metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2,4-di­chloro-6-(piperidin-1-ylmeth­yl)phenolato-κ2N,O]copper(II)

CROSSMARK_Color_square_no_text.svg

aDivision of Natural Science, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan, bDepartment of Chemical and Biological Engineering, Fukui National College of Technology, Sabae, Fukui 916-8507, Japan, and cDivision of Materials Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
*Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp

(Received 26 September 2006; accepted 29 September 2006; online 11 October 2006)

In the title compound, [Cu(C12H14Cl2NO)2], the CuII atom is four-coordinated in a distorted square-planar geometry by two N atoms and two O atoms from two 2,4-dichloro-6-(piperidin-1-ylmeth­yl)phenolate ligands. The dihedral angle between the N/Cu/O coordination planes is 16.53 (9)°.

Comment

Piperidine compounds can act as complexing reagents with metallic ions, but few metal complexes with piperidine derivatives have been reported (Näther & Beck, 2004[Näther, C. & Beck, A. (2004). Acta Cryst. E60, m1008-m1009.]). Recently, we determined the crystal structure of 2,4-dichloro-6-(piperidin-1-ylmeth­yl)phenol (HCl2bpipe) in which inter­molecular C⋯C and Cl⋯Cl contacts were observed (Kubono et al., 2005[Kubono, K., Oshima, S., Hirayama, N. & Yokoi, K. (2005). Acta Cryst. E61, o3706-o3708.]). The present paper describes the crystal structure of the CuII complex with HCl2bpipe, (I)[link].

[Scheme 1]

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. The CuII atom is four-coordinated by two amine N atoms and two phenolate O atoms derived from two bidentate 2,4-dichloro-6-(piperidin-1-ylmeth­yl)phenolate ligands. The geometry of the coordination is distorted square-planar. The dihedral angle between the N/Cu/O coordination planes is 16.53 (9)°. The Cu—O and Cu—N bond lengths are comparable to those of other amino­phenol CuII complexes (You, 2005[You, Z.-L. (2005). Acta Cryst. C61, m406-m408.]; Chen et al., 2005[Chen, L., Zhou, H., Pan, Z.-Q., Hu, X.-L. & Liu, B. (2005). Acta Cryst. E61, m1467-m1469.]). In the crystal structure, no significant inter­molecular inter­actions are observed.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

Experimental

HCl2bpipe (0.104 g, 0.4 mmol) was dissolved in 20 ml of hot chloro­form and 30 ml of a methanol solution of copper(II) acetate monohydrate (0.040 g, 0.2 mmol) were then added to this solution. The mixture was stirred for 20 min at 340 K. After a few days at room temperature, brown crystals of (I)[link] were obtained. Yield 86.9%; m.p. 465.0–465.7 K. Analysis calculated for C24H28Cl4CuN2O2: C 49.54, H 4.85, N 4.81%; found: C 49.45, H4.89, N 4.79%.

Crystal data
  • [Cu(C12H14Cl2NO)2]

  • Mr = 581.83

  • Monoclinic, P 21 /n

  • a = 12.602 (6) Å

  • b = 18.049 (16) Å

  • c = 11.123 (4) Å

  • β = 95.07 (4)°

  • V = 2520 (3) Å3

  • Z = 4

  • Dx = 1.534 Mg m−3

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 298.1 K

  • Prism, brown

  • 0.23 × 0.20 × 0.18 mm

Data collection
  • Rigaku AFC7R diffractometer

  • ω–2θ scans

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.733, Tmax = 0.789

  • 6951 measured reflections

  • 5790 independent reflections

  • 4342 reflections with F2 > 2σ(F2)

  • Rint = 0.021

  • θmax = 27.5°

  • 3 standard reflections every 150 reflections intensity decay: 0.2%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.098

  • S = 1.00

  • 4342 reflections

  • 326 parameters

  • H-atom parameters constrained

  • w = 1/[0.0011Fo2 + σ(Fo2)]/(4Fo2)

  • (Δ/σ)max <0.001

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.894 (2)
Cu1—O2 1.895 (2)
Cu1—N1 2.074 (2)
Cu1—N2 2.072 (2)
O1—Cu1—O2 166.02 (9)
O1—Cu1—N1 92.60 (9)
O1—Cu1—N2 86.99 (9)
O2—Cu1—N1 88.97 (9)
O2—Cu1—N2 93.76 (9)
N1—Cu1—N2 170.32 (9)

All H atoms were placed at idealized positions and refined as riding atoms, with C—H distance of 0.95 Å and Uiso(H) = 1.2Ueq(C).

Data collection: WinAFC (Rigaku/MSC, 2004[Rigaku/MSC (2004). WinAFC and CrystalStructure. Version 3.7.0. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: WinAFC; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). WinAFC and CrystalStructure. Version 3.7.0. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Computing details top

Data collection: WinAFC (Rigaku/MSC, 2004); cell refinement: WinAFC; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

(I) top
Crystal data top
[Cu(C12H14Cl2NO)2]F(000) = 1196.00
Mr = 581.83Dx = 1.534 Mg m3
Monoclinic, P21/nMelting point = 465.0–465.7 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71069 Å
a = 12.602 (6) ÅCell parameters from 25 reflections
b = 18.049 (16) Åθ = 15.2–17.5°
c = 11.123 (4) ŵ = 1.32 mm1
β = 95.07 (4)°T = 298 K
V = 2520 (3) Å3Prism, brown
Z = 40.23 × 0.20 × 0.18 mm
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.021
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 916
Tmin = 0.733, Tmax = 0.789k = 023
6951 measured reflectionsl = 1414
5790 independent reflections3 standard reflections every 150 reflections
4342 reflections with F2 > 2.0σ(F2) intensity decay: 0.2%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[0.0011Fo2 + 1.0000σ(Fo2)]/(4Fo2)
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.42 e Å3
4342 reflectionsΔρmin = 0.48 e Å3
326 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using reflections with F2 > 2.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.09898 (3)0.16797 (2)0.98617 (3)0.03156 (10)
Cl10.21438 (6)0.02624 (5)0.94133 (8)0.0479 (2)
Cl20.32469 (8)0.10956 (6)1.37819 (9)0.0633 (3)
Cl30.44897 (6)0.11495 (5)1.11187 (8)0.0519 (2)
Cl40.53078 (8)0.04436 (6)0.65810 (10)0.0631 (3)
O10.04435 (17)0.13657 (12)0.98665 (18)0.0412 (6)
O20.24947 (17)0.17471 (12)0.99362 (19)0.0378 (6)
N10.10586 (19)0.20210 (12)1.1647 (2)0.0324 (7)
N20.0824 (2)0.15166 (12)0.8011 (2)0.0311 (6)
C10.1049 (2)0.13014 (17)1.0771 (2)0.0313 (8)
C20.1925 (2)0.08186 (17)1.0695 (2)0.0315 (8)
C30.2603 (2)0.07486 (17)1.1595 (2)0.0344 (8)
C40.2395 (2)0.11723 (19)1.2625 (2)0.0392 (9)
C50.1546 (2)0.16478 (18)1.2755 (2)0.0361 (8)
C60.0879 (2)0.17236 (16)1.1831 (2)0.0314 (7)
C70.0013 (2)0.22924 (18)1.1913 (2)0.0373 (9)
C80.1427 (2)0.13497 (19)1.2362 (2)0.0367 (8)
C90.1651 (3)0.1487 (2)1.3708 (2)0.0551 (11)
C100.2454 (3)0.2118 (2)1.3941 (3)0.0663 (14)
C110.2079 (2)0.2799 (2)1.3252 (3)0.0534 (11)
C120.1855 (2)0.26303 (18)1.1917 (2)0.0414 (9)
C130.3101 (2)0.14317 (17)0.9178 (2)0.0333 (8)
C140.4093 (2)0.11336 (17)0.9580 (2)0.0366 (8)
C150.4773 (2)0.08212 (18)0.8799 (3)0.0398 (9)
C160.4450 (2)0.08029 (18)0.7583 (3)0.0409 (9)
C170.3474 (2)0.10828 (18)0.7153 (2)0.0386 (9)
C180.2805 (2)0.13997 (18)0.7926 (2)0.0351 (8)
C190.1791 (2)0.17771 (18)0.7455 (2)0.0376 (9)
C200.0642 (2)0.07041 (17)0.7813 (2)0.0383 (9)
C210.0314 (3)0.0498 (2)0.6508 (3)0.0527 (11)
C220.0647 (3)0.0944 (2)0.6002 (3)0.0646 (13)
C230.0444 (2)0.1765 (2)0.6166 (2)0.0518 (11)
C240.0117 (2)0.19462 (19)0.7477 (2)0.0380 (9)
H10.31970.04231.15090.041*
H20.14180.19311.34730.044*
H30.00470.24861.27100.045*
H40.02170.26771.13570.045*
H50.08900.09811.22390.044*
H60.20640.11771.20600.044*
H70.10050.16191.40340.066*
H80.19300.10491.40910.066*
H90.25490.22261.47800.079*
H100.31160.19701.36700.079*
H110.14370.29631.35540.065*
H120.26020.31781.33630.065*
H130.25080.24911.16120.050*
H140.15870.30641.15120.050*
H150.54460.06280.90960.048*
H160.32610.10580.63130.047*
H170.16910.17030.66070.046*
H180.18700.22910.76220.046*
H190.12790.04480.80760.046*
H200.00880.05540.82850.046*
H210.08900.06060.60410.064*
H220.01560.00160.64580.064*
H230.08040.08330.51700.077*
H240.12380.08130.64320.077*
H250.01210.18990.56970.062*
H260.10660.20360.58970.062*
H270.07050.18450.79300.046*
H280.00580.24570.75410.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0296 (2)0.0348 (2)0.0310 (2)0.00147 (18)0.00635 (14)0.00136 (17)
Cl10.0498 (5)0.0483 (5)0.0455 (4)0.0127 (4)0.0036 (4)0.0119 (4)
Cl20.0532 (5)0.0868 (7)0.0543 (5)0.0147 (5)0.0282 (4)0.0040 (5)
Cl30.0461 (5)0.0592 (6)0.0482 (5)0.0103 (4)0.0077 (4)0.0089 (4)
Cl40.0527 (6)0.0683 (6)0.0735 (6)0.0066 (5)0.0340 (5)0.0113 (5)
O10.0349 (12)0.0560 (14)0.0336 (11)0.0137 (11)0.0089 (9)0.0077 (10)
O20.0277 (11)0.0471 (13)0.0387 (11)0.0031 (10)0.0036 (9)0.0100 (10)
N10.0284 (14)0.0297 (13)0.0399 (14)0.0019 (11)0.0078 (11)0.0065 (11)
N20.0281 (13)0.0336 (14)0.0324 (13)0.0040 (10)0.0075 (10)0.0029 (10)
C10.0294 (16)0.0335 (16)0.0311 (15)0.0003 (13)0.0032 (12)0.0010 (12)
C20.0297 (16)0.0302 (16)0.0340 (16)0.0005 (13)0.0005 (12)0.0018 (13)
C30.0257 (16)0.0312 (17)0.0465 (18)0.0024 (13)0.0041 (13)0.0057 (14)
C40.0324 (17)0.045 (2)0.0418 (18)0.0003 (15)0.0138 (14)0.0039 (15)
C50.0307 (16)0.0435 (18)0.0351 (16)0.0013 (15)0.0087 (13)0.0045 (14)
C60.0271 (15)0.0299 (15)0.0375 (16)0.0010 (13)0.0049 (12)0.0009 (13)
C70.0312 (17)0.0347 (17)0.0467 (19)0.0006 (14)0.0069 (14)0.0085 (14)
C80.0352 (18)0.0379 (17)0.0381 (17)0.0011 (15)0.0099 (14)0.0005 (14)
C90.056 (2)0.073 (2)0.0364 (19)0.005 (2)0.0046 (17)0.0057 (18)
C100.052 (2)0.108 (3)0.038 (2)0.017 (2)0.0002 (18)0.013 (2)
C110.037 (2)0.068 (2)0.057 (2)0.0145 (19)0.0128 (17)0.029 (2)
C120.0336 (18)0.0393 (18)0.053 (2)0.0167 (15)0.0122 (15)0.0119 (16)
C130.0264 (16)0.0319 (16)0.0429 (18)0.0010 (13)0.0102 (13)0.0019 (13)
C140.0333 (17)0.0346 (18)0.0422 (18)0.0016 (14)0.0051 (14)0.0035 (14)
C150.0291 (17)0.0330 (18)0.058 (2)0.0013 (14)0.0092 (15)0.0009 (15)
C160.0364 (19)0.0392 (18)0.050 (2)0.0007 (15)0.0194 (15)0.0019 (15)
C170.0384 (18)0.0404 (19)0.0390 (17)0.0040 (15)0.0143 (14)0.0007 (14)
C180.0313 (17)0.0377 (17)0.0369 (17)0.0004 (14)0.0065 (13)0.0002 (14)
C190.0355 (18)0.042 (2)0.0363 (17)0.0019 (15)0.0102 (14)0.0053 (14)
C200.0382 (19)0.0361 (18)0.0418 (18)0.0020 (15)0.0091 (14)0.0008 (14)
C210.065 (2)0.048 (2)0.045 (2)0.007 (2)0.0110 (18)0.0156 (17)
C220.053 (2)0.096 (3)0.043 (2)0.003 (2)0.0043 (18)0.021 (2)
C230.043 (2)0.075 (2)0.0372 (18)0.0237 (19)0.0035 (15)0.0001 (18)
C240.0356 (18)0.0414 (18)0.0375 (17)0.0130 (15)0.0066 (14)0.0012 (14)
Geometric parameters (Å, º) top
Cu1—O11.894 (2)C18—C191.501 (4)
Cu1—O21.895 (2)C20—C211.519 (4)
Cu1—N12.074 (2)C21—C221.519 (5)
Cu1—N22.072 (2)C22—C231.512 (6)
Cl1—C21.745 (3)C23—C241.515 (4)
Cl2—C41.753 (3)C3—H10.950
Cl3—C141.740 (3)C5—H20.950
Cl4—C161.745 (3)C7—H30.950
O1—C11.320 (3)C7—H40.950
O2—C131.316 (3)C8—H50.950
N1—C71.490 (3)C8—H60.950
N1—C81.500 (4)C9—H70.950
N1—C121.501 (3)C9—H80.950
N2—C191.490 (4)C10—H90.950
N2—C201.498 (3)C10—H100.950
N2—C241.495 (3)C11—H110.950
C1—C21.403 (4)C11—H120.950
C1—C61.405 (4)C12—H130.950
C2—C31.379 (4)C12—H140.950
C3—C41.383 (4)C15—H150.950
C4—C51.369 (4)C17—H160.950
C5—C61.390 (4)C19—H170.950
C6—C71.496 (4)C19—H180.950
C8—C91.519 (4)C20—H190.950
C9—C101.531 (6)C20—H200.950
C10—C111.504 (5)C21—H210.950
C11—C121.518 (4)C21—H220.950
C13—C141.397 (4)C22—H230.950
C13—C181.411 (4)C22—H240.950
C14—C151.392 (4)C23—H250.950
C15—C161.378 (4)C23—H260.950
C16—C171.375 (4)C24—H270.950
C17—C181.381 (4)C24—H280.950
O1—Cu1—O2166.02 (9)N1—C7—H3107.9
O1—Cu1—N192.60 (9)N1—C7—H4108.0
O1—Cu1—N286.99 (9)C6—C7—H3107.9
O2—Cu1—N188.97 (9)C6—C7—H4107.9
O2—Cu1—N293.76 (9)H3—C7—H4109.5
N1—Cu1—N2170.32 (9)N1—C8—H5107.8
Cu1—O1—C1130.09 (18)N1—C8—H6108.0
Cu1—O2—C13125.43 (18)C9—C8—H5108.9
Cu1—N1—C7109.01 (17)C9—C8—H6108.2
Cu1—N1—C8104.62 (17)H5—C8—H6109.5
Cu1—N1—C12112.29 (18)C8—C9—H7109.0
C7—N1—C8113.8 (2)C8—C9—H8109.6
C7—N1—C12108.7 (2)C10—C9—H7108.9
C8—N1—C12108.4 (2)C10—C9—H8109.3
Cu1—N2—C19110.63 (17)H7—C9—H8109.5
Cu1—N2—C20106.62 (17)C9—C10—H9110.0
Cu1—N2—C24109.16 (18)C9—C10—H10108.8
C19—N2—C20111.6 (2)C11—C10—H9109.9
C19—N2—C24108.7 (2)C11—C10—H10108.3
C20—N2—C24110.1 (2)H9—C10—H10109.5
O1—C1—C2120.9 (2)C10—C11—H11108.3
O1—C1—C6122.5 (2)C10—C11—H12109.7
C2—C1—C6116.6 (2)C12—C11—H11108.6
Cl1—C2—C1118.3 (2)C12—C11—H12109.8
Cl1—C2—C3118.5 (2)H11—C11—H12109.5
C1—C2—C3123.2 (2)N1—C12—H13108.6
C2—C3—C4117.8 (2)N1—C12—H14107.8
Cl2—C4—C3118.7 (2)C11—C12—H13108.1
Cl2—C4—C5119.7 (2)C11—C12—H14109.0
C3—C4—C5121.6 (3)H13—C12—H14109.5
C4—C5—C6120.1 (2)C14—C15—H15120.8
C1—C6—C5120.7 (2)C16—C15—H15120.7
C1—C6—C7118.7 (2)C16—C17—H16119.4
C5—C6—C7120.5 (2)C18—C17—H16119.8
N1—C7—C6115.6 (2)N2—C19—H17109.0
N1—C8—C9114.4 (2)N2—C19—H18107.6
C8—C9—C10110.6 (3)C18—C19—H17108.5
C9—C10—C11110.4 (3)C18—C19—H18107.7
C10—C11—C12111.0 (3)H17—C19—H18109.5
N1—C12—C11113.9 (2)N2—C20—H19108.5
O2—C13—C14121.0 (2)N2—C20—H20107.9
O2—C13—C18122.1 (2)C21—C20—H19109.1
C14—C13—C18116.8 (2)C21—C20—H20107.9
Cl3—C14—C13118.6 (2)H19—C20—H20109.5
Cl3—C14—C15118.8 (2)C20—C21—H21108.4
C13—C14—C15122.6 (2)C20—C21—H22109.5
C14—C15—C16118.6 (2)C22—C21—H21108.1
Cl4—C16—C15119.3 (2)C22—C21—H22109.9
Cl4—C16—C17120.0 (2)H21—C21—H22109.5
C15—C16—C17120.7 (3)C21—C22—H23109.9
C16—C17—C18120.8 (2)C21—C22—H24108.4
C13—C18—C17120.6 (2)C23—C22—H23110.0
C13—C18—C19118.0 (2)C23—C22—H24108.3
C17—C18—C19121.2 (2)H23—C22—H24109.5
N2—C19—C18114.5 (2)C22—C23—H25108.1
N2—C20—C21113.9 (2)C22—C23—H26109.9
C20—C21—C22111.4 (3)C24—C23—H25108.6
C21—C22—C23110.7 (3)C24—C23—H26109.8
C22—C23—C24110.9 (3)H25—C23—H26109.5
N2—C24—C23114.1 (2)N2—C24—H27108.5
C2—C3—H1121.1N2—C24—H28107.6
C4—C3—H1121.0C23—C24—H27108.2
C4—C5—H2119.9C23—C24—H28108.9
C6—C5—H2120.0H27—C24—H28109.5
O1—Cu1—O2—C1365.3 (4)O1—C1—C6—C5178.9 (2)
O2—Cu1—O1—C187.2 (4)O1—C1—C6—C73.0 (4)
O1—Cu1—N1—C732.33 (19)C2—C1—C6—C51.1 (4)
O1—Cu1—N1—C889.75 (18)C2—C1—C6—C7174.9 (2)
O1—Cu1—N1—C12152.88 (19)C6—C1—C2—Cl1178.1 (2)
N1—Cu1—O1—C19.0 (2)C6—C1—C2—C30.1 (3)
O1—Cu1—N2—C19173.93 (19)Cl1—C2—C3—C4177.5 (2)
O1—Cu1—N2—C2064.57 (19)C1—C2—C3—C40.7 (4)
O1—Cu1—N2—C2454.36 (19)C2—C3—C4—Cl2179.8 (2)
N2—Cu1—O1—C1179.4 (2)C2—C3—C4—C50.1 (3)
O2—Cu1—N1—C7161.57 (19)Cl2—C4—C5—C6178.6 (2)
O2—Cu1—N1—C876.35 (18)C3—C4—C5—C61.1 (4)
O2—Cu1—N1—C1241.02 (19)C4—C5—C6—C11.7 (4)
N1—Cu1—O2—C13162.0 (2)C4—C5—C6—C7174.2 (2)
O2—Cu1—N2—C1920.06 (19)C1—C6—C7—N152.8 (3)
O2—Cu1—N2—C20101.45 (19)C5—C6—C7—N1131.2 (2)
O2—Cu1—N2—C24139.62 (19)N1—C8—C9—C1055.2 (4)
N2—Cu1—O2—C1327.3 (2)C8—C9—C10—C1154.1 (4)
Cu1—O1—C1—C2156.2 (2)C9—C10—C11—C1255.0 (4)
Cu1—O1—C1—C626.0 (4)C10—C11—C12—N156.8 (3)
Cu1—O2—C13—C14142.5 (2)O2—C13—C14—Cl32.8 (4)
Cu1—O2—C13—C1839.7 (4)O2—C13—C14—C15177.5 (2)
Cu1—N1—C7—C664.2 (2)O2—C13—C18—C17178.2 (2)
Cu1—N1—C8—C9173.9 (2)O2—C13—C18—C193.4 (4)
Cu1—N1—C12—C11169.4 (2)C14—C13—C18—C170.3 (4)
C7—N1—C8—C967.2 (3)C14—C13—C18—C19174.5 (2)
C8—N1—C7—C652.1 (3)C18—C13—C14—Cl3179.3 (2)
C7—N1—C12—C1169.9 (3)C18—C13—C14—C150.4 (4)
C12—N1—C7—C6173.1 (2)Cl3—C14—C15—C16179.3 (2)
C8—N1—C12—C1154.3 (3)C13—C14—C15—C160.3 (4)
C12—N1—C8—C953.9 (3)C14—C15—C16—Cl4177.8 (2)
Cu1—N2—C19—C1859.2 (2)C14—C15—C16—C170.4 (4)
Cu1—N2—C20—C21170.0 (2)Cl4—C16—C17—C18177.1 (2)
Cu1—N2—C24—C23169.5 (2)C15—C16—C17—C181.1 (5)
C19—N2—C20—C2169.1 (3)C16—C17—C18—C131.1 (4)
C20—N2—C19—C1859.4 (3)C16—C17—C18—C19173.6 (3)
C19—N2—C24—C2369.8 (3)C13—C18—C19—N257.2 (3)
C24—N2—C19—C18179.0 (2)C17—C18—C19—N2128.0 (3)
C20—N2—C24—C2352.7 (3)N2—C20—C21—C2253.5 (4)
C24—N2—C20—C2151.7 (3)C20—C21—C22—C2353.9 (4)
O1—C1—C2—Cl14.0 (3)C21—C22—C23—C2454.5 (4)
O1—C1—C2—C3177.8 (2)C22—C23—C24—N255.2 (3)
 

Acknowledgements

This study was financially supported in part by Grants-in-Aid for Scientific Research (Nos. 16750061 and 18550070) from the Japan Society for the Promotion of Science.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChen, L., Zhou, H., Pan, Z.-Q., Hu, X.-L. & Liu, B. (2005). Acta Cryst. E61, m1467–m1469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKubono, K., Oshima, S., Hirayama, N. & Yokoi, K. (2005). Acta Cryst. E61, o3706–o3708.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNäther, C. & Beck, A. (2004). Acta Cryst. E60, m1008–m1009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku/MSC (2004). WinAFC and CrystalStructure. Version 3.7.0. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationYou, Z.-L. (2005). Acta Cryst. C61, m406–m408.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds