Comment
We report here the structure of the title compound, (I)
(Fig. 1
), which was prepared by microwave irradiation of a two-component mixture of a 6-aminopyrimidine and the condensation product formed from dimedone and formaldehyde. By contrast a similar reaction between 6-aminopyrimidines, 5,5-dimethylcyclohexane-1,3-dione and a large excess of formaldehyde yielded spiranopyridopyrimidines (Quiroga et al., 2006
).
The bond distances within the fused heterocyclic system (Table 1
) provide evidence for significant bond fixation of the naphthalene type. Thus, for example, the bonds N1—C2, N3—C4 and C9A—N10 are all significantly shorter than the bonds C2—N3, N10—C10A and C10A—N1, while C5—C5A is the shortest of the C—C bonds. The carbocyclic ring adopts a conformation best described as intermediate between an envelope form, with the fold across the vector C7⋯C9, and a half-chair form. The ring-puckering parameters (Cremer & Pople, 1975
) for the atom sequence C5A—C6—C7—C8—C9—C9A are θ = 129.2 (2)° and φ = 342.4 (4)°; the idealized values for the envelope and half-chair forms, respectively, are θ = 126.3 and 129.8°, and φ = (60k) and (60k + 30)°, where k is zero or an integer. The two S—C distances are clearly different, and atom C21 lies almost in the plane of the adjacent pyrimidine ring.
The molecules are linked into sheets by two hydrogen bonds (Table 2
), and the formation of the sheets is readily analysed in terms of two simple substructures, each formed by just one hydrogen bond. In the first substructure, amino atom N4 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H4A, to the pyrimidine ring atom N3 in the molecule at (1 − x, 1 − y, 2 − z), so generating by inversion an R22(8) (Bernstein et al., 1995
) ring centred at (
,
, 1) (Fig. 2
). In the second substructure, amino atom N4 at (x, y, z) acts as a hydrogen-bond donor, via H4B, to atom O6 in the molecule at (x,
− y,
+ z), so forming a simple C(8) chain running parallel to the [001] direction and generated by the c-glide plane at y = 0.75 (Fig. 3
). The combination of these two substructures generates a sheet parallel to (100) (Fig. 4
), but there are no direction-specific interactions between adjacent sheets; in particular C—H⋯π hydrogen bonds and π–π stacking interactions are absent.
| Figure 1 The molecular structure of compound (I) , showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. |
| Figure 2 Part of the crystal structure of compound (I) , showing the formation of the R22(8) substructure. Hydrogen bonds are shown as dashed lines and for the sake of clarity the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 2 − z). |
| Figure 3 Part of the crystal structure of compound (I) , showing the formation of the C(8) substructure. The hydrogen bonds are shown as dashed lines and for the sake of clarity the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, − y, + z) and (x, − y, − + z), respectively. |
| Figure 4 A stereoscopic view of part of the crystal structure of compound (I) , showing the formation of a sheet parallel to (100). The hydrogen bonds are shown as dashed lines and for the sake of clarity the H atoms bonded to C atoms have been omitted. |
Experimental
A mixture of 4,6-diamino-2-methylsulfanylpyrimidine (1.0 mmol), 2,2-methylenebis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one) (1.0 mmol) and triethylamine (0.5 mmol) was placed in an open Pyrex-glass vessel and irradiated in a domestic microwave oven for 80 s at 600 W. The resulting solid product was collected by filtration, washed with cold ethanol, dried and then recrystallized from ethanol to provide crystals of compound (I)
suitable for single-crystal X-ray diffraction; yield 60%, m.p. 580 K.
Crystal data
C14H16N4OS Mr = 288.37 Monoclinic, P 21 /c a = 10.7138 (11) Å b = 15.1368 (15) Å c = 8.9112 (6) Å β = 101.208 (6)° V = 1417.6 (2) Å3 Z = 4 Dx = 1.351 Mg m−3 Mo Kα radiation μ = 0.23 mm−1 T = 120 (2) K Block, colourless 0.40 × 0.24 × 0.18 mm
|
Data collection
Bruker–Nonius KappaCCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003 ) Tmin = 0.926, Tmax = 0.960 20540 measured reflections 3245 independent reflections 2115 reflections with I > 2σ(I) Rint = 0.072 θmax = 27.5°
|
N1—C2 | 1.314 (3) | C2—N3 | 1.364 (3) | N3—C4 | 1.338 (3) | C4—C4A | 1.445 (3) | C4A—C5 | 1.401 (3) | C5—C5A | 1.384 (3) | C5A—C9A | 1.413 (3) | C9A—N10 | 1.328 (3) | N10—C10A | 1.356 (3) | C10A—N1 | 1.371 (3) | C4A—C10A | 1.408 (3) | C2—S2 | 1.753 (2) | S2—C21 | 1.794 (3) | C4—N4 | 1.332 (3) | | N1—C2—S2—C21 | 2.1 (2) | N3—C2—S2—C21 | −177.21 (17) | | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N4—H4A⋯N3i | 0.90 | 2.17 | 3.067 (3) | 173 | N4—H4B⋯O6ii | 0.90 | 2.15 | 2.946 (3) | 147 | Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) . | |
All H atoms were located in difference maps and then treated as riding atoms with distances C—H = 0.95 Å (aromatic), 0.98 Å (CH3) or 0.99 Å (CH2) and N—H = 0.90 Å, and with Uiso(H) = kUeq(C,N), where k = 1.5 for methyl H atoms and 1.2 for all other H atoms.
Data collection: COLLECT (Hooft, 1999
); cell refinement: DENZO (Otwinowski & Minor, 1997
) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003
) and SHELXS97 (Sheldrick, 1997
); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997
); molecular graphics: PLATON (Spek, 2003
); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999
).
Supporting information
Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).
4-Amino-8,8-dimethyl-2- (methanesulfanyl)-8,9-dihydropyrimidino[4,5-
b]quinolin-6(7
H)-one
top Crystal data top C14H16N4OS | F(000) = 608 |
Mr = 288.37 | Dx = 1.351 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3245 reflections |
a = 10.7138 (11) Å | θ = 2.4–27.5° |
b = 15.1368 (15) Å | µ = 0.23 mm−1 |
c = 8.9112 (6) Å | T = 120 K |
β = 101.208 (6)° | Block, colourless |
V = 1417.6 (2) Å3 | 0.40 × 0.24 × 0.18 mm |
Z = 4 | |
Data collection top Bruker–Nonius KappaCCD diffractometer | 3245 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 2115 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.072 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 2.4° |
φ and ω scans | h = −13→13 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −19→19 |
Tmin = 0.926, Tmax = 0.960 | l = −11→11 |
20540 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0693P)2 + 0.6375P] where P = (Fo2 + 2Fc2)/3 |
3245 reflections | (Δ/σ)max < 0.001 |
184 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
Special details top Experimental. MS (70 eV) m/z (%) 290 (100, M+), 289 (62), 275 (34), 259 (5), 245 (9), 220 (17) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
N1 | 0.74462 (19) | 0.39484 (12) | 0.7310 (2) | 0.0288 (5) | |
C2 | 0.6764 (2) | 0.39091 (15) | 0.8384 (3) | 0.0290 (5) | |
S2 | 0.69070 (6) | 0.29872 (4) | 0.95954 (7) | 0.0350 (2) | |
C21 | 0.8107 (3) | 0.23543 (17) | 0.8931 (3) | 0.0355 (6) | |
N3 | 0.59209 (19) | 0.45107 (12) | 0.8743 (2) | 0.0283 (5) | |
C4 | 0.5710 (2) | 0.52293 (15) | 0.7856 (2) | 0.0250 (5) | |
N4 | 0.48914 (19) | 0.58258 (13) | 0.8191 (2) | 0.0301 (5) | |
C4A | 0.6340 (2) | 0.53342 (14) | 0.6572 (2) | 0.0250 (5) | |
C5 | 0.6103 (2) | 0.60132 (15) | 0.5486 (2) | 0.0260 (5) | |
C5A | 0.6734 (2) | 0.60094 (14) | 0.4270 (2) | 0.0247 (5) | |
C6 | 0.6463 (2) | 0.66958 (15) | 0.3058 (2) | 0.0274 (5) | |
O6 | 0.58072 (17) | 0.73385 (11) | 0.32040 (18) | 0.0338 (4) | |
C7 | 0.7028 (2) | 0.65422 (16) | 0.1666 (3) | 0.0311 (6) | |
C8 | 0.8376 (2) | 0.61671 (15) | 0.2029 (2) | 0.0274 (5) | |
C81 | 0.8854 (3) | 0.59856 (16) | 0.0546 (3) | 0.0334 (6) | |
C82 | 0.9273 (3) | 0.68183 (16) | 0.3016 (3) | 0.0358 (6) | |
C9 | 0.8344 (2) | 0.52914 (15) | 0.2897 (3) | 0.0312 (6) | |
C9A | 0.7636 (2) | 0.53374 (14) | 0.4198 (2) | 0.0252 (5) | |
N10 | 0.78922 (18) | 0.46986 (12) | 0.5234 (2) | 0.0279 (5) | |
C10A | 0.7220 (2) | 0.46742 (15) | 0.6375 (2) | 0.0263 (5) | |
H21A | 0.7841 | 0.2243 | 0.7832 | 0.053* | |
H21B | 0.8226 | 0.1790 | 0.9479 | 0.053* | |
H21C | 0.8910 | 0.2684 | 0.9119 | 0.053* | |
H4A | 0.4592 | 0.5712 | 0.9047 | 0.036* | |
H4B | 0.4941 | 0.6379 | 0.7837 | 0.036* | |
H5 | 0.5517 | 0.6471 | 0.5583 | 0.031* | |
H7A | 0.7041 | 0.7109 | 0.1115 | 0.037* | |
H7B | 0.6476 | 0.6128 | 0.0975 | 0.037* | |
H81A | 0.8307 | 0.5543 | −0.0060 | 0.050* | |
H81B | 0.9729 | 0.5764 | 0.0793 | 0.050* | |
H81C | 0.8831 | 0.6534 | −0.0044 | 0.050* | |
H82A | 0.9243 | 0.7388 | 0.2489 | 0.054* | |
H82B | 1.0144 | 0.6587 | 0.3190 | 0.054* | |
H82C | 0.9008 | 0.6897 | 0.4000 | 0.054* | |
H9A | 0.7943 | 0.4834 | 0.2165 | 0.037* | |
H9B | 0.9230 | 0.5103 | 0.3305 | 0.037* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N1 | 0.0383 (12) | 0.0191 (10) | 0.0309 (11) | 0.0019 (9) | 0.0112 (9) | 0.0049 (8) |
C2 | 0.0341 (14) | 0.0219 (12) | 0.0303 (12) | −0.0026 (10) | 0.0048 (10) | 0.0034 (9) |
S2 | 0.0459 (4) | 0.0266 (3) | 0.0350 (4) | 0.0031 (3) | 0.0143 (3) | 0.0098 (3) |
C21 | 0.0468 (16) | 0.0229 (12) | 0.0380 (14) | 0.0050 (12) | 0.0111 (12) | 0.0083 (10) |
N3 | 0.0351 (11) | 0.0213 (10) | 0.0298 (11) | 0.0004 (9) | 0.0094 (8) | 0.0029 (8) |
C4 | 0.0286 (12) | 0.0194 (12) | 0.0266 (11) | −0.0033 (10) | 0.0047 (9) | −0.0015 (9) |
N4 | 0.0429 (12) | 0.0191 (10) | 0.0309 (11) | −0.0006 (9) | 0.0137 (9) | 0.0007 (8) |
C4A | 0.0317 (13) | 0.0169 (11) | 0.0267 (12) | −0.0025 (10) | 0.0064 (9) | −0.0022 (9) |
C5 | 0.0308 (13) | 0.0197 (12) | 0.0279 (12) | −0.0015 (10) | 0.0068 (10) | −0.0022 (9) |
C5A | 0.0306 (13) | 0.0156 (11) | 0.0280 (12) | −0.0026 (9) | 0.0058 (10) | −0.0012 (9) |
C6 | 0.0338 (13) | 0.0219 (12) | 0.0258 (12) | −0.0026 (11) | 0.0042 (10) | 0.0007 (9) |
O6 | 0.0452 (11) | 0.0210 (9) | 0.0362 (9) | 0.0063 (8) | 0.0104 (8) | 0.0039 (7) |
C7 | 0.0376 (14) | 0.0277 (13) | 0.0284 (12) | 0.0010 (11) | 0.0078 (10) | 0.0048 (10) |
C8 | 0.0372 (14) | 0.0200 (12) | 0.0265 (12) | −0.0008 (10) | 0.0102 (10) | −0.0008 (9) |
C81 | 0.0450 (16) | 0.0258 (14) | 0.0321 (13) | −0.0013 (11) | 0.0138 (11) | 0.0000 (10) |
C82 | 0.0400 (15) | 0.0307 (14) | 0.0391 (14) | −0.0059 (12) | 0.0137 (11) | −0.0054 (11) |
C9 | 0.0448 (15) | 0.0218 (12) | 0.0300 (13) | 0.0031 (11) | 0.0152 (11) | 0.0018 (10) |
C9A | 0.0329 (13) | 0.0171 (11) | 0.0264 (12) | −0.0009 (10) | 0.0081 (10) | 0.0001 (9) |
N10 | 0.0381 (12) | 0.0182 (10) | 0.0294 (10) | 0.0025 (9) | 0.0117 (9) | 0.0028 (8) |
C10A | 0.0336 (13) | 0.0198 (12) | 0.0257 (11) | −0.0018 (10) | 0.0062 (9) | 0.0001 (9) |
Geometric parameters (Å, º) top N1—C2 | 1.314 (3) | C5—H5 | 0.95 |
C2—N3 | 1.364 (3) | C5A—C6 | 1.486 (3) |
N3—C4 | 1.338 (3) | C6—O6 | 1.221 (3) |
C4—C4A | 1.445 (3) | C6—C7 | 1.501 (3) |
C4A—C5 | 1.401 (3) | C7—C8 | 1.526 (3) |
C5—C5A | 1.384 (3) | C7—H7A | 0.99 |
C5A—C9A | 1.413 (3) | C7—H7B | 0.99 |
C9A—N10 | 1.328 (3) | C8—C82 | 1.530 (3) |
N10—C10A | 1.356 (3) | C8—C81 | 1.532 (3) |
C10A—N1 | 1.371 (3) | C8—C9 | 1.538 (3) |
C4A—C10A | 1.408 (3) | C81—H81A | 0.98 |
C2—S2 | 1.753 (2) | C81—H81B | 0.98 |
S2—C21 | 1.794 (3) | C81—H81C | 0.98 |
C21—H21A | 0.98 | C82—H82A | 0.98 |
C21—H21B | 0.98 | C82—H82B | 0.98 |
C21—H21C | 0.98 | C82—H82C | 0.98 |
C4—N4 | 1.332 (3) | C9—C9A | 1.506 (3) |
N4—H4A | 0.90 | C9—H9A | 0.99 |
N4—H4B | 0.90 | C9—H9B | 0.99 |
| | | |
C2—N1—C10A | 114.9 (2) | C8—C7—H7B | 108.8 |
N1—C2—N3 | 128.9 (2) | H7A—C7—H7B | 107.7 |
N1—C2—S2 | 119.38 (18) | C7—C8—C82 | 110.2 (2) |
N3—C2—S2 | 111.68 (17) | C7—C8—C81 | 110.20 (19) |
C2—S2—C21 | 101.78 (12) | C82—C8—C81 | 109.5 (2) |
S2—C21—H21A | 109.5 | C7—C8—C9 | 108.33 (19) |
S2—C21—H21B | 109.5 | C82—C8—C9 | 109.8 (2) |
H21A—C21—H21B | 109.5 | C81—C8—C9 | 108.84 (18) |
S2—C21—H21C | 109.5 | C8—C81—H81A | 109.5 |
H21A—C21—H21C | 109.5 | C8—C81—H81B | 109.5 |
H21B—C21—H21C | 109.5 | H81A—C81—H81B | 109.5 |
C4—N3—C2 | 116.59 (19) | C8—C81—H81C | 109.5 |
N4—C4—N3 | 117.5 (2) | H81A—C81—H81C | 109.5 |
N4—C4—C4A | 122.1 (2) | H81B—C81—H81C | 109.5 |
N3—C4—C4A | 120.4 (2) | C8—C82—H82A | 109.5 |
C4—N4—H4A | 114.8 | C8—C82—H82B | 109.5 |
C4—N4—H4B | 117.8 | H82A—C82—H82B | 109.5 |
H4A—N4—H4B | 122.0 | C8—C82—H82C | 109.5 |
C5—C4A—C10A | 118.0 (2) | H82A—C82—H82C | 109.5 |
C5—C4A—C4 | 125.3 (2) | H82B—C82—H82C | 109.5 |
C10A—C4A—C4 | 116.6 (2) | C9A—C9—C8 | 114.27 (19) |
C5A—C5—C4A | 119.2 (2) | C9A—C9—H9A | 108.7 |
C5A—C5—H5 | 120.4 | C8—C9—H9A | 108.7 |
C4A—C5—H5 | 120.4 | C9A—C9—H9B | 108.7 |
C5—C5A—C9A | 118.7 (2) | C8—C9—H9B | 108.7 |
C5—C5A—C6 | 120.7 (2) | H9A—C9—H9B | 107.6 |
C9A—C5A—C6 | 120.6 (2) | N10—C9A—C5A | 122.9 (2) |
O6—C6—C5A | 121.0 (2) | N10—C9A—C9 | 115.76 (19) |
O6—C6—C7 | 123.0 (2) | C5A—C9A—C9 | 121.32 (19) |
C5A—C6—C7 | 116.0 (2) | C9A—N10—C10A | 118.2 (2) |
C6—C7—C8 | 113.59 (19) | N10—C10A—N1 | 114.8 (2) |
C6—C7—H7A | 108.8 | N10—C10A—C4A | 122.7 (2) |
C8—C7—H7A | 108.8 | N1—C10A—C4A | 122.4 (2) |
C6—C7—H7B | 108.8 | | |
| | | |
C10A—N1—C2—N3 | −3.9 (4) | C6—C7—C8—C82 | −62.0 (3) |
C10A—N1—C2—S2 | 176.91 (17) | C6—C7—C8—C81 | 177.1 (2) |
N1—C2—S2—C21 | 2.1 (2) | C6—C7—C8—C9 | 58.1 (3) |
N3—C2—S2—C21 | −177.21 (17) | C7—C8—C9—C9A | −47.8 (3) |
N1—C2—N3—C4 | 2.8 (4) | C82—C8—C9—C9A | 72.6 (3) |
S2—C2—N3—C4 | −177.99 (16) | C81—C8—C9—C9A | −167.7 (2) |
C2—N3—C4—N4 | −179.9 (2) | C5—C5A—C9A—N10 | 1.1 (3) |
C2—N3—C4—C4A | 1.2 (3) | C6—C5A—C9A—N10 | −178.5 (2) |
N4—C4—C4A—C5 | −5.2 (4) | C5—C5A—C9A—C9 | 179.4 (2) |
N3—C4—C4A—C5 | 173.6 (2) | C6—C5A—C9A—C9 | −0.3 (3) |
N4—C4—C4A—C10A | 177.7 (2) | C8—C9—C9A—N10 | −161.0 (2) |
N3—C4—C4A—C10A | −3.5 (3) | C8—C9—C9A—C5A | 20.6 (3) |
C10A—C4A—C5—C5A | 0.2 (3) | C5A—C9A—N10—C10A | 2.6 (3) |
C4—C4A—C5—C5A | −176.9 (2) | C9—C9A—N10—C10A | −175.7 (2) |
C4A—C5—C5A—C9A | −2.5 (3) | C9A—N10—C10A—N1 | 173.8 (2) |
C4A—C5—C5A—C6 | 177.2 (2) | C9A—N10—C10A—C4A | −5.2 (3) |
C5—C5A—C6—O6 | 9.5 (3) | C2—N1—C10A—N10 | −177.8 (2) |
C9A—C5A—C6—O6 | −170.8 (2) | C2—N1—C10A—C4A | 1.1 (3) |
C5—C5A—C6—C7 | −169.9 (2) | C5—C4A—C10A—N10 | 3.8 (3) |
C9A—C5A—C6—C7 | 9.7 (3) | C4—C4A—C10A—N10 | −178.9 (2) |
O6—C6—C7—C8 | 140.8 (2) | C5—C4A—C10A—N1 | −175.0 (2) |
C5A—C6—C7—C8 | −39.8 (3) | C4—C4A—C10A—N1 | 2.3 (3) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···N3i | 0.90 | 2.17 | 3.067 (3) | 173 |
N4—H4B···O6ii | 0.90 | 2.15 | 2.946 (3) | 147 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+3/2, z+1/2. |
Acknowledgements
X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC and JT thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. SC thanks COLCIENCIAS and UDENAR (Universidad de Nariño, Colombia) for financial support.
References
Bernstein, J., Davis, R., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Google Scholar
Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Quiroga, J., Cruz, S., Insuasty, B., Abonía, R., Nogueras, M. & Cobo, J. (2006). Tetrahedron Lett. 47, 27–30. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890