.0014 (12)
C60.0194 (13)0.0222 (14)0.0263 (14)0.0019 (12)0.0049 (11)0.0010 (12)
C50.0142 (13)0.0253 (14)0.0220 (14)0.0015 (11)0.0021 (11)0.0014 (11)
C40.0200 (14)0.0214 (14)0.0224 (14)0.0023 (11)0.0022 (11)0.0009 (11)
C30.0162 (13)0.0245 (14)0.0224 (14)0.0007 (11)0.0032 (11)0.0014 (11)
C80.0231 (15)0.0296 (16)0.0228 (14)0.0004 (12)0.0004 (12)0.0029 (12)
C90.0304 (17)0.0294 (16)0.0312 (16)0.0015 (13)0.0049 (13)0.0010 (13)
C100.0380 (19)0.0414 (19)0.0326 (17)0.0058 (16)0.0122 (15)0.0032 (15)
C110.0298 (16)0.0400 (18)0.0276 (16)0.0007 (14)0.0134 (14)0.0020 (14)
C120.0336 (17)0.0277 (16)0.0326 (16)0.0013 (14)0.0047 (14)0.0022 (13)
C130.0286 (16)0.0328 (17)0.0278 (16)0.0057 (13)0.0086 (14)0.0026 (13)
C170.037 (2)0.074 (3)0.045 (2)0.010 (2)0.0049 (17)0.009 (2)
Geometric parameters (Å, º) top
Cl1—C61.735 (3)C4—H40.9500
S1—O11.431 (2)C8—C91.520 (4)
S1—O21.434 (2)C9—C101.529 (4)
S1—N11.625 (3)C9—H9A0.9900
S1—C31.756 (3)C9—H9B0.9900
S2—O41.427 (2)C10—C111.516 (5)
S2—O31.436 (2)C10—H10A0.9900
S2—N31.588 (3)C10—H10B0.9900
S2—C51.787 (3)C11—H11A0.9900
O5—C81.239 (4)C11—H11B0.9900
O6—C131.241 (4)C12—H12A0.9800
N1—C11.453 (4)C12—H12B0.9800
N1—H1N0.79 (4)C12—H12C0.9800
N2—C21.368 (4)C13—C14B1.435 (11)
N2—C11.437 (4)C13—C14A1.582 (11)
N2—H2N0.79 (4)C14A—C15A1.547 (12)
N3—H3N0.84 (4)C14A—H14A0.9900
N3—H4N0.86 (4)C14A—H14B0.9900
N4—C81.330 (4)C15A—C16A1.602 (14)
N4—C121.448 (4)C15A—H15A0.9900
N4—C111.466 (4)C15A—H15B0.9900
N5—C131.318 (4)C16A—H16A0.9900
N5—C16B1.411 (10)C16A—H16B0.9900
N5—C171.419 (5)C14B—C15B1.538 (14)
N5—C16A1.525 (10)C14B—H14C0.9900
C1—H1A0.9900C14B—H14D0.9900
C1—H1B0.9900C15B—C16B1.390 (14)
C2—C71.397 (4)C15B—H15C0.9900
C2—C31.416 (4)C15B—H15D0.9900
C7—C61.382 (4)C16B—H16C0.9900
C7—H70.9500C16B—H16D0.9900
C6—C51.400 (4)C17—H17A0.9800
C5—C41.386 (4)C17—H17B0.9800
C4—C31.393 (4)C17—H17C0.9800
O1—S1—O2118.35 (14)C9—C10—H10A110.9
O1—S1—N1108.55 (14)C11—C10—H10B110.9
O2—S1—N1107.21 (13)C9—C10—H10B110.9
O1—S1—C3109.54 (14)H10A—C10—H10B108.9
O2—S1—C3109.62 (13)N4—C11—C10103.1 (2)
N1—S1—C3102.34 (13)N4—C11—H11A111.2
O4—S2—O3118.80 (12)C10—C11—H11A111.2
O4—S2—N3108.95 (14)N4—C11—H11B111.2
O3—S2—N3107.43 (14)C10—C11—H11B111.2
O4—S2—C5104.41 (12)H11A—C11—H11B109.1
O3—S2—C5107.89 (13)N4—C12—H12A109.5
N3—S2—C5109.06 (13)N4—C12—H12B109.5
C1—N1—S1112.6 (2)H12A—C12—H12B109.5
C1—N1—H1N115 (3)N4—C12—H12C109.5
S1—N1—H1N112 (3)H12A—C12—H12C109.5
C2—N2—C1122.4 (3)H12B—C12—H12C109.5
C2—N2—H2N116 (3)O6—C13—N5124.6 (3)
C1—N2—H2N120 (3)O6—C13—C14B132.1 (6)
S2—N3—H3N115 (3)N5—C13—C14B103.4 (6)
S2—N3—H4N116 (2)O6—C13—C14A120.7 (5)
H3N—N3—H4N118 (4)N5—C13—C14A114.8 (5)
C8—N4—C12124.0 (3)C15A—C14A—C1399.9 (7)
C8—N4—C11113.9 (3)C15A—C14A—H14A111.8
C12—N4—C11121.6 (3)C13—C14A—H14A111.8
C13—N5—C16B116.6 (5)C15A—C14A—H14B111.8
C13—N5—C17123.5 (3)C13—C14A—H14B111.8
C16B—N5—C17119.8 (5)H14A—C14A—H14B109.5
C13—N5—C16A111.1 (4)C14A—C15A—C16A108.1 (7)
C17—N5—C16A123.5 (4)C14A—C15A—H15A110.1
N2—C1—N1110.8 (2)C16A—C15A—H15A110.1
N2—C1—H1A109.5C14A—C15A—H15B110.1
N1—C1—H1A109.5C16A—C15A—H15B110.1
N2—C1—H1B109.5H15A—C15A—H15B108.4
N1—C1—H1B109.5N5—C16A—C15A101.5 (6)
H1A—C1—H1B108.1N5—C16A—H16A111.5
N2—C2—C7120.5 (3)C15A—C16A—H16A111.5
N2—C2—C3121.8 (3)N5—C16A—H16B111.5
C7—C2—C3117.6 (2)C15A—C16A—H16B111.5
C6—C7—C2120.7 (3)H16A—C16A—H16B109.3
C6—C7—H7119.7C13—C14B—C15B108.5 (8)
C2—C7—H7119.7C13—C14B—H14C110.0
C7—C6—C5121.8 (3)C15B—C14B—H14C110.0
C7—C6—Cl1116.4 (2)C13—C14B—H14D110.0
C5—C6—Cl1121.8 (2)C15B—C14B—H14D110.0
C4—C5—C6117.9 (2)H14C—C14B—H14D108.4
C4—C5—S2118.0 (2)C16B—C15B—C14B102.9 (9)
C6—C5—S2124.1 (2)C16B—C15B—H15C111.2
C5—C4—C3121.1 (3)C14B—C15B—H15C111.2
C5—C4—H4119.4C16B—C15B—H15D111.2
C3—C4—H4119.4C14B—C15B—H15D111.2
C4—C3—C2120.7 (3)H15C—C15B—H15D109.1
C4—C3—S1120.1 (2)C15B—C16B—N5105.9 (8)
C2—C3—S1119.2 (2)C15B—C16B—H16C110.6
O5—C8—N4125.6 (3)N5—C16B—H16C110.6
O5—C8—C9126.0 (3)C15B—C16B—H16D110.6
N4—C8—C9108.4 (3)N5—C16B—H16D110.6
C8—C9—C10103.8 (3)H16C—C16B—H16D108.7
C8—C9—H9A111.0N5—C17—H17A109.5
C10—C9—H9A111.0N5—C17—H17B109.5
C8—C9—H9B111.0H17A—C17—H17B109.5
C10—C9—H9B111.0N5—C17—H17C109.5
H9A—C9—H9B109.0H17A—C17—H17C109.5
C11—C10—C9104.5 (2)H17B—C17—H17C109.5
C11—C10—H10A110.9
O1—S1—N1—C165.6 (2)C12—N4—C8—O53.5 (5)
O2—S1—N1—C1165.5 (2)C11—N4—C8—O5175.8 (3)
C3—S1—N1—C150.2 (2)C12—N4—C8—C9175.9 (3)
C2—N2—C1—N142.9 (4)C11—N4—C8—C93.6 (3)
S1—N1—C1—N265.8 (3)O5—C8—C9—C10168.1 (3)
C1—N2—C2—C7174.7 (3)N4—C8—C9—C1012.6 (3)
C1—N2—C2—C37.9 (5)C8—C9—C10—C1122.9 (3)
N2—C2—C7—C6179.0 (3)C8—N4—C11—C1018.3 (3)
C3—C2—C7—C63.4 (4)C12—N4—C11—C10169.2 (3)
C2—C7—C6—C50.9 (4)C9—C10—C11—N424.6 (3)
C2—C7—C6—Cl1178.7 (2)C16B—N5—C13—O6172.2 (9)
C7—C6—C5—C41.1 (4)C17—N5—C13—O63.6 (5)
Cl1—C6—C5—C4179.3 (2)C16A—N5—C13—O6168.2 (6)
C7—C6—C5—S2179.6 (2)C16B—N5—C13—C14B7.4 (10)
Cl1—C6—C5—S20.1 (4)C17—N5—C13—C14B176.8 (5)
O4—S2—C5—C46.0 (2)C16A—N5—C13—C14B12.2 (8)
O3—S2—C5—C4121.3 (2)C16B—N5—C13—C14A6.7 (10)
N3—S2—C5—C4122.4 (2)C17—N5—C13—C14A177.5 (5)
O4—S2—C5—C6174.8 (2)C16A—N5—C13—C14A12.9 (8)
O3—S2—C5—C658.0 (3)O6—C13—C14A—C15A177.5 (5)
N3—S2—C5—C658.4 (3)N5—C13—C14A—C15A1.4 (7)
C6—C5—C4—C30.4 (4)C14B—C13—C14A—C15A5 (3)
S2—C5—C4—C3179.7 (2)C13—C14A—C15A—C16A14.2 (10)
C5—C4—C3—C22.3 (4)C13—N5—C16A—C15A20.6 (10)
C5—C4—C3—S1175.8 (2)C17—N5—C16A—C15A174.8 (5)
N2—C2—C3—C4178.4 (3)C14A—C15A—C16A—N521.0 (11)
C7—C2—C3—C44.2 (4)O6—C13—C14B—C15B177.0 (6)
N2—C2—C3—S13.5 (4)N5—C13—C14B—C15B3.5 (8)
C7—C2—C3—S1173.9 (2)C14A—C13—C14B—C15B180 (4)
O1—S1—C3—C483.6 (3)C13—C14B—C15B—C16B12.5 (14)
O2—S1—C3—C447.8 (3)C14B—C15B—C16B—N515.9 (16)
N1—S1—C3—C4161.3 (2)C13—N5—C16B—C15B16.2 (17)
O1—S1—C3—C298.2 (3)C17—N5—C16B—C15B167.9 (10)
O2—S1—C3—C2130.4 (2)C16A—N5—C16B—C15B61 (2)
N1—S1—C3—C216.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O6i0.79 (5)2.01 (5)2.799 (4)177 (5)
N2—H2N···O6ii0.80 (4)2.35 (4)2.929 (4)130 (3)
N3—H3N···O50.84 (3)2.12 (4)2.891 (4)153 (4)
N3—H4N···O5iii0.86 (4)2.04 (4)2.884 (4)169 (3)
C1—H1A···O6ii0.992.583.075 (4)111
C7—H7···O2iv0.952.333.249 (4)164
C11—H11B···O3v0.992.523.423 (4)152
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x+2, y+1/2, z+1/2; (iv) x, y+1, z; (v) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Basic Technology Programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (https://www.cposs.org.uk).

References

First citationDupont, L. & Dideberg, O. (1972). Acta Cryst. B28, 2340–2347.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlorence, A., Johnston, A., Fernandes, P., Shankland, K., Stevens, H. N. E., Osmunsden, S. & Mullen, A. B. (2005). Acta Cryst. E61, o2798–o2800.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationJohnston, A., Florence, A. J. & Kennedy, A. R. (2006). Acta Cryst. E62, o2926–o2928.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnston, A., Florence, A. J., Shankland, N., Kennedy, A. R., Shankland, K. & Price, S. L. (2006). Cryst. Growth Des. Submitted.  Google Scholar
First citationNonius (1988). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds