organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(1,3-Benzodioxol-5-yl)-1-(4-bromo­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, and dDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 14 September 2006; accepted 9 October 2006; online 27 October 2006)

In the approximately planar molecule of the title compound, C16H11BrO3, the dihedral angle between the two benzene rings is 6.61 (18)°. This compound crystallizes in a centrosymmetric space group, so it does not display a second-harmonic generation response.

Comment

Chalcones have important biological (Dimmock et al., 1999[Dimmock, J. R., Elias, D. W., Beazley, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]) and optical properties (Uchida et al., 1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]). As part of our ongoing studies of these compounds (Harrison et al., 2006[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578-o1579.]), the synthesis and structure of the title compound, (I)[link] (Fig. 1[link]), are presented here. Compound (I)[link] is closely related to (E)-3-(1,3-benzodioxol-5-yl)-1-(4-phen­yl)-2-propen-1-one, (II) (Yathirajan et al., 2006[Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, o3629-o3630.]; Yang et al., 2006[Yang, X.-H., Wu, M.-H., Zou, W.-D. & Li, C. (2006). Acta Cryst. E62, o3117-o3118.]), with an H atom in (II) replaced by the Br atom in (I)[link].

[Scheme 1]

The crystal structure of compound (I)[link] is centrosymmetric (space group P21/n), and thus it has no second-harmonic generation (SHG) response (Watson et al., 1993[Watson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Nonlinear Optics III, edited by G. J. Ashwell & D. Bloor. RSC Special Publication No. 137, pp. 112-117. Cambridge: Royal Society of Chemistry.]). The geometric parameters for (I)[link] fall within their expected ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the C1–C6 benzene ring, the r.m.s. deviation from the mean plane is 0.007 Å [maximum deviation = 0.010 (3) Å for atom C1]. For the enone O1/C7/C8/C9 fragment and the C10–C15 benzene ring, the corresponding values are 0.004 Å [maximum deviation = 0.005 (3) Å for atom C7] and 0.004 Å [maximum deviation = 0.007 (3) Å for atom C13]. The dihedral angles between atoms O1/C7/C8/C9 and the C1 and C10 benzene ring mean planes are 4.6 (3) and 2.4 (3)°, respectively. The dihedral angle between the benzene ring best planes (C1–C6 and C10–C15) in (I)[link] is 6.61 (18)°, which is much less than the corresponding value of 26.89 (5)° in (II) (Yathirajan et al., 2006[Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, o3629-o3630.]). Atom C16 in (I)[link] is displaced from the C10–C15 benzene ring mean plane by 0.147 (7) Å.

A PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of (I)[link] indicated two possible inter­molecular C—H⋯O inter­actions (Table 1[link]) that might help to establish the crystal packing, which results in [110] chains of mol­ecules (Fig. 2[link]). A slightly short Br1⋯O3i [symmetry code: (i) [{3\over 2}] + x, [{3\over 2}] − y, z − [{1\over 2}]] contact of 3.237 (3) Å arises, compared with the expected separation of 3.37 Å for these atoms (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

Any ππ stacking effects in (I)[link] are probably weak. Although equivalent atoms in adjacent mol­ecules in the [100] direction are separated by the a unit-cell dimension of 3.9221 (2) Å, the aromatic ring systems of the mol­ecules are substanti­ally offset (Fig. 3[link]). The packing in (II) is different and results in herring-bone sheets of mol­ecules in space group Pbca, consolidated by possible C—H⋯π inter­actions (Yang et al., 2006[Yang, X.-H., Wu, M.-H., Zou, W.-D. & Li, C. (2006). Acta Cryst. E62, o3117-o3118.]), which might also correlate with the different di­hedral angles between the benzne rings in the two structures.

[Figure 1]
Figure 1
A view of the mol­ecular structure of (I)[link], showing 50% probability displacement ellipsoids (arbitrary spheres for H atoms).
[Figure 2]
Figure 2
A fragment of the packing of (I)[link], with the C—H⋯O inter­actions shown as dashed lines (symmetry codes as in Table 1[link]).
[Figure 3]
Figure 3
A fragment of the packing of (I)[link], with the drawing projected on to the best plane of the O1 mol­ecule, showing the offset of the aromatic rings of adjacent mol­ecules stacked in the [100] direction. H atoms have been omitted for clarity. The closest inter­molecular contact is 3.460 (5) Å for C7⋯C6iii. [Symmetry code: (iii) x − 1, y, z.]

Experimental

An aqueous solution of potassium hydroxide (5%, 5 ml) was added slowly with stirring to a mixture of piperonal (1.50 g, 0.01 mol) and 4-bromo­acetophenone (1.99 g, 0.01 mol) in ethanol (25 ml). The mixture was stirred at room temperature for 12 h. The precipitated solid was filtered off, washed with water and dried, and crystals of (I)[link] were recrystallized from acetone by slow evaporation (yield 78%; m.p. 413–415 K). Analysis, found (calculated for C16H11BrO3): C 59.91 (58.03%), H 3.26 (3.35%).

Crystal data
  • C16H11BrO3

  • Mr = 331.16

  • Monoclinic, P 21 /n

  • a = 3.9221 (2) Å

  • b = 10.9795 (8) Å

  • c = 29.840 (2) Å

  • β = 90.299 (4)°

  • V = 1284.97 (14) Å3

  • Z = 4

  • Dx = 1.712 Mg m−3

  • Mo Kα radiation

  • μ = 3.20 mm−1

  • T = 120 (2) K

  • Lath, colourless

  • 0.53 × 0.10 × 0.03 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.282, Tmax = 0.910

  • 10550 measured reflections

  • 2886 independent reflections

  • 2176 reflections with I > 2σ(I)

  • Rint = 0.057

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.104

  • S = 1.05

  • 2886 reflections

  • 181 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0205P)2 + 3.9272P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.54 3.384 (5) 148
C5—H5⋯O1ii 0.95 2.61 3.336 (5) 134
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

H atoms were positioned geometrically, with C—H = 0.95–0.98 Å, and refined as riding, with Uiso(H) = 1.2Ueq(C).

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

(2E)-3-(1,3-Benzodioxol-5-yl)-1-(4-bromophenyl)prop-2-en-1-one top
Crystal data top
C16H11BrO3F(000) = 664
Mr = 331.16Dx = 1.712 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2533 reflections
a = 3.9221 (2) Åθ = 2.9–27.5°
b = 10.9795 (8) ŵ = 3.20 mm1
c = 29.840 (2) ÅT = 120 K
β = 90.299 (4)°Lath, colourless
V = 1284.97 (14) Å30.53 × 0.10 × 0.03 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2886 independent reflections
Radiation source: fine-focus sealed tube2176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω and φ scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 55
Tmin = 0.282, Tmax = 0.910k = 1314
10550 measured reflectionsl = 3838
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: none
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0205P)2 + 3.9272P]
where P = (Fo2 + 2Fc2)/3
2886 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.51 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3310 (10)0.4388 (4)0.17536 (13)0.0216 (9)
H10.38850.35490.17680.026*
C20.1758 (10)0.4840 (4)0.13692 (14)0.0231 (9)
H20.13140.43240.11200.028*
C30.0878 (9)0.6051 (4)0.13562 (13)0.0189 (8)
C40.1491 (10)0.6820 (4)0.17167 (13)0.0218 (8)
H40.08290.76520.17040.026*
C50.3091 (10)0.6355 (4)0.20971 (14)0.0214 (9)
H50.35390.68740.23450.026*
C60.4041 (9)0.5132 (4)0.21166 (13)0.0180 (8)
C70.5891 (9)0.4595 (4)0.25081 (13)0.0187 (8)
C80.6549 (10)0.5346 (4)0.29119 (14)0.0229 (9)
H80.57650.61640.29220.027*
C90.8237 (10)0.4878 (4)0.32608 (13)0.0203 (8)
H90.90170.40640.32270.024*
C100.9034 (9)0.5462 (4)0.36885 (13)0.0191 (8)
C110.8019 (10)0.6677 (4)0.37820 (13)0.0217 (8)
H110.68030.71530.35690.026*
C120.8879 (9)0.7128 (4)0.41944 (14)0.0203 (9)
C131.0677 (10)0.6453 (4)0.45084 (13)0.0225 (9)
C141.1662 (10)0.5281 (4)0.44332 (14)0.0235 (9)
H141.28520.48180.46530.028*
C151.0814 (10)0.4799 (4)0.40119 (14)0.0223 (9)
H151.14800.39880.39440.027*
C160.9960 (11)0.8330 (4)0.47829 (14)0.0286 (10)
H16A1.19250.88870.47460.034*
H16B0.84940.86520.50250.034*
O10.6843 (7)0.3529 (2)0.24915 (10)0.0263 (7)
O20.8060 (7)0.8252 (3)0.43716 (9)0.0277 (7)
O31.1131 (8)0.7136 (3)0.48956 (10)0.0299 (7)
Br10.11012 (10)0.67243 (4)0.082945 (13)0.02512 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (2)0.019 (2)0.019 (2)0.0030 (17)0.0002 (17)0.0016 (17)
C20.025 (2)0.027 (2)0.017 (2)0.0008 (18)0.0016 (16)0.0072 (18)
C30.0149 (19)0.025 (2)0.016 (2)0.0008 (16)0.0003 (15)0.0037 (16)
C40.023 (2)0.024 (2)0.019 (2)0.0008 (18)0.0000 (15)0.0007 (18)
C50.025 (2)0.022 (2)0.017 (2)0.0006 (17)0.0046 (16)0.0021 (16)
C60.0169 (19)0.019 (2)0.018 (2)0.0016 (16)0.0010 (15)0.0010 (16)
C70.0177 (19)0.022 (2)0.017 (2)0.0025 (16)0.0052 (15)0.0028 (16)
C80.026 (2)0.020 (2)0.022 (2)0.0005 (17)0.0017 (17)0.0004 (17)
C90.020 (2)0.020 (2)0.021 (2)0.0000 (16)0.0015 (16)0.0017 (17)
C100.018 (2)0.024 (2)0.0153 (19)0.0047 (16)0.0010 (15)0.0040 (16)
C110.022 (2)0.027 (2)0.0158 (19)0.0046 (18)0.0000 (15)0.0047 (18)
C120.0149 (19)0.025 (2)0.021 (2)0.0007 (16)0.0008 (15)0.0002 (17)
C130.023 (2)0.028 (2)0.016 (2)0.0079 (17)0.0021 (16)0.0028 (17)
C140.024 (2)0.030 (2)0.016 (2)0.0001 (18)0.0034 (16)0.0088 (17)
C150.023 (2)0.021 (2)0.022 (2)0.0001 (17)0.0027 (16)0.0025 (17)
C160.032 (2)0.033 (2)0.021 (2)0.003 (2)0.0048 (18)0.003 (2)
O10.0347 (17)0.0194 (16)0.0246 (16)0.0023 (13)0.0051 (13)0.0013 (13)
O20.0392 (17)0.0239 (15)0.0198 (15)0.0040 (14)0.0073 (12)0.0038 (13)
O30.0391 (18)0.0324 (17)0.0182 (16)0.0005 (14)0.0072 (13)0.0015 (13)
Br10.0227 (2)0.0354 (3)0.0172 (2)0.0005 (2)0.00468 (14)0.0035 (2)
Geometric parameters (Å, º) top
C1—C61.385 (5)C9—H90.9500
C1—C21.387 (5)C10—C151.393 (5)
C1—H10.9500C10—C111.420 (6)
C2—C31.374 (6)C11—C121.367 (5)
C2—H20.9500C11—H110.9500
C3—C41.388 (5)C12—O21.381 (5)
C3—Br11.899 (4)C12—C131.385 (6)
C4—C51.391 (5)C13—C141.362 (6)
C4—H40.9500C13—O31.388 (5)
C5—C61.395 (5)C14—C151.402 (6)
C5—H50.9500C14—H140.9500
C6—C71.493 (5)C15—H150.9500
C7—O11.229 (5)C16—O31.429 (5)
C7—C81.482 (6)C16—O21.435 (5)
C8—C91.334 (5)C16—H16A0.9900
C8—H80.9500C16—H16B0.9900
C9—C101.461 (5)
C6—C1—C2121.6 (4)C15—C10—C11119.6 (4)
C6—C1—H1119.2C15—C10—C9118.7 (4)
C2—C1—H1119.2C11—C10—C9121.7 (4)
C3—C2—C1118.6 (4)C12—C11—C10116.7 (4)
C3—C2—H2120.7C12—C11—H11121.6
C1—C2—H2120.7C10—C11—H11121.6
C2—C3—C4121.6 (4)C11—C12—O2127.7 (4)
C2—C3—Br1120.1 (3)C11—C12—C13122.5 (4)
C4—C3—Br1118.3 (3)O2—C12—C13109.8 (3)
C3—C4—C5119.0 (4)C14—C13—C12122.6 (4)
C3—C4—H4120.5C14—C13—O3127.7 (4)
C5—C4—H4120.5C12—C13—O3109.7 (4)
C4—C5—C6120.5 (4)C13—C14—C15116.0 (4)
C4—C5—H5119.8C13—C14—H14122.0
C6—C5—H5119.8C15—C14—H14122.0
C1—C6—C5118.7 (4)C10—C15—C14122.6 (4)
C1—C6—C7118.5 (4)C10—C15—H15118.7
C5—C6—C7122.8 (4)C14—C15—H15118.7
O1—C7—C8120.7 (4)O3—C16—O2108.1 (3)
O1—C7—C6119.4 (4)O3—C16—H16A110.1
C8—C7—C6119.9 (3)O2—C16—H16A110.1
C9—C8—C7120.3 (4)O3—C16—H16B110.1
C9—C8—H8119.9O2—C16—H16B110.1
C7—C8—H8119.9H16A—C16—H16B108.4
C8—C9—C10128.0 (4)C12—O2—C16105.1 (3)
C8—C9—H9116.0C13—O3—C16105.1 (3)
C10—C9—H9116.0
C6—C1—C2—C31.3 (6)C15—C10—C11—C120.0 (5)
C1—C2—C3—C40.3 (6)C9—C10—C11—C12179.5 (4)
C1—C2—C3—Br1177.7 (3)C10—C11—C12—O2176.8 (4)
C2—C3—C4—C51.1 (6)C10—C11—C12—C130.6 (6)
Br1—C3—C4—C5176.9 (3)C11—C12—C13—C141.3 (6)
C3—C4—C5—C60.4 (6)O2—C12—C13—C14176.5 (4)
C2—C1—C6—C52.0 (6)C11—C12—C13—O3179.1 (4)
C2—C1—C6—C7176.6 (4)O2—C12—C13—O31.2 (5)
C4—C5—C6—C11.1 (6)C12—C13—C14—C151.4 (6)
C4—C5—C6—C7177.4 (4)O3—C13—C14—C15178.7 (4)
C1—C6—C7—O13.1 (5)C11—C10—C15—C140.1 (6)
C5—C6—C7—O1175.4 (4)C9—C10—C15—C14179.4 (4)
C1—C6—C7—C8176.7 (3)C13—C14—C15—C100.8 (6)
C5—C6—C7—C84.8 (6)C11—C12—O2—C16172.2 (4)
O1—C7—C8—C91.1 (6)C13—C12—O2—C1610.1 (4)
C6—C7—C8—C9179.2 (4)O3—C16—O2—C1215.1 (4)
C7—C8—C9—C10178.1 (4)C14—C13—O3—C16174.2 (4)
C8—C9—C10—C15179.4 (4)C12—C13—O3—C168.2 (4)
C8—C9—C10—C110.1 (6)O2—C16—O3—C1314.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.543.384 (5)148
C5—H5···O1ii0.952.613.336 (5)134
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the EPSRC National Crystallographic Service (University of Southampton) for the data collection. BKS thanks AICTE, Government of India, New Delhi, for financial assistance under the `Career Award for Young Teachers' scheme.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazley, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578–o1579.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar
First citationWatson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Nonlinear Optics III, edited by G. J. Ashwell & D. Bloor. RSC Special Publication No. 137, pp. 112–117. Cambridge: Royal Society of Chemistry.  Google Scholar
First citationYang, X.-H., Wu, M.-H., Zou, W.-D. & Li, C. (2006). Acta Cryst. E62, o3117–o3118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, o3629–o3630.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds