organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Bis(4-methyl­phen­yl)-7-phenyl-6,7-di­hydro­pyrazolo[1,5-a]pyrimidine-3,6-dicarbaldehyde: hydrogen-bonded sheets built from N—H⋯O and C—H⋯O hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 29 September 2006; accepted 29 September 2006; online 13 October 2006)

The mol­ecules of the title compound, C28H23N3O2, are linked into complex sheets by a combination of one N—H⋯O and two C—H⋯O hydrogen bonds.

Comment

As part of a continuing search for biologically active mol­ecules containing fused pyrazole systems, we have now prepared 2,5-bis­(4-methyl­phen­yl)-7-phenyl-6,7-dihydro­pyrazolo­[1,5-a]pyrimidine-3,6-dicarbaldehyde, (I)[link], of potential value as a precursor for modified or fused polycyclic pyrazolo[1,5-a]pyrimidine systems, and we report its structure here.

[Scheme 1]

Within the mol­ecule of (I)[link], atom C7 is a stereogenic centre, and in the selected reference mol­ecule this atom has the (R)-configuration; however, the space group accommodates equal numbers of (R) and (S) enanti­omers. For the atom sequence C3A—N4—C5—C6—C7—N7A, the ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are θ = 70.2 (5)° and φ = 169.4 (5)°, indicating a ring conformation inter­mediate between boat [θ = 90.0°, φ = (60k)°, where k is zero or an integer)] and screw-boat [θ = 67.5° and φ = (60k + 30)°]. While the aryl rings are all significantly twisted away from the mean plane of the heterocyclic core, as shown by the key torsion angles (Table 1[link]), the two carboxaldehyde groups are nearly coplanar with the heterocycle. The short intra­molecular N—H⋯O contact to O3 (Table 2[link]) may contribute to this.

The mol­ecules of (I)[link] are linked into complex sheets by one N—H⋯O hydrogen bond and two C—H⋯O hydrogen bonds (Table 2[link]), and the sheet formation is easily analysed in terms of two one-dimensional sub-structures. Atoms N4 and C73 in the mol­ecule at (x, y, z) act as hydrogen-bond donors, respectively, to atoms O3 and O6 in the mol­ecules at (2 − x, 1 − y, 1 − z) and (−x, 1 − y, −z), respectively. Propagation by inversion of these two inter­actions then generates a chain of centrosymmetric rings running parallel to the [201] direction with R22(16) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) rings centred at (2n, [1\over2], n) (n = zero or an integer), and R22(12) rings centred at (2n + 1, [1\over2], n + [1\over2]) (n = zero or an integer) (Fig. 2[link]). In addition, atom C74 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to atom O3 in the mol­ecule (−1 + x, y, − 1 + z), so generating by translation a C(11) chain running parallel to the [101] direction (Fig. 3[link]). The combination of the [101] and [201] chains generates a sheet parallel to (010) (Fig. 4[link]).

[Figure 1]
Figure 1
The molecular structure of the (R) enantiomer of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A stereoscopic view of part of the crystal structure of (I)[link] showing the formation of a hydrogen-bonded chain of rings along [201]. Hydrogen bonds are shown as dashed lines, and for the sake of clarity the H atoms not involved in the motif shown have been omitted.
[Figure 3]
Figure 3
A stereoscopic view of part of the crystal structure of (I)[link] showing the formation of a hydrogen-bonded chain along [101]. Hydrogen bonds are shown as dashed lines, and for the sake of clarity the H atoms not involved in the motif shown have been omitted.
[Figure 4]
Figure 4
A stereoscopic view of part of the crystal structure of (I)[link] showing the formation of a hydrogen-bonded sheet parallel to (010). Hydrogen bonds are shown as dashed lines, and for the sake of clarity the H atoms not involved in the motif shown have been omitted.

Experimental

A mixture of 5-amino-3-(4-methyl­phenyl-1H-pyrazole (1.9 mmol) and 1-(4-methyl­phen­yl)-3-phenyl­propenone (1.9 mmol) in dimethyl­formamide (1 ml) was heated under reflux for 20 min, to afford the inter­mediate 2,5-di-(4-methyl­phen­yl)-7-phenyl-6,7-dihydro­pyrazolo­[1,5-a]pyrimidine. The reaction mixture was cooled to ambient temperature and the inter­mediate was collected by filtration, washed with ethanol and dried, and then purified by chromatography on alumina using chloro­form as the eluent. Phosphoryl chloride (2.1 mmol) was then added dropwise to a suspension of the pyrazolopyrimidine inter­mediate (1.0 mmol) in dimethyl­formamide (2 ml) while cooling within an ice–water bath. When the addition had been completed the reaction mixture was stirred vigorously for 0.5 h at ambient temperature. The resulting solid product (I)[link] was collected by filtration, dried and recrystallized from dimethyl­formamide to give yellow crystals suitable for single-crystal X-ray diffraction: yield 65%, m.p. 544 K; MS (m/z, %): 433 (92, M+), 356 (100), 91 (44), 65 (25).

Crystal data
  • C28H23N3O2

  • Mr = 433.49

  • Monoclinic, P 21 /c

  • a = 10.4688 (3) Å

  • b = 22.3018 (7) Å

  • c = 11.0754 (4) Å

  • β = 118.723 (2)°

  • V = 2267.63 (13) Å3

  • Z = 4

  • Dx = 1.270 Mg m−3

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Lath, yellow

  • 0.44 × 0.40 × 0.19 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.986

  • 24100 measured reflections

  • 5194 independent reflections

  • 3286 reflections with I > 2σ(I)

  • Rint = 0.049

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.133

  • S = 0.93

  • 5194 reflections

  • 300 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0711P)2 + 0.5212P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.032

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected torsion angles (°)

N1—C2—C21—C22 −39.4 (2)
N4—C5—C51—C52 −54.56 (19)
N7A—C7—C71—C72 137.35 (15)
C3A—C3—C31—O3 −8.3 (3)
C5—C6—C61—O6 −176.16 (15)
C7—C6—C61—O6 −0.3 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O3 0.98 2.36 2.933 (2) 117
N4—H4⋯O3i 0.98 2.02 2.968 (2) 163
C73—H73⋯O6ii 0.95 2.37 3.294 (3) 165
C74—H74⋯O3iii 0.95 2.44 3.376 (2) 170
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x, -y+1, -z; (iii) x-1, y, z-1.

All H atoms were located in difference maps and then treated as riding atoms with distances C—H 0.95 Å (aromatic and aldehydic), 0.98 Å (meth­yl) or 1.00 Å (aliphatic CH), and N—H 0.98 Å, and with Uiso(H) = kUeq(C,N), where k = 1.5 for the methyl groups and 1.2 for all other H atoms.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) & SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL & SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

2,5-Bis(4-methylphenyl)-7-phenyl-6,7-dihydropyrazolo[1,5-a]pyrimidine- 3,6-dicarbaldehyde top
Crystal data top
C28H23N3O2F(000) = 912
Mr = 433.49Dx = 1.270 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5194 reflections
a = 10.4688 (3) Åθ = 2.4–27.5°
b = 22.3018 (7) ŵ = 0.08 mm1
c = 11.0754 (4) ÅT = 120 K
β = 118.723 (2)°Lath, yellow
V = 2267.63 (13) Å30.44 × 0.40 × 0.19 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5194 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3286 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.4°
φ and ω scansh = 1213
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2828
Tmin = 0.968, Tmax = 0.986l = 1414
24100 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.5212P]
where P = (Fo2 + 2Fc2)/3
5194 reflections(Δ/σ)max = 0.032
300 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.22 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.53507 (14)0.36610 (7)0.37300 (13)0.0362 (3)
C20.66984 (16)0.34501 (8)0.42271 (15)0.0338 (4)
C210.69963 (16)0.28096 (8)0.45871 (16)0.0346 (4)
C220.62975 (18)0.25175 (8)0.52193 (17)0.0383 (4)
C230.66112 (19)0.19257 (8)0.56254 (18)0.0406 (4)
C240.76215 (18)0.16014 (8)0.54152 (17)0.0391 (4)
C2410.7985 (2)0.09603 (9)0.5878 (2)0.0509 (5)
C250.8283 (2)0.18923 (9)0.4751 (2)0.0473 (5)
C260.79841 (19)0.24850 (9)0.43499 (19)0.0454 (5)
C30.77137 (16)0.39198 (7)0.44303 (15)0.0330 (4)
C310.92724 (17)0.39201 (8)0.50462 (17)0.0385 (4)
O30.99610 (12)0.43759 (6)0.51326 (13)0.0459 (3)
C3A0.68660 (16)0.44389 (8)0.40379 (15)0.0330 (4)
N40.72056 (13)0.50336 (6)0.40806 (13)0.0345 (3)
C50.61577 (16)0.54631 (8)0.38226 (15)0.0318 (4)
C510.67015 (17)0.60881 (8)0.41815 (16)0.0345 (4)
C520.77948 (18)0.62163 (9)0.55105 (18)0.0460 (5)
C530.8253 (2)0.67996 (11)0.5900 (2)0.0556 (6)
C540.7645 (2)0.72720 (10)0.4981 (2)0.0552 (5)
C5410.8098 (3)0.79111 (11)0.5435 (3)0.0853 (9)
C550.6590 (2)0.71403 (9)0.3644 (2)0.0534 (5)
C560.61142 (18)0.65559 (8)0.32453 (18)0.0413 (4)
C60.47288 (16)0.53011 (8)0.33359 (15)0.0326 (4)
C610.36371 (17)0.57250 (9)0.32273 (17)0.0441 (5)
O60.23758 (12)0.55809 (7)0.28624 (14)0.0579 (4)
C70.42139 (15)0.46566 (8)0.29714 (15)0.0334 (4)
C710.33917 (16)0.45440 (7)0.14263 (15)0.0306 (4)
C720.18835 (18)0.45125 (8)0.07359 (18)0.0414 (4)
C730.1146 (2)0.44338 (9)0.0689 (2)0.0547 (6)
C740.1921 (3)0.43808 (9)0.13992 (19)0.0584 (6)
C750.3409 (2)0.44043 (8)0.07132 (19)0.0480 (5)
C760.41463 (19)0.44856 (7)0.06949 (17)0.0362 (4)
N7A0.54869 (13)0.42700 (6)0.36316 (13)0.0347 (3)
H220.55990.27270.53730.046*
H230.61250.17360.60580.049*
H24A0.72030.06980.52330.076*
H24B0.80860.09160.68000.076*
H24C0.89030.08490.59010.076*
H250.89570.16790.45690.057*
H260.84610.26720.39060.054*
H310.97860.35550.53980.046*
H40.82190.51520.44230.041*
H520.82300.59000.61550.055*
H530.89960.68790.68130.067*
H54A0.74360.80890.57290.128*
H54B0.80580.81430.46660.128*
H54C0.90950.79160.62050.128*
H550.61840.74550.29910.064*
H560.53840.64760.23280.050*
H610.39090.61330.34480.053*
H70.35510.45620.33610.040*
H720.13550.45440.12300.050*
H730.01120.44170.11700.066*
H740.14170.43280.23700.070*
H750.39370.43640.12070.058*
H760.51800.45020.11660.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0254 (7)0.0515 (9)0.0286 (7)0.0079 (6)0.0104 (6)0.0061 (6)
C20.0226 (8)0.0536 (11)0.0231 (8)0.0070 (7)0.0095 (6)0.0039 (7)
C210.0254 (8)0.0486 (10)0.0264 (8)0.0096 (7)0.0097 (7)0.0006 (7)
C220.0364 (9)0.0457 (10)0.0365 (9)0.0123 (8)0.0205 (8)0.0069 (8)
C230.0459 (10)0.0435 (11)0.0392 (10)0.0158 (8)0.0259 (8)0.0057 (8)
C240.0339 (9)0.0446 (10)0.0343 (9)0.0107 (8)0.0129 (7)0.0041 (8)
C2410.0515 (12)0.0476 (11)0.0540 (12)0.0085 (9)0.0257 (10)0.0029 (9)
C250.0376 (10)0.0554 (12)0.0552 (12)0.0003 (9)0.0274 (9)0.0041 (9)
C260.0347 (9)0.0610 (12)0.0476 (11)0.0022 (9)0.0256 (8)0.0104 (9)
C30.0212 (8)0.0494 (10)0.0240 (8)0.0034 (7)0.0074 (6)0.0095 (7)
C310.0231 (8)0.0522 (11)0.0346 (9)0.0027 (8)0.0093 (7)0.0134 (8)
O30.0226 (6)0.0565 (8)0.0512 (8)0.0064 (6)0.0119 (5)0.0154 (6)
C3A0.0181 (7)0.0530 (11)0.0243 (8)0.0051 (7)0.0075 (6)0.0112 (7)
N40.0177 (6)0.0493 (9)0.0328 (7)0.0020 (6)0.0091 (5)0.0146 (6)
C50.0226 (8)0.0540 (10)0.0188 (7)0.0005 (7)0.0099 (6)0.0049 (7)
C510.0230 (8)0.0539 (11)0.0300 (8)0.0039 (7)0.0154 (7)0.0027 (7)
C520.0281 (9)0.0731 (13)0.0355 (9)0.0181 (9)0.0141 (7)0.0008 (9)
C530.0359 (10)0.0846 (16)0.0494 (12)0.0257 (10)0.0229 (9)0.0189 (11)
C540.0372 (11)0.0628 (13)0.0767 (15)0.0076 (10)0.0363 (11)0.0195 (12)
C5410.0608 (15)0.0679 (16)0.132 (2)0.0137 (12)0.0498 (16)0.0378 (16)
C550.0447 (11)0.0497 (12)0.0695 (14)0.0128 (9)0.0303 (11)0.0033 (10)
C560.0333 (9)0.0503 (11)0.0401 (10)0.0098 (8)0.0175 (8)0.0033 (8)
C60.0199 (7)0.0580 (11)0.0186 (7)0.0039 (7)0.0082 (6)0.0038 (7)
C610.0236 (9)0.0764 (13)0.0317 (9)0.0066 (8)0.0128 (7)0.0250 (9)
O60.0224 (6)0.0986 (11)0.0515 (8)0.0084 (6)0.0168 (6)0.0384 (7)
C70.0172 (7)0.0595 (11)0.0224 (8)0.0025 (7)0.0086 (6)0.0049 (7)
C710.0240 (8)0.0404 (9)0.0228 (7)0.0031 (7)0.0075 (6)0.0030 (6)
C720.0261 (8)0.0526 (11)0.0350 (9)0.0050 (8)0.0064 (7)0.0002 (8)
C730.0407 (11)0.0534 (12)0.0376 (10)0.0118 (9)0.0073 (8)0.0006 (9)
C740.0884 (17)0.0463 (12)0.0254 (9)0.0212 (11)0.0153 (10)0.0033 (8)
C750.0760 (15)0.0396 (10)0.0345 (10)0.0096 (9)0.0314 (10)0.0045 (8)
C760.0402 (10)0.0397 (10)0.0323 (9)0.0019 (8)0.0202 (8)0.0023 (7)
N7A0.0175 (7)0.0522 (9)0.0296 (7)0.0044 (6)0.0075 (5)0.0107 (6)
Geometric parameters (Å, º) top
N1—C21.330 (2)C52—C531.382 (3)
N1—N7A1.375 (2)C52—H520.95
C2—C31.431 (2)C53—C541.389 (3)
C2—C211.476 (2)C53—H530.95
C21—C261.387 (2)C54—C551.388 (3)
C21—C221.394 (2)C54—C5411.510 (3)
C22—C231.382 (2)C541—H54A0.98
C22—H220.95C541—H54B0.98
C23—C241.390 (2)C541—H54C0.98
C23—H230.95C55—C561.389 (3)
C24—C251.389 (2)C55—H550.95
C24—C2411.505 (3)C56—H560.95
C241—H24A0.98C6—C611.443 (2)
C241—H24B0.98C6—C71.520 (2)
C241—H24C0.98C61—O61.2236 (19)
C25—C261.382 (3)C61—H610.95
C25—H250.95C7—N7A1.455 (2)
C26—H260.95C7—C711.522 (2)
C3—C3A1.395 (2)C7—H71.00
C3—C311.435 (2)C71—C761.383 (2)
C31—O31.223 (2)C71—C721.386 (2)
C31—H310.95C72—C731.395 (3)
C3A—N7A1.3434 (19)C72—H720.95
C3A—N41.368 (2)C73—C741.379 (3)
N4—C51.379 (2)C73—H730.95
N4—H40.98C74—C751.368 (3)
C5—C61.372 (2)C74—H740.95
C5—C511.486 (2)C75—C761.380 (2)
C51—C561.389 (2)C75—H750.95
C51—C521.393 (2)C76—H760.95
C2—N1—N7A104.62 (12)C52—C53—H53119.4
N1—C2—C3111.49 (15)C54—C53—H53119.4
N1—C2—C21119.92 (14)C55—C54—C53118.08 (19)
C3—C2—C21128.43 (14)C55—C54—C541121.1 (2)
C26—C21—C22118.06 (16)C53—C54—C541120.8 (2)
C26—C21—C2122.29 (15)C54—C541—H54A109.5
C22—C21—C2119.63 (15)C54—C541—H54B109.5
C23—C22—C21120.65 (16)H54A—C541—H54B109.5
C23—C22—H22119.7C54—C541—H54C109.5
C21—C22—H22119.7H54A—C541—H54C109.5
C22—C23—C24121.55 (16)H54B—C541—H54C109.5
C22—C23—H23119.2C54—C55—C56121.2 (2)
C24—C23—H23119.2C54—C55—H55119.4
C25—C24—C23117.29 (16)C56—C55—H55119.4
C25—C24—C241120.99 (17)C51—C56—C55120.31 (17)
C23—C24—C241121.71 (16)C51—C56—H56119.8
C24—C241—H24A109.5C55—C56—H56119.8
C24—C241—H24B109.5C5—C6—C61122.03 (16)
H24A—C241—H24B109.5C5—C6—C7122.25 (15)
C24—C241—H24C109.5C61—C6—C7115.58 (14)
H24A—C241—H24C109.5O6—C61—C6122.77 (18)
H24B—C241—H24C109.5O6—C61—H61118.6
C26—C25—C24121.58 (17)C6—C61—H61118.6
C26—C25—H25119.2N7A—C7—C6107.74 (12)
C24—C25—H25119.2N7A—C7—C71110.72 (13)
C25—C26—C21120.83 (16)C6—C7—C71113.04 (13)
C25—C26—H26119.6N7A—C7—H7108.4
C21—C26—H26119.6C6—C7—H7108.4
C3A—C3—C2104.20 (13)C71—C7—H7108.4
C3A—C3—C31123.76 (15)C76—C71—C72119.46 (15)
C2—C3—C31131.63 (15)C76—C71—C7120.04 (14)
O3—C31—C3122.04 (16)C72—C71—C7120.49 (14)
O3—C31—H31119.0C71—C72—C73119.64 (18)
C3—C31—H31119.0C71—C72—H72120.2
N7A—C3A—N4120.20 (15)C73—C72—H72120.2
N7A—C3A—C3106.98 (14)C74—C73—C72119.91 (18)
N4—C3A—C3132.68 (14)C74—C73—H73120.0
C3A—N4—C5119.91 (13)C72—C73—H73120.0
C3A—N4—H4119.5C75—C74—C73120.34 (17)
C5—N4—H4120.0C75—C74—H74119.8
C6—C5—N4120.46 (15)C73—C74—H74119.8
C6—C5—C51123.86 (15)C74—C75—C76120.11 (18)
N4—C5—C51115.58 (13)C74—C75—H75119.9
C56—C51—C52118.62 (17)C76—C75—H75119.9
C56—C51—C5121.99 (15)C75—C76—C71120.53 (17)
C52—C51—C5119.34 (16)C75—C76—H76119.7
C53—C52—C51120.59 (19)C71—C76—H76119.7
C53—C52—H52119.7C3A—N7A—N1112.71 (13)
C51—C52—H52119.7C3A—N7A—C7125.42 (14)
C52—C53—C54121.15 (18)N1—N7A—C7121.34 (12)
N7A—N1—C2—C31.08 (17)C52—C53—C54—C551.7 (3)
N7A—N1—C2—C21174.63 (13)C52—C53—C54—C541176.89 (18)
N1—C2—C21—C26142.21 (16)C53—C54—C55—C562.1 (3)
C3—C2—C21—C2642.9 (2)C541—C54—C55—C56176.41 (18)
N1—C2—C21—C2239.4 (2)C52—C51—C56—C551.5 (2)
N4—C5—C51—C5254.56 (19)C5—C51—C56—C55176.00 (15)
N7A—C7—C71—C72137.35 (15)C54—C55—C56—C510.6 (3)
C3—C2—C21—C22135.47 (17)N4—C5—C6—C61171.58 (14)
C26—C21—C22—C231.5 (2)C51—C5—C6—C614.8 (2)
C2—C21—C22—C23176.90 (15)N4—C5—C6—C74.0 (2)
C21—C22—C23—C240.3 (3)C51—C5—C6—C7179.59 (14)
C22—C23—C24—C251.4 (3)C5—C6—C61—O6176.16 (15)
C22—C23—C24—C241178.92 (16)C7—C6—C61—O60.3 (2)
C23—C24—C25—C261.8 (3)C5—C6—C7—N7A18.00 (19)
C241—C24—C25—C26178.48 (17)C61—C6—C7—N7A157.89 (13)
C24—C25—C26—C210.6 (3)C5—C6—C7—C71104.66 (16)
C22—C21—C26—C251.1 (3)C61—C6—C7—C7179.45 (17)
C2—C21—C26—C25177.28 (16)N7A—C7—C71—C7644.1 (2)
N1—C2—C3—C3A1.18 (17)C6—C7—C71—C7676.88 (19)
C21—C2—C3—C3A174.08 (15)C6—C7—C71—C72101.67 (17)
N1—C2—C3—C31173.76 (17)C76—C71—C72—C731.2 (3)
C21—C2—C3—C311.5 (3)C7—C71—C72—C73177.35 (16)
C3A—C3—C31—O38.3 (3)C71—C72—C73—C740.8 (3)
C2—C3—C31—O3179.62 (17)C72—C73—C74—C750.1 (3)
C2—C3—C3A—N7A0.75 (17)C73—C74—C75—C760.5 (3)
C31—C3—C3A—N7A174.09 (15)C74—C75—C76—C710.0 (3)
C2—C3—C3A—N4174.95 (16)C72—C71—C76—C750.8 (2)
C31—C3—C3A—N41.6 (3)C7—C71—C76—C75177.74 (16)
N7A—C3A—N4—C55.7 (2)N4—C3A—N7A—N1176.21 (13)
C3—C3A—N4—C5169.56 (16)C3—C3A—N7A—N10.14 (18)
C3A—N4—C5—C69.2 (2)N4—C3A—N7A—C712.1 (2)
C3A—N4—C5—C51167.49 (13)C3—C3A—N7A—C7171.52 (14)
C6—C5—C51—C5655.5 (2)C2—N1—N7A—C3A0.59 (17)
N4—C5—C51—C56127.95 (16)C2—N1—N7A—C7172.63 (13)
C6—C5—C51—C52121.96 (18)C6—C7—N7A—C3A22.4 (2)
C56—C51—C52—C532.0 (3)C71—C7—N7A—C3A101.65 (18)
C5—C51—C52—C53175.60 (15)C6—C7—N7A—N1166.60 (13)
C51—C52—C53—C540.4 (3)C71—C7—N7A—N169.33 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O30.982.362.933 (2)117
N4—H4···O3i0.982.022.968 (2)163
C73—H73···O6ii0.952.373.294 (3)165
C74—H74···O3iii0.952.443.376 (2)170
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z; (iii) x1, y, z1.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JT thanks COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds