organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-(4-Methyl­phen­yl)-2-(3-thien­yl)acrylo­nitrile

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 11 October 2006; accepted 11 October 2006; online 25 October 2006)

In the molecule of the title compound, C14H11NS, the benzene ring is significantly rotated out of the plane of the rest of the molecule. There are no significant direction-specific inter­actions between the mol­ecules.

Comment

We have recently reported the structures of a number of 3-aryl-2-thienylacrylonitrile derivatives (Cobo et al., 2005[Cobo, D., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3639-o3641.], 2006[Cobo, D., Quiroga, J., de la Torre, J. M., Cobo, J., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o550-o553.]). We report here the structure of the title compound, (I)[link] (Fig. 1[link]), which we compare with that of the phenyl analogue, (II) (Cobo et al., 2006[Cobo, D., Quiroga, J., de la Torre, J. M., Cobo, J., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o550-o553.]). The mol­ecule of compound (I)[link] is approximately planar apart from the benzene ring, which is significantly rotated out of the plane of the rest of the mol­ecule about the bond C17—C11 (Table 1[link]). The nitrile fragment shows the usual long C—C bond and very short C—N bond, but the rest of the geometry shows no unexpected features. By contrast, the whole mol­ecule of compound (II) is virtually planar, with a C37—C17—C11—C12 torsion angle of only −1.7 (5)°.

[Scheme 1]

In compound (II), the mol­ecules are linked into sheets by a combination of C—H⋯N and C—H⋯π(arene) hydrogen bonds; by contrast, in (I)[link], the shortest non-bonded inter­molecular contacts between potential hydrogen-bond donors and acceptors (Table 2[link]) are all too long to be structurally significant, although they involve precisely the same combinations of donors and acceptors as the hydrogen bonds in compound (II). Hence, the introduction of the 4-methyl substituent in compound (I)[link] in place of the 4-H in compound (II) appears to stretch the crystal structure sufficiently to put the corresponding combinations of hydrogen-bond donors and acceptors just out of bonding range.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Experimental

A solution of 3-thio­phene­acetonitrile (1 mmol) and potassium tert-butoxide (1 mmol) in anhydrous ethanol (3 ml) was stirred at room temperature for 15 min; a solution of 4-methyl­benzaldehyde (1 mmol) in anhydrous ethanol (3 ml) was then added and the mixture was set aside until formation of a precipitate was complete. The resulting solid product was collected by filtration, washed with ethanol, dried and finally recrystallized from dimethyl­formamide to give colourless crystals of (I)[link] suitable for single-crystal X-ray diffraction (yield 60%; m.p. 365–367 K).

Crystal data
  • C14H11NS

  • Mr = 225.30

  • Monoclinic, P 21 /c

  • a = 13.7415 (3) Å

  • b = 10.8492 (3) Å

  • c = 8.0238 (2) Å

  • β = 106.439 (2)°

  • V = 1147.32 (5) Å3

  • Z = 4

  • Dx = 1.304 Mg m−3

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.50 × 0.25 × 0.25 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.885, Tmax = 0.940

  • 15435 measured reflections

  • 2628 independent reflections

  • 2284 reflections with I > 2σ(I)

  • Rint = 0.027

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.05

  • 2628 reflections

  • 146 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0499P)2 + 0.5552P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected geometric parameters (Å, °)

C37—C371 1.4444 (18)
C371—N37 1.1499 (18)
C2—C3—C37—C17 176.17 (13)
C3—C37—C17—C11 −177.98 (12)
C37—C17—C11—C12 −26.9 (2)

Table 2
Parameters (Å, °) for short intermolecular contacts

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N37i 0.95 2.75 3.312 (2) 119
C13—H13⋯Cgii 0.95 2.99 3.777 (2) 141
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

All H atoms were treated as riding atoms, with C—H = 0.98 (CH3) or 0.95 Å (all other H atoms) and Uiso(H) = kUeq(C), where k = 1.5 for methyl H atoms and 1.2 for all other H atoms.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

(Z)-3-(4-methylphenyl)-2-(3-thienyl)acrylonitrile top
Crystal data top
C14H11NSF(000) = 472
Mr = 225.30Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2628 reflections
a = 13.7415 (3) Åθ = 2.4–27.5°
b = 10.8492 (3) ŵ = 0.25 mm1
c = 8.0238 (2) ÅT = 120 K
β = 106.439 (2)°Block, colourless
V = 1147.32 (5) Å30.50 × 0.25 × 0.25 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2628 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.4°
φ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.885, Tmax = 0.940l = 1010
15435 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.5552P]
where P = (Fo2 + 2Fc2)/3
2628 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.35 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33892 (2)0.22914 (3)0.23475 (4)0.02236 (12)
C20.45498 (10)0.19264 (13)0.37130 (17)0.0193 (3)
C30.51901 (10)0.29212 (12)0.40812 (16)0.0164 (3)
C40.47088 (10)0.40121 (13)0.32193 (17)0.0198 (3)
C50.37394 (11)0.37998 (13)0.22405 (18)0.0222 (3)
C370.62421 (10)0.28555 (12)0.52110 (16)0.0164 (3)
C3710.65503 (9)0.16439 (12)0.59084 (17)0.0177 (3)
N370.67540 (9)0.06549 (11)0.63993 (16)0.0241 (3)
C170.69020 (10)0.38086 (12)0.55123 (16)0.0174 (3)
C110.79651 (10)0.38364 (12)0.65604 (16)0.0167 (3)
C120.83749 (10)0.30514 (13)0.79697 (18)0.0208 (3)
C130.93993 (11)0.30936 (14)0.88594 (18)0.0229 (3)
C141.00530 (10)0.39136 (14)0.83822 (18)0.0214 (3)
C1411.11724 (11)0.39195 (16)0.9328 (2)0.0313 (4)
C150.96409 (11)0.47273 (14)0.70231 (18)0.0236 (3)
C160.86167 (11)0.46975 (13)0.61301 (18)0.0215 (3)
H20.47320.11240.41670.023*
H40.50300.47950.33200.024*
H50.33080.44150.15760.027*
H170.66410.45650.49700.021*
H120.79460.24820.83210.025*
H130.96600.25530.98130.028*
H14A1.12640.39391.05840.047*
H14B1.14900.46490.89850.047*
H14C1.14890.31740.90290.047*
H151.00690.53130.67020.028*
H160.83530.52680.52150.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01510 (19)0.0265 (2)0.02236 (19)0.00323 (12)0.00024 (14)0.00062 (13)
C20.0159 (6)0.0206 (7)0.0203 (6)0.0009 (5)0.0032 (5)0.0001 (5)
C30.0145 (6)0.0196 (7)0.0155 (6)0.0000 (5)0.0049 (5)0.0010 (5)
C40.0190 (6)0.0191 (7)0.0201 (6)0.0007 (5)0.0036 (5)0.0003 (5)
C50.0202 (7)0.0236 (7)0.0213 (6)0.0029 (5)0.0031 (5)0.0021 (5)
C370.0153 (6)0.0182 (6)0.0156 (6)0.0006 (5)0.0044 (5)0.0009 (5)
C3710.0126 (6)0.0215 (7)0.0178 (6)0.0021 (5)0.0020 (5)0.0032 (5)
N370.0217 (6)0.0206 (6)0.0273 (6)0.0012 (5)0.0025 (5)0.0012 (5)
C170.0164 (6)0.0188 (6)0.0164 (6)0.0005 (5)0.0035 (5)0.0007 (5)
C110.0155 (6)0.0177 (6)0.0168 (6)0.0009 (5)0.0040 (5)0.0033 (5)
C120.0194 (7)0.0214 (7)0.0202 (6)0.0053 (5)0.0035 (5)0.0007 (5)
C130.0216 (7)0.0221 (7)0.0208 (6)0.0001 (5)0.0010 (5)0.0000 (5)
C140.0144 (6)0.0258 (7)0.0231 (7)0.0010 (5)0.0035 (5)0.0080 (5)
C1410.0142 (7)0.0421 (9)0.0345 (8)0.0011 (6)0.0021 (6)0.0088 (7)
C150.0202 (7)0.0274 (8)0.0243 (7)0.0080 (5)0.0082 (6)0.0029 (6)
C160.0223 (7)0.0209 (7)0.0201 (6)0.0031 (5)0.0040 (5)0.0015 (5)
Geometric parameters (Å, º) top
S1—C21.7064 (13)C11—C121.4002 (19)
S1—C51.7147 (15)C11—C161.4031 (19)
C2—C31.3709 (19)C12—C131.3873 (19)
C2—H20.95C12—H120.95
C3—C41.4345 (18)C13—C141.393 (2)
C3—C371.4748 (17)C13—H130.95
C4—C51.3609 (19)C14—C151.393 (2)
C4—H40.95C14—C1411.5104 (18)
C5—H50.95C141—H14A0.98
C37—C171.3512 (18)C141—H14B0.98
C37—C3711.4444 (18)C141—H14C0.98
C371—N371.1499 (18)C15—C161.3873 (19)
C17—C111.4653 (18)C15—H150.95
C17—H170.95C16—H160.95
C2—S1—C591.67 (7)C16—C11—C17118.33 (12)
C3—C2—S1112.45 (10)C13—C12—C11120.87 (13)
C3—C2—H2123.8C13—C12—H12119.6
S1—C2—H2123.8C11—C12—H12119.6
C2—C3—C4111.43 (12)C12—C13—C14121.27 (13)
C2—C3—C37123.51 (12)C12—C13—H13119.4
C4—C3—C37125.05 (12)C14—C13—H13119.4
C5—C4—C3112.40 (12)C15—C14—C13117.99 (13)
C5—C4—H4123.8C15—C14—C141121.43 (13)
C3—C4—H4123.8C13—C14—C141120.59 (13)
C4—C5—S1112.05 (11)C14—C141—H14A109.5
C4—C5—H5124.0C14—C141—H14B109.5
S1—C5—H5124.0H14A—C141—H14B109.5
C17—C37—C371121.25 (12)C14—C141—H14C109.5
C17—C37—C3124.36 (12)H14A—C141—H14C109.5
C371—C37—C3114.27 (11)H14B—C141—H14C109.5
N37—C371—C37176.48 (14)C16—C15—C14121.19 (13)
C37—C17—C11128.90 (12)C16—C15—H15119.4
C37—C17—H17115.5C14—C15—H15119.4
C11—C17—H17115.5C15—C16—C11120.88 (13)
C12—C11—C16117.70 (12)C15—C16—H16119.6
C12—C11—C17123.97 (12)C11—C16—H16119.6
C5—S1—C2—C30.05 (11)C37—C17—C11—C1226.9 (2)
S1—C2—C3—C40.22 (15)C37—C17—C11—C16152.97 (14)
S1—C2—C3—C37179.23 (10)C16—C11—C12—C132.6 (2)
C2—C3—C4—C50.33 (17)C17—C11—C12—C13177.24 (13)
C37—C3—C4—C5179.11 (12)C11—C12—C13—C140.1 (2)
C3—C4—C5—S10.29 (15)C12—C13—C14—C152.5 (2)
C2—S1—C5—C40.14 (11)C12—C13—C14—C141178.03 (13)
C2—C3—C37—C17176.17 (13)C13—C14—C15—C162.1 (2)
C4—C3—C37—C173.2 (2)C141—C14—C15—C16178.38 (13)
C2—C3—C37—C3710.06 (18)C14—C15—C16—C110.6 (2)
C4—C3—C37—C371179.31 (12)C12—C11—C16—C152.9 (2)
C371—C37—C17—C112.1 (2)C17—C11—C16—C15176.91 (13)
C3—C37—C17—C11177.98 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N37i0.952.753.312 (2)119
C13—H13···Cgii0.952.993.777 (2)141
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1/2, z1/2.
 

Acknowledgements

X-ray data were collected at the EPSRC National X-ray Crystallography Service, University of Southampton, England. JC and JT thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. DC thanks COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationCobo, D., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3639–o3641.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCobo, D., Quiroga, J., de la Torre, J. M., Cobo, J., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o550–o553.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds