organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Di­phenyl­phosphino­yl)hy­droxy­lamine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: andy.whiting@durham.ac.uk

(Received 23 October 2006; accepted 26 October 2006; online 31 October 2006)

The title compound, C12H12NO2P, is the first structurally studied phospho­rus hydroxy­lamine derivative. The N atom is pyramidal. In the crystal structure, hydrogen bonds link mol­ecules into double ribbons.

Comment

N-(Diphenyl­phosphino­yl)hydroxy­lamine, (I)[link], and its analogues with different aryl and alkyl substituents, were synthesized by Harger (1983[Harger, M. J. P. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 2699-2704.]), and it has proved to be a useful inter­mediate in organic synthesis (Ware & King, 1999[Ware, R. W. Jr & King, S. B. (1999). J. Am. Chem. Soc. 121, 6769-6770.]). No compound of this class has been previously studied by X-ray crystallography.

[Scheme 1]

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. The N atom is substanti­ally pyramidal: the mean bond angle at it equals 112°. The geometry of the P—NH—OH group resembles that of S—NH—OH in the N-hydroxy­sulfonamides MeSO2NHOH (Brink & Mattes, 1986[Brink, K. & Mattes, R. (1986). Acta Cryst. C42, 319-322.]) and PhSO2NHOH (Scholz et al., 1989[Scholz, J. N., Engel, P. S., Glidewell, C. & Whitmire, K. H. (1989). Tetrahedron, 45, 7695-7708.]), where the N atom is also pyramidal and the N—O distances are 1.437 (3) and 1.415 (6) Å, respectively. On the other hand, in —C(=O)—NH—OH units, the N atom usually has a planar configuration: out of 47 such structures present in the August 2006 update of the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst B58, 380-388.]), only eight have a substanti­ally pyramidal N atom. An electron-withdrawing hydroxyl group causes a small but significant lengthening of the P—N bond in (I)[link] compared with the values of 1.630 (5) Å in Ph2P(=O)NH2 (Oliva et al., 1981[Oliva, G., Castellano, E. E. & Franco de Carvalho, L. R. (1981). Acta Cryst. B37, 474-475.], Schlecht et al., 1998[Schlecht, S., Chitsaz, S., Neumuller, B. & Dehnicke, K. (1998). Z. Naturforsch. Teil B, 53, 17-22.]) and 1.642 (5) in Ph2P(=O)NHPh (Priya et al., 2005[Priya, S., Balakrishna, M. S. & Mobin, S. M. (2005). Polyhedron, 24, 1641-1650.]).

The mol­ecule of (I)[link], except for the hydroxyl group and the H atom attached to N, has an approximate local mirror plane which passes through the atoms P, O1 and N. The lone electron pair of the N atom lies in the same plane.

Both the amino and the hydroxyl groups form inter­molecular hydrogen bonds with the phosphinoyl atom O2 (Table 2[link]). These bonds link the mol­ecules into an extended double ribbon running parallel to the b axis (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing displacement ellipsoids at the 50% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of (I)[link], with hydrogen bonds shown as dashed lines. [Symmetry codes: (i) x, y − 1, z, (ii) 1 − x, y − [{1\over 2}], 1 − z, (iii) 1 − x, y + [{1\over 2}], 1 − z, (iv) 1 − x, y − [{3\over 2}], 1 − z, (v) x, y + 1, z.]

Experimental

To a solution of N,O-bis­(trimethyl­silyl)hydroxy­lamine (1.790 g, 9.78 mmol) stirred at 273 K in anhydrous dichloro­methane (8 ml), diphenyl­phosphinic chloride (1.52 ml, 7.83 mmol) was added dropwise. After 30 min, the solution was evaporated, the resulting oily solid resuspended in toluene (6 ml) and the white solid removed by filtration. The resulting solid was redissolved in anhydrous dichloro­methane (8 ml) and methanol (0.8 g) and partially evaporated (ca 4 ml) after 1 h. The resulting solid suspension was removed by filtration and purified by recrystallization from methanol, yielding the product, (I)[link], as white crystals (yield 0.953 g, 41.8%). The compound has a m.p. (decomposition) at 400.9–404.7 K. However, although this temperature differs somewhat from the ranges of 418–419 K found by Harger (1983[Harger, M. J. P. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 2699-2704.]) and 416–418 K by Ware & King (1999[Ware, R. W. Jr & King, S. B. (1999). J. Am. Chem. Soc. 121, 6769-6770.]), all spectroscopic and analytical properties were identical to those reported by these authors.

Crystal data
  • C12H12NO2P

  • Mr = 233.20

  • Monoclinic, P 21

  • a = 8.5195 (9) Å

  • b = 5.7511 (6) Å

  • c = 11.958 (1) Å

  • β = 105.32 (1)°

  • V = 565.1 (1) Å3

  • Z = 2

  • Dx = 1.371 Mg m−3

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.3 × 0.2 × 0.18 mm

Data collection
  • Bruker SMART 6K CCD area-detector diffractometer

  • ω scans

  • Absorption correction: none

  • 5264 measured reflections

  • 3112 independent reflections

  • 2826 reflections with I > 2σ(I)

  • Rint = 0.024

  • θmax = 30.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 0.99

  • 3112 reflections

  • 193 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0525P)2 + 0.1713P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1314 Friedel pairs

  • Flack parameter: −0.12 (10)

Table 1
Selected geometric parameters (Å, °)

P—O2 1.4965 (15)
P—N 1.6612 (18)
P—C11 1.797 (2)
P—C1 1.797 (2)
O1—N 1.441 (2)
O1—H0 0.78 (4)
N—H1 0.88 (3)
O2—P—N 118.76 (8)
O2—P—C11 110.42 (9)
N—P—C11 103.62 (9)
O2—P—C1 111.73 (9)
N—P—C1 100.79 (9)
C11—P—C1 110.90 (9)
O1—N—P 111.70 (13)
O1—N—H1 105.9 (17)
P—N—H1 116.8 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H0⋯O2i 0.78 (4) 1.93 (4) 2.685 (2) 163 (3)
N—H1⋯O2ii 0.88 (3) 2.10 (3) 2.945 (2) 160 (2)
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+1].

All H atoms were refined in an isotropic approximation, with C—H distances in the range 0.89 (4)–1.01 (3) Å.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02a) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02a) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02a) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

N-(diphenylphosphinoyl)hydroxylamine top
Crystal data top
C12H12NO2PF(000) = 244
Mr = 233.20Dx = 1.371 Mg m3
Monoclinic, P21Melting point: 402.8(19) K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 8.5195 (9) ÅCell parameters from 2257 reflections
b = 5.7511 (6) Åθ = 2.5–29.9°
c = 11.958 (1) ŵ = 0.23 mm1
β = 105.32 (1)°T = 120 K
V = 565.1 (1) Å3Block, colourless
Z = 20.3 × 0.2 × 0.18 mm
Data collection top
Bruker SMART CCD 6 K area-detector
diffractometer
2826 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 30.0°, θmin = 1.8°
Detector resolution: 5.6 pixels mm-1h = 1011
ω scansk = 88
5264 measured reflectionsl = 1616
3112 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039All H-atom parameters refined
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.1713P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3112 reflectionsΔρmax = 0.32 e Å3
193 parametersΔρmin = 0.31 e Å3
1 restraintAbsolute structure: Flack (1983), with 1314 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (10)
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space, by a combination of 4 runs of narrow-frame ω scans (scan width 0.3° ω, 5 s exposure), every run at a different φ and/or 2θ angle. Crystal to detector distance 4.85 cm. 1798 unique reflections after merging Friedel equivalents.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.49405 (5)0.54483 (9)0.31719 (4)0.01523 (11)
O10.34049 (18)0.1992 (3)0.37448 (14)0.0215 (3)
H00.352 (3)0.072 (7)0.357 (2)0.032 (8)*
O20.41802 (17)0.7499 (3)0.35948 (12)0.0186 (3)
N0.5009 (2)0.2928 (3)0.38621 (15)0.0181 (3)
H10.549 (3)0.293 (5)0.461 (2)0.027 (7)*
C10.7066 (2)0.5917 (3)0.32967 (16)0.0173 (4)
C20.7774 (2)0.8000 (4)0.37769 (17)0.0199 (4)
H20.708 (3)0.916 (5)0.407 (2)0.027 (7)*
C30.9428 (3)0.8397 (4)0.38948 (18)0.0225 (4)
H30.994 (3)0.982 (6)0.421 (2)0.034 (8)*
C41.0360 (3)0.6723 (4)0.35245 (19)0.0243 (4)
H41.148 (3)0.688 (6)0.357 (2)0.034 (8)*
C50.9659 (3)0.4657 (4)0.3037 (2)0.0246 (4)
H51.024 (4)0.349 (6)0.279 (3)0.042 (8)*
C60.8007 (2)0.4248 (4)0.29228 (18)0.0202 (4)
H60.753 (3)0.281 (6)0.261 (2)0.032 (7)*
C110.3864 (2)0.4761 (4)0.17032 (17)0.0188 (4)
C120.4124 (3)0.2693 (4)0.11705 (19)0.0237 (4)
H120.490 (4)0.166 (6)0.161 (3)0.040 (8)*
C130.3292 (3)0.2269 (5)0.0022 (2)0.0303 (5)
H130.354 (4)0.086 (6)0.032 (3)0.042 (9)*
C140.2185 (3)0.3873 (5)0.0585 (2)0.0339 (6)
H140.155 (4)0.361 (7)0.133 (3)0.055 (10)*
C150.1895 (3)0.5920 (5)0.0057 (2)0.0330 (6)
H150.114 (4)0.687 (6)0.048 (3)0.045 (9)*
C160.2744 (3)0.6370 (4)0.10921 (19)0.0253 (4)
H160.263 (3)0.778 (6)0.148 (2)0.029 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0159 (2)0.0138 (2)0.0163 (2)0.0000 (2)0.00476 (15)0.0004 (2)
O10.0194 (7)0.0161 (7)0.0313 (8)0.0018 (5)0.0106 (6)0.0004 (6)
O20.0190 (7)0.0167 (7)0.0207 (7)0.0008 (5)0.0060 (6)0.0018 (6)
N0.0178 (8)0.0167 (8)0.0200 (8)0.0019 (6)0.0055 (6)0.0017 (6)
C10.0167 (8)0.0200 (11)0.0149 (8)0.0005 (7)0.0038 (6)0.0023 (7)
C20.0194 (9)0.0208 (10)0.0193 (9)0.0005 (8)0.0049 (7)0.0009 (8)
C30.0225 (10)0.0242 (10)0.0197 (9)0.0043 (8)0.0035 (8)0.0012 (8)
C40.0176 (9)0.0332 (12)0.0217 (9)0.0009 (9)0.0044 (8)0.0053 (9)
C50.0229 (10)0.0268 (11)0.0262 (10)0.0059 (8)0.0100 (9)0.0039 (9)
C60.0196 (9)0.0199 (10)0.0214 (9)0.0011 (8)0.0059 (8)0.0010 (8)
C110.0184 (9)0.0206 (9)0.0172 (8)0.0036 (7)0.0046 (7)0.0014 (7)
C120.0259 (10)0.0215 (10)0.0237 (9)0.0018 (8)0.0068 (8)0.0038 (9)
C130.0398 (13)0.0291 (13)0.0233 (10)0.0066 (10)0.0105 (10)0.0098 (9)
C140.0402 (13)0.0418 (15)0.0167 (9)0.0110 (11)0.0023 (10)0.0045 (10)
C150.0352 (12)0.0355 (17)0.0233 (10)0.0010 (10)0.0013 (9)0.0059 (10)
C160.0288 (11)0.0237 (10)0.0220 (10)0.0005 (9)0.0044 (9)0.0020 (9)
Geometric parameters (Å, º) top
P—O21.4965 (15)C5—C61.397 (3)
P—N1.6612 (18)C5—H50.93 (3)
P—C111.797 (2)C6—H60.95 (3)
P—C11.797 (2)C11—C161.390 (3)
O1—N1.441 (2)C11—C121.394 (3)
O1—H00.78 (4)C12—C131.391 (3)
N—H10.88 (3)C12—H120.94 (3)
C1—C21.395 (3)C13—C141.380 (4)
C1—C61.398 (3)C13—H130.96 (3)
C2—C31.397 (3)C14—C151.389 (4)
C2—H21.01 (3)C14—H140.92 (4)
C3—C41.393 (3)C15—C161.397 (3)
C3—H30.96 (3)C15—H150.89 (4)
C4—C51.387 (3)C16—H160.95 (3)
C4—H40.95 (3)
O2—P—N118.76 (8)C4—C5—H5123 (2)
O2—P—C11110.42 (9)C6—C5—H5117 (2)
N—P—C11103.62 (9)C5—C6—C1120.1 (2)
O2—P—C1111.73 (9)C5—C6—H6120.0 (17)
N—P—C1100.79 (9)C1—C6—H6119.9 (17)
C11—P—C1110.90 (9)C16—C11—C12119.82 (19)
N—O1—H0101 (2)C16—C11—P118.00 (16)
O1—N—P111.70 (13)C12—C11—P122.18 (16)
O1—N—H1105.9 (17)C13—C12—C11120.0 (2)
P—N—H1116.8 (19)C13—C12—H12123 (2)
C2—C1—C6119.93 (19)C11—C12—H12117 (2)
C2—C1—P118.67 (15)C14—C13—C12120.0 (2)
C6—C1—P121.40 (15)C14—C13—H13122.9 (18)
C1—C2—C3119.8 (2)C12—C13—H13117.1 (18)
C1—C2—H2118.7 (16)C13—C14—C15120.4 (2)
C3—C2—H2121.5 (16)C13—C14—H14123 (2)
C4—C3—C2120.0 (2)C15—C14—H14117 (2)
C4—C3—H3118.5 (17)C14—C15—C16119.7 (2)
C2—C3—H3121.5 (17)C14—C15—H15117 (2)
C5—C4—C3120.4 (2)C16—C15—H15123 (2)
C5—C4—H4115.1 (19)C11—C16—C15119.9 (2)
C3—C4—H4124.4 (19)C11—C16—H16116.8 (17)
C4—C5—C6119.8 (2)C15—C16—H16123.2 (17)
O2—P—N—O165.74 (16)C11—P—C1—C654.62 (19)
C11—P—N—O157.12 (15)O2—P—C11—C1612.1 (2)
C1—P—N—O1171.94 (13)N—P—C11—C16140.31 (17)
O2—P—C1—C21.63 (18)C1—P—C11—C16112.30 (17)
N—P—C1—C2125.48 (16)O2—P—C11—C12168.05 (16)
C11—P—C1—C2125.29 (16)N—P—C11—C1239.85 (19)
O2—P—C1—C6178.28 (15)C1—P—C11—C1267.54 (19)
N—P—C1—C654.61 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H0···O2i0.78 (4)1.93 (4)2.685 (2)163 (3)
N—H1···O2ii0.88 (3)2.10 (3)2.945 (2)160 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1.
 

Acknowledgements

The authors thank both the EPSRC and GlaxoSmithKline Pharmaceuticals for a CASE award (to AJB), and Dr A. S. Batsanov for advice.

References

First citationAllen, F. H. (2002). Acta Cryst B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrink, K. & Mattes, R. (1986). Acta Cryst. C42, 319–322.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2001). SMART (Version 5.625), SAINT (Version 6.02a) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarger, M. J. P. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 2699–2704.  CrossRef Google Scholar
First citationOliva, G., Castellano, E. E. & Franco de Carvalho, L. R. (1981). Acta Cryst. B37, 474–475.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPriya, S., Balakrishna, M. S. & Mobin, S. M. (2005). Polyhedron, 24, 1641–1650.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchlecht, S., Chitsaz, S., Neumuller, B. & Dehnicke, K. (1998). Z. Naturforsch. Teil B, 53, 17–22.  CAS Google Scholar
First citationScholz, J. N., Engel, P. S., Glidewell, C. & Whitmire, K. H. (1989). Tetrahedron, 45, 7695–7708.  CSD CrossRef CAS Web of Science Google Scholar
First citationWare, R. W. Jr & King, S. B. (1999). J. Am. Chem. Soc. 121, 6769–6770.  Web of Science CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds