organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydrogen-bonded sheets in 4-amino-8,8-di­methyl-2-(methyl­sulfan­yl)-8,9-di­hydro­pyrimidino[4,5-b]quinolin-6(7H)-one

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Universidad de Nariño, Ciudad Universitaria, Torobajo, AA 1175, Pasto, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 2 October 2006; accepted 2 October 2006; online 13 October 2006)

The title mol­ecule, C14H16N4OS, shows strong bond fixation within the fused heterocyclic rings. In the crystal structure, mol­ecules are linked into sheets by a combination of N—H⋯N and N—H⋯O hydrogen bonds.

Comment

We report here the structure of the title compound, (I)[link] (Fig. 1[link]), which was prepared by microwave irradiation of a two-component mixture of a 6-amino­pyrimidine and the condensation product formed from dimedone and formaldehyde. By contrast a similar reaction between 6-amino­pyrimidines, 5,5-dimethyl­cyclo­hexane-1,3-dione and a large excess of formaldehyde yielded spiranopyridopyrimidines (Quiroga et al., 2006[Quiroga, J., Cruz, S., Insuasty, B., Abonía, R., Nogueras, M. & Cobo, J. (2006). Tetrahedron Lett. 47, 27-30.]).

[Scheme 1]

The bond distances within the fused heterocyclic system (Table 1[link]) provide evidence for significant bond fixation of the naphthalene type. Thus, for example, the bonds N1—C2, N3—C4 and C9A—N10 are all significantly shorter than the bonds C2—N3, N10—C10A and C10A—N1, while C5—C5A is the shortest of the C—C bonds. The carbocyclic ring adopts a conformation best described as inter­mediate between an envelope form, with the fold across the vector C7⋯C9, and a half-chair form. The ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) for the atom sequence C5A—C6—C7—C8—C9—C9A are θ = 129.2 (2)° and φ = 342.4 (4)°; the idealized values for the envelope and half-chair forms, respectively, are θ = 126.3 and 129.8°, and φ = (60k) and (60k + 30)°, where k is zero or an integer. The two S—C distances are clearly different, and atom C21 lies almost in the plane of the adjacent pyrimidine ring.

The mol­ecules are linked into sheets by two hydrogen bonds (Table 2[link]), and the formation of the sheets is readily analysed in terms of two simple substructures, each formed by just one hydrogen bond. In the first substructure, amino atom N4 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor, via H4A, to the pyrimidine ring atom N3 in the mol­ecule at (1 − x, 1 − y, 2 − z), so generating by inversion an R22(8) (Bernstein et al., 1995[Bernstein, J., Davis, R., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) ring centred at ([{1\over 2}], [{1\over 2}], 1) (Fig. 2[link]). In the second substructure, amino atom N4 at (x, y, z) acts as a hydrogen-bond donor, via H4B, to atom O6 in the mol­ecule at (x, [{3\over 2}] − y, [{1\over 2}] + z), so forming a simple C(8) chain running parallel to the [001] direction and generated by the c-glide plane at y = 0.75 (Fig. 3[link]). The combination of these two substructures generates a sheet parallel to (100) (Fig. 4[link]), but there are no direction-specific inter­actions between adjacent sheets; in particular C—H⋯π hydrogen bonds and ππ stacking inter­actions are absent.

[Figure 1]
Figure 1
The molecular structure of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link], showing the formation of the R22(8) substructure. Hydrogen bonds are shown as dashed lines and for the sake of clarity the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 2 − z).
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link], showing the formation of the C(8) substructure. The hydrogen bonds are shown as dashed lines and for the sake of clarity the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, [{3\over 2}] − y, [{1\over 2}] + z) and (x, [{3\over 2}] − y, −[{1\over 2}] + z), respectively.
[Figure 4]
Figure 4
A stereoscopic view of part of the crystal structure of compound (I)[link], showing the formation of a sheet parallel to (100). The hydrogen bonds are shown as dashed lines and for the sake of clarity the H atoms bonded to C atoms have been omitted.

Experimental

A mixture of 4,6-diamino-2-methyl­sulfanylpyrimidine (1.0 mmol), 2,2-methyl­enebis(3-hydr­oxy-5,5-dimethyl­cyclo­hex-2-en-1-one) (1.0 mmol) and triethyl­amine (0.5 mmol) was placed in an open Pyrex-glass vessel and irradiated in a domestic microwave oven for 80 s at 600 W. The resulting solid product was collected by filtration, washed with cold ethanol, dried and then recrystallized from ethanol to provide crystals of compound (I)[link] suitable for single-crystal X-ray diffraction; yield 60%, m.p. 580 K.

Crystal data
  • C14H16N4OS

  • Mr = 288.37

  • Monoclinic, P 21 /c

  • a = 10.7138 (11) Å

  • b = 15.1368 (15) Å

  • c = 8.9112 (6) Å

  • β = 101.208 (6)°

  • V = 1417.6 (2) Å3

  • Z = 4

  • Dx = 1.351 Mg m−3

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.40 × 0.24 × 0.18 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.926, Tmax = 0.960

  • 20540 measured reflections

  • 3245 independent reflections

  • 2115 reflections with I > 2σ(I)

  • Rint = 0.072

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.143

  • S = 1.02

  • 3245 reflections

  • 184 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0693P)2 + 0.6375P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—C2 1.314 (3)
C2—N3 1.364 (3)
N3—C4 1.338 (3)
C4—C4A 1.445 (3)
C4A—C5 1.401 (3)
C5—C5A 1.384 (3)
C5A—C9A 1.413 (3)
C9A—N10 1.328 (3)
N10—C10A 1.356 (3)
C10A—N1 1.371 (3)
C4A—C10A 1.408 (3)
C2—S2 1.753 (2)
S2—C21 1.794 (3)
C4—N4 1.332 (3)
C2—S2—C21 101.78 (12)
N1—C2—S2—C21 2.1 (2)
N3—C2—S2—C21 −177.21 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N3i 0.90 2.17 3.067 (3) 173
N4—H4B⋯O6ii 0.90 2.15 2.946 (3) 147
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

All H atoms were located in difference maps and then treated as riding atoms with distances C—H = 0.95 Å (aromatic), 0.98 Å (CH3) or 0.99 Å (CH2) and N—H = 0.90 Å, and with Uiso(H) = kUeq(C,N), where k = 1.5 for methyl H atoms and 1.2 for all other H atoms.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

4-Amino-8,8-dimethyl-2- (methanesulfanyl)-8,9-dihydropyrimidino[4,5-b]quinolin-6(7H)-one top
Crystal data top
C14H16N4OSF(000) = 608
Mr = 288.37Dx = 1.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3245 reflections
a = 10.7138 (11) Åθ = 2.4–27.5°
b = 15.1368 (15) ŵ = 0.23 mm1
c = 8.9112 (6) ÅT = 120 K
β = 101.208 (6)°Block, colourless
V = 1417.6 (2) Å30.40 × 0.24 × 0.18 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3245 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2115 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.4°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1919
Tmin = 0.926, Tmax = 0.960l = 1111
20540 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0693P)2 + 0.6375P]
where P = (Fo2 + 2Fc2)/3
3245 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Experimental. MS (70 eV) m/z (%) 290 (100, M+), 289 (62), 275 (34), 259 (5), 245 (9), 220 (17)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.74462 (19)0.39484 (12)0.7310 (2)0.0288 (5)
C20.6764 (2)0.39091 (15)0.8384 (3)0.0290 (5)
S20.69070 (6)0.29872 (4)0.95954 (7)0.0350 (2)
C210.8107 (3)0.23543 (17)0.8931 (3)0.0355 (6)
N30.59209 (19)0.45107 (12)0.8743 (2)0.0283 (5)
C40.5710 (2)0.52293 (15)0.7856 (2)0.0250 (5)
N40.48914 (19)0.58258 (13)0.8191 (2)0.0301 (5)
C4A0.6340 (2)0.53342 (14)0.6572 (2)0.0250 (5)
C50.6103 (2)0.60132 (15)0.5486 (2)0.0260 (5)
C5A0.6734 (2)0.60094 (14)0.4270 (2)0.0247 (5)
C60.6463 (2)0.66958 (15)0.3058 (2)0.0274 (5)
O60.58072 (17)0.73385 (11)0.32040 (18)0.0338 (4)
C70.7028 (2)0.65422 (16)0.1666 (3)0.0311 (6)
C80.8376 (2)0.61671 (15)0.2029 (2)0.0274 (5)
C810.8854 (3)0.59856 (16)0.0546 (3)0.0334 (6)
C820.9273 (3)0.68183 (16)0.3016 (3)0.0358 (6)
C90.8344 (2)0.52914 (15)0.2897 (3)0.0312 (6)
C9A0.7636 (2)0.53374 (14)0.4198 (2)0.0252 (5)
N100.78922 (18)0.46986 (12)0.5234 (2)0.0279 (5)
C10A0.7220 (2)0.46742 (15)0.6375 (2)0.0263 (5)
H21A0.78410.22430.78320.053*
H21B0.82260.17900.94790.053*
H21C0.89100.26840.91190.053*
H4A0.45920.57120.90470.036*
H4B0.49410.63790.78370.036*
H50.55170.64710.55830.031*
H7A0.70410.71090.11150.037*
H7B0.64760.61280.09750.037*
H81A0.83070.55430.00600.050*
H81B0.97290.57640.07930.050*
H81C0.88310.65340.00440.050*
H82A0.92430.73880.24890.054*
H82B1.01440.65870.31900.054*
H82C0.90080.68970.40000.054*
H9A0.79430.48340.21650.037*
H9B0.92300.51030.33050.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0383 (12)0.0191 (10)0.0309 (11)0.0019 (9)0.0112 (9)0.0049 (8)
C20.0341 (14)0.0219 (12)0.0303 (12)0.0026 (10)0.0048 (10)0.0034 (9)
S20.0459 (4)0.0266 (3)0.0350 (4)0.0031 (3)0.0143 (3)0.0098 (3)
C210.0468 (16)0.0229 (12)0.0380 (14)0.0050 (12)0.0111 (12)0.0083 (10)
N30.0351 (11)0.0213 (10)0.0298 (11)0.0004 (9)0.0094 (8)0.0029 (8)
C40.0286 (12)0.0194 (12)0.0266 (11)0.0033 (10)0.0047 (9)0.0015 (9)
N40.0429 (12)0.0191 (10)0.0309 (11)0.0006 (9)0.0137 (9)0.0007 (8)
C4A0.0317 (13)0.0169 (11)0.0267 (12)0.0025 (10)0.0064 (9)0.0022 (9)
C50.0308 (13)0.0197 (12)0.0279 (12)0.0015 (10)0.0068 (10)0.0022 (9)
C5A0.0306 (13)0.0156 (11)0.0280 (12)0.0026 (9)0.0058 (10)0.0012 (9)
C60.0338 (13)0.0219 (12)0.0258 (12)0.0026 (11)0.0042 (10)0.0007 (9)
O60.0452 (11)0.0210 (9)0.0362 (9)0.0063 (8)0.0104 (8)0.0039 (7)
C70.0376 (14)0.0277 (13)0.0284 (12)0.0010 (11)0.0078 (10)0.0048 (10)
C80.0372 (14)0.0200 (12)0.0265 (12)0.0008 (10)0.0102 (10)0.0008 (9)
C810.0450 (16)0.0258 (14)0.0321 (13)0.0013 (11)0.0138 (11)0.0000 (10)
C820.0400 (15)0.0307 (14)0.0391 (14)0.0059 (12)0.0137 (11)0.0054 (11)
C90.0448 (15)0.0218 (12)0.0300 (13)0.0031 (11)0.0152 (11)0.0018 (10)
C9A0.0329 (13)0.0171 (11)0.0264 (12)0.0009 (10)0.0081 (10)0.0001 (9)
N100.0381 (12)0.0182 (10)0.0294 (10)0.0025 (9)0.0117 (9)0.0028 (8)
C10A0.0336 (13)0.0198 (12)0.0257 (11)0.0018 (10)0.0062 (9)0.0001 (9)
Geometric parameters (Å, º) top
N1—C21.314 (3)C5—H50.95
C2—N31.364 (3)C5A—C61.486 (3)
N3—C41.338 (3)C6—O61.221 (3)
C4—C4A1.445 (3)C6—C71.501 (3)
C4A—C51.401 (3)C7—C81.526 (3)
C5—C5A1.384 (3)C7—H7A0.99
C5A—C9A1.413 (3)C7—H7B0.99
C9A—N101.328 (3)C8—C821.530 (3)
N10—C10A1.356 (3)C8—C811.532 (3)
C10A—N11.371 (3)C8—C91.538 (3)
C4A—C10A1.408 (3)C81—H81A0.98
C2—S21.753 (2)C81—H81B0.98
S2—C211.794 (3)C81—H81C0.98
C21—H21A0.98C82—H82A0.98
C21—H21B0.98C82—H82B0.98
C21—H21C0.98C82—H82C0.98
C4—N41.332 (3)C9—C9A1.506 (3)
N4—H4A0.90C9—H9A0.99
N4—H4B0.90C9—H9B0.99
C2—N1—C10A114.9 (2)C8—C7—H7B108.8
N1—C2—N3128.9 (2)H7A—C7—H7B107.7
N1—C2—S2119.38 (18)C7—C8—C82110.2 (2)
N3—C2—S2111.68 (17)C7—C8—C81110.20 (19)
C2—S2—C21101.78 (12)C82—C8—C81109.5 (2)
S2—C21—H21A109.5C7—C8—C9108.33 (19)
S2—C21—H21B109.5C82—C8—C9109.8 (2)
H21A—C21—H21B109.5C81—C8—C9108.84 (18)
S2—C21—H21C109.5C8—C81—H81A109.5
H21A—C21—H21C109.5C8—C81—H81B109.5
H21B—C21—H21C109.5H81A—C81—H81B109.5
C4—N3—C2116.59 (19)C8—C81—H81C109.5
N4—C4—N3117.5 (2)H81A—C81—H81C109.5
N4—C4—C4A122.1 (2)H81B—C81—H81C109.5
N3—C4—C4A120.4 (2)C8—C82—H82A109.5
C4—N4—H4A114.8C8—C82—H82B109.5
C4—N4—H4B117.8H82A—C82—H82B109.5
H4A—N4—H4B122.0C8—C82—H82C109.5
C5—C4A—C10A118.0 (2)H82A—C82—H82C109.5
C5—C4A—C4125.3 (2)H82B—C82—H82C109.5
C10A—C4A—C4116.6 (2)C9A—C9—C8114.27 (19)
C5A—C5—C4A119.2 (2)C9A—C9—H9A108.7
C5A—C5—H5120.4C8—C9—H9A108.7
C4A—C5—H5120.4C9A—C9—H9B108.7
C5—C5A—C9A118.7 (2)C8—C9—H9B108.7
C5—C5A—C6120.7 (2)H9A—C9—H9B107.6
C9A—C5A—C6120.6 (2)N10—C9A—C5A122.9 (2)
O6—C6—C5A121.0 (2)N10—C9A—C9115.76 (19)
O6—C6—C7123.0 (2)C5A—C9A—C9121.32 (19)
C5A—C6—C7116.0 (2)C9A—N10—C10A118.2 (2)
C6—C7—C8113.59 (19)N10—C10A—N1114.8 (2)
C6—C7—H7A108.8N10—C10A—C4A122.7 (2)
C8—C7—H7A108.8N1—C10A—C4A122.4 (2)
C6—C7—H7B108.8
C10A—N1—C2—N33.9 (4)C6—C7—C8—C8262.0 (3)
C10A—N1—C2—S2176.91 (17)C6—C7—C8—C81177.1 (2)
N1—C2—S2—C212.1 (2)C6—C7—C8—C958.1 (3)
N3—C2—S2—C21177.21 (17)C7—C8—C9—C9A47.8 (3)
N1—C2—N3—C42.8 (4)C82—C8—C9—C9A72.6 (3)
S2—C2—N3—C4177.99 (16)C81—C8—C9—C9A167.7 (2)
C2—N3—C4—N4179.9 (2)C5—C5A—C9A—N101.1 (3)
C2—N3—C4—C4A1.2 (3)C6—C5A—C9A—N10178.5 (2)
N4—C4—C4A—C55.2 (4)C5—C5A—C9A—C9179.4 (2)
N3—C4—C4A—C5173.6 (2)C6—C5A—C9A—C90.3 (3)
N4—C4—C4A—C10A177.7 (2)C8—C9—C9A—N10161.0 (2)
N3—C4—C4A—C10A3.5 (3)C8—C9—C9A—C5A20.6 (3)
C10A—C4A—C5—C5A0.2 (3)C5A—C9A—N10—C10A2.6 (3)
C4—C4A—C5—C5A176.9 (2)C9—C9A—N10—C10A175.7 (2)
C4A—C5—C5A—C9A2.5 (3)C9A—N10—C10A—N1173.8 (2)
C4A—C5—C5A—C6177.2 (2)C9A—N10—C10A—C4A5.2 (3)
C5—C5A—C6—O69.5 (3)C2—N1—C10A—N10177.8 (2)
C9A—C5A—C6—O6170.8 (2)C2—N1—C10A—C4A1.1 (3)
C5—C5A—C6—C7169.9 (2)C5—C4A—C10A—N103.8 (3)
C9A—C5A—C6—C79.7 (3)C4—C4A—C10A—N10178.9 (2)
O6—C6—C7—C8140.8 (2)C5—C4A—C10A—N1175.0 (2)
C5A—C6—C7—C839.8 (3)C4—C4A—C10A—N12.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N3i0.902.173.067 (3)173
N4—H4B···O6ii0.902.152.946 (3)147
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC and JT thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. SC thanks COLCIENCIAS and UDENAR (Universidad de Nariño, Colombia) for financial support.

References

First citationBernstein, J., Davis, R., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationQuiroga, J., Cruz, S., Insuasty, B., Abonía, R., Nogueras, M. & Cobo, J. (2006). Tetrahedron Lett. 47, 27–30.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds