organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-3-hydr­­oxy-2,2-di­methyl-2,3-di­hydroquinazolin-4(1H)-one: supra­molecular aggregation through a two-dimensional network of N—H⋯O and O—H⋯O inter­actions

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, bDepartment of Chemistry, Durham University, Durham DH1 3LE, England, cCentre for Synthesis and Chemical Biology, Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland, and dSchool of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
*Correspondence e-mail: vembu57@yahoo.com

(Received 2 October 2006; accepted 3 October 2006; online 13 October 2006)

In the crystal structure of the title compound, C10H11ClN2O2, the 1,3-diaza ring exists in the skew-boat conformation. Supra­molecular aggregation is effected by the formation of an infinite two-dimensional network of O—H⋯O and N—H⋯O inter­actions.

Comment

Quinazolin-4(1H)-ones, commonly known as benzo­pyrimidinones, are an important class of heterocyclic compounds (Jain et al., 2000[Jain, S. C., Bharadvaja, A., Kumar, R., Agarwal, D. & Errington, W. (2000). Acta Cryst. C56, 592-593.]). Some of them occur either as quinazoline alkaloids (Mohrle & Gundlack, 1970[Mohrle, H. & Gundlack, P. (1970). Tetrahedron Lett. pp. 3249-3250. ]; Baker & McEvoy, 1995[Baker, B. R. & McEvoy, F. J. (1995). J. Org. Chem. 60, 136-142.]) or as their precursors (Brown, 1984[Brown, D. J. (1984). Comprehensive Heterocyclic Chemistry, edited by A. R. Katritzky & C. W. Rees, Vol III, pp. 57-155. Oxford: Pergamon Press.]). In addition, numerous synthetic quinazoline derivatives are known which exhibit diverse anti­histaminic (Graham, 1960[Graham, J. D. P. (1960). Arch. Int. Pharmacodyn. Ther. 123, 419-420.]), diuretic (Cohen et al., 1960[Cohen, E., Klarber, B. & Vaughan, J. R. (1960). J. Am. Chem. Soc. 82, 2731-2735.]), hypnotic (Chappel & von Seeman, 1963[Chappel, C. I. & von Seeman, C. (1963). Prog. Med. Chem. 3, 89-145.]) and anti-inflammatory (Saravanan et al., 1998[Saravanan, J., Mohan, S. & Majunatha, K. S. (1998). Indian J. Heterocycl. Chem. 8, 55-58.]) properties. In particular, 2,3-dihydro-1H-quinazolin-4-one derivatives are established as biologically and pharmaceutically important compounds (Bonala et al., 1968[Bonala, G., Da Re, P., Magistretti, M. J., Massarani, E. & Setnikar, I. (1968). J. Med. Chem. 11, 1136-1139.]; Levin et al., 1994[Levin, J. I., Chan, P. S., Bailey, T., Katocs, A. S. Jr & Venkatesan, A. M. (1994). Bioorg. Med. Chem. Lett. 4, 1141-1146.]; Okumura et al., 1968[Okumura, K., Oine, T., Yamada, Y., Hayashi, G. & Nakama, M. (1968). J. Med. Chem. 11, 348-352.]; Yoo et al., 2005[Yoo, C. L., Fettinger, J. C. & Kurth, M. J. (2005). J. Org. Chem. 70, 6941-6943.]). The present investigation is aimed at the study of the mol­ecular and supra­molecular architecture of the title compound, (I)[link], and may serve as a forerunner to a study of the correlation of these features with its biological activity.

[Scheme 1]

The mol­ecular structure of (I)[link] is shown in Fig. 1[link] and selected geometric parameters are given in Table 1[link]. The 1,3-diaza ring exists in a skew-boat conformation, with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) QT = 0.396 Å, θ = 64.6° and φ = 295.08°. This is also evident from the torsion angles involving the 1,3-diaza ring (Table 1[link]). The axial orientation of the C10 methyl group, the equatorial orientation of the C8 methyl group, the equatorial orientation of the O atom of the N—OH group, and the relative synclinal orientation of the carbonyl O atom and the O atom of the N—OH group are evident from the corresponding torsion angles (Table 1[link]).

The crystal structure of (I)[link] is stabilized by the inter­play of O—H⋯O and N—H⋯O inter­actions (Table 2[link]), and van der Waals inter­actions. The hydrogen-bond distances found in (I)[link] agree with those reported in the literature (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]; Desiraju, 1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]). The O2—H2O⋯O1 inter­action generates a motif of graph set S(5) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). Two such S(5) motifs from symmetry-related mol­ecules combine to form a binary motif of graph set R22(4). Another R22(4) binary motif is formed by the N2—H2N⋯O2i and N2—H2N⋯O1ii inter­actions (symmetry codes in Table 2[link]), which is repeated between symmetry-related mol­ecules. These repetitive S(5) and R22(4) motifs combine to form a higher-order motif of graph set R22(10) (Fig. 2[link]). These N—H⋯O and O—H⋯O inter­actions generate an infinite two-dimensional network along [001] (Fig. 3[link]). There is also a significant intra­molecular van der Waals inter­action between atoms Cl1 and O1 of 2.938 (2) Å.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids
[Figure 2]
Figure 2
A view inclined to the c axis, showing the binary hydrogen-bonded motifs as dashed lines. (Symmetry codes as given in Table 2[link]).
[Figure 3]
Figure 3
A view along [001], showing the two-dimensional network of N—H⋯O and O—H⋯O inter­actions, drawn as dotted lines.

Experimental

6-Chloro­anthranilic hydroxamic acid was prepared according to reported methods (Devocelle et al., 2003[Devocelle, M., Mc Loughlin, B. M., Sharkey, C. T., Fitzgerald, D. J. & Nolan, K. B. (2003). Org. Biomol. Chem. 1, 850-853.]; Lee et al., 2005[Lee, J., Chubb, A. J., Moman, E., Mc Loughlin, B. M., Sharkey, C. T., Kelly, J. G., Nolan, K. B., Devocelle, M. & Fitzgerald, D. J. (2005). Org. Biomol. Chem. 3, 3678-3685.]). During our attempts to recrystallize the above product from acetone–ethanol (1:1), crystals of the title compound were produced after standing for 30 d. These may have been formed by a condensation reaction of 6-chloro­anthranilic hydroxamic acid with acetone. Such a reaction mechanism has already been reported for the formation of 2,3-dihydro-1H-quinazolin-4-one derivatives (Yoo et al. 2005[Yoo, C. L., Fettinger, J. C. & Kurth, M. J. (2005). J. Org. Chem. 70, 6941-6943.]).

Crystal data
  • C10H11ClN2O2

  • Mr = 226.66

  • Orthorhombic, P b c a

  • a = 9.7070 (5) Å

  • b = 12.7121 (7) Å

  • c = 16.4203 (8) Å

  • V = 2026.21 (18) Å3

  • Z = 8

  • Dx = 1.486 Mg m−3

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART 6K CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.926, Tmax = 0.965

  • 12430 measured reflections

  • 1996 independent reflections

  • 1507 reflections with I > 2σ(I)

  • Rint = 0.052

  • θmax = 26.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.05

  • 1996 reflections

  • 180 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0571P)2 + 0.6859P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected torsion angles (°)

N2—C5—C6—C7 −6.9 (3)
C1—C6—C7—N1 −176.11 (19)
O1—C7—N1—O2 −11.8 (3)
C6—C7—N1—O2 172.09 (16)
C6—C7—N1—C9 19.0 (3)
N2—C9—N1—C7 −43.6 (3)
C8—C9—N1—C7 −159.8 (2)
C10—C9—N1—C7 77.1 (3)
N2—C9—N1—O2 162.41 (16)
C6—C5—N2—C9 −24.0 (3)
N1—C9—N2—C5 44.8 (2)
C8—C9—N2—C5 162.40 (18)
C10—C9—N2—C5 −73.9 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O2i 0.83 (3) 2.52 (3) 3.174 (2) 136 (2)
N2—H2N⋯O1ii 0.83 (3) 2.41 (3) 3.200 (2) 158 (2)
O2—H2O⋯O1 0.85 (3) 2.08 (3) 2.595 (2) 119 (2)
O2—H2O⋯O1iii 0.85 (3) 2.00 (3) 2.677 (2) 136 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) -x+1, -y, -z+1.

All H atoms were located in a difference map, and their positions and isotropic displacement parameters were refined.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART-NT and SAINT-NT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART-NT and SAINT-NT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: MERCURY (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

5-Chloro-3-hydroxy-2,2-dimethylquinazolin-4(1H)-one top
Crystal data top
C10H11ClN2O2F(000) = 944
Mr = 226.66Dx = 1.486 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2345 reflections
a = 9.7070 (5) Åθ = 2.5–25.3°
b = 12.7121 (7) ŵ = 0.36 mm1
c = 16.4203 (8) ÅT = 120 K
V = 2026.21 (18) Å3Block, colourless
Z = 80.14 × 0.12 × 0.10 mm
Data collection top
Bruker SMART 6K CCD area-detector
diffractometer
1996 independent reflections
Radiation source: fine-focus sealed tube1507 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 0 pixels mm-1θmax = 26.0°, θmin = 2.5°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
k = 1515
Tmin = 0.926, Tmax = 0.965l = 1520
12430 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.6859P]
where P = (Fo2 + 2Fc2)/3
1996 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1625 (2)0.01410 (16)0.30349 (13)0.0232 (5)
C20.0732 (2)0.04246 (18)0.24247 (14)0.0272 (5)
H20.061 (2)0.0020 (19)0.1994 (14)0.030 (6)*
C30.0072 (2)0.13934 (17)0.24633 (14)0.0265 (5)
H30.054 (2)0.1577 (18)0.2025 (14)0.028 (6)*
C40.0253 (2)0.20484 (17)0.31133 (13)0.0259 (5)
H40.022 (2)0.2718 (19)0.3145 (14)0.032 (6)*
C50.11145 (19)0.17453 (16)0.37553 (12)0.0231 (4)
C60.18594 (19)0.07904 (15)0.37162 (12)0.0210 (4)
C70.2901 (2)0.05918 (15)0.43529 (12)0.0219 (4)
C80.2240 (2)0.28916 (18)0.57100 (15)0.0288 (5)
H8A0.146 (2)0.3452 (17)0.5774 (14)0.030 (6)*
H8B0.244 (2)0.2654 (18)0.6266 (16)0.030 (6)*
H8C0.303 (3)0.320 (2)0.5486 (15)0.039 (7)*
C90.1737 (2)0.19813 (16)0.51952 (12)0.0245 (5)
C100.0626 (2)0.13579 (19)0.56367 (15)0.0313 (5)
H10C0.015 (3)0.183 (2)0.5808 (16)0.047 (7)*
H10B0.102 (3)0.101 (2)0.6148 (18)0.048 (8)*
H10A0.022 (3)0.081 (2)0.5298 (17)0.050 (8)*
H2O0.426 (3)0.057 (2)0.5458 (17)0.048 (8)*
H2N0.102 (3)0.301 (2)0.4410 (16)0.047 (8)*
Cl10.24305 (5)0.10747 (4)0.29303 (3)0.02900 (19)
N10.28885 (18)0.12826 (14)0.49761 (11)0.0260 (4)
N20.12798 (19)0.23850 (15)0.44190 (11)0.0275 (4)
O10.38023 (14)0.01006 (11)0.43358 (9)0.0277 (4)
O20.37357 (16)0.10485 (13)0.56416 (9)0.0312 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0207 (10)0.0231 (10)0.0258 (11)0.0006 (8)0.0044 (8)0.0004 (8)
C20.0283 (12)0.0323 (12)0.0211 (11)0.0029 (9)0.0006 (9)0.0013 (9)
C30.0230 (11)0.0338 (12)0.0226 (12)0.0012 (9)0.0041 (9)0.0043 (9)
C40.0236 (10)0.0284 (11)0.0258 (12)0.0029 (9)0.0014 (9)0.0022 (9)
C50.0206 (10)0.0247 (10)0.0240 (11)0.0012 (8)0.0027 (8)0.0012 (8)
C60.0167 (9)0.0249 (10)0.0215 (10)0.0011 (8)0.0015 (8)0.0024 (8)
C70.0216 (10)0.0215 (10)0.0227 (11)0.0017 (8)0.0024 (8)0.0021 (8)
C80.0296 (12)0.0292 (12)0.0275 (13)0.0005 (9)0.0007 (10)0.0055 (10)
C90.0251 (10)0.0258 (11)0.0227 (11)0.0038 (9)0.0003 (9)0.0012 (8)
C100.0312 (12)0.0351 (13)0.0275 (13)0.0041 (10)0.0032 (10)0.0007 (10)
Cl10.0342 (3)0.0250 (3)0.0277 (3)0.0047 (2)0.0037 (2)0.0053 (2)
N10.0248 (9)0.0313 (10)0.0220 (9)0.0056 (7)0.0056 (7)0.0033 (7)
N20.0351 (10)0.0227 (10)0.0246 (10)0.0055 (8)0.0027 (8)0.0015 (8)
O10.0257 (8)0.0292 (8)0.0281 (8)0.0068 (6)0.0046 (6)0.0028 (6)
O20.0302 (8)0.0393 (9)0.0243 (9)0.0121 (7)0.0089 (7)0.0075 (7)
Geometric parameters (Å, º) top
C1—C21.373 (3)C8—C91.514 (3)
C1—C61.409 (3)C8—H8A1.05 (2)
C1—Cl11.740 (2)C8—H8B0.98 (3)
C2—C31.390 (3)C8—H8C0.93 (3)
C2—H20.91 (2)C9—N21.444 (3)
C3—C41.365 (3)C9—N11.473 (3)
C3—H30.96 (2)C9—C101.522 (3)
C4—C51.399 (3)C10—H10C1.00 (3)
C4—H40.97 (2)C10—H10B1.02 (3)
C5—N21.369 (3)C10—H10A0.98 (3)
C5—C61.414 (3)N1—O21.400 (2)
C6—C71.476 (3)N2—H2N0.83 (3)
C7—O11.242 (2)O2—H2O0.85 (3)
C7—N11.349 (3)
C2—C1—C6121.83 (19)H8A—C8—H8B105.0 (19)
C2—C1—Cl1116.40 (16)C9—C8—H8C111.2 (16)
C6—C1—Cl1121.76 (16)H8A—C8—H8C111 (2)
C1—C2—C3119.4 (2)H8B—C8—H8C109 (2)
C1—C2—H2119.0 (15)N2—C9—N1103.41 (16)
C3—C2—H2121.6 (15)N2—C9—C8108.69 (17)
C4—C3—C2121.1 (2)N1—C9—C8110.62 (17)
C4—C3—H3121.1 (14)N2—C9—C10112.83 (18)
C2—C3—H3117.8 (14)N1—C9—C10109.90 (17)
C3—C4—C5119.9 (2)C8—C9—C10111.14 (18)
C3—C4—H4121.0 (14)C9—C10—H10C110.6 (15)
C5—C4—H4119.1 (14)C9—C10—H10B110.7 (16)
N2—C5—C4120.40 (19)H10C—C10—H10B108 (2)
N2—C5—C6119.08 (18)C9—C10—H10A112.7 (16)
C4—C5—C6120.49 (19)H10C—C10—H10A107 (2)
C1—C6—C5117.16 (18)H10B—C10—H10A108 (2)
C1—C6—C7124.94 (18)C7—N1—O2116.67 (16)
C5—C6—C7117.69 (18)C7—N1—C9125.78 (17)
O1—C7—N1119.01 (18)O2—N1—C9112.57 (16)
O1—C7—C6126.01 (19)C5—N2—C9121.84 (17)
N1—C7—C6114.85 (17)C5—N2—H2N121.1 (19)
C9—C8—H8A110.0 (13)C9—N2—H2N116.5 (19)
C9—C8—H8B110.4 (14)N1—O2—H2O103.1 (19)
C6—C1—C2—C32.1 (3)C5—C6—C7—N19.2 (3)
Cl1—C1—C2—C3178.94 (16)O1—C7—N1—O211.8 (3)
C1—C2—C3—C42.7 (3)C6—C7—N1—O2172.09 (16)
C2—C3—C4—C50.1 (3)O1—C7—N1—C9164.85 (19)
C3—C4—C5—N2178.50 (19)C6—C7—N1—C919.0 (3)
C3—C4—C5—C63.5 (3)N2—C9—N1—C743.6 (3)
C2—C1—C6—C51.1 (3)C8—C9—N1—C7159.8 (2)
Cl1—C1—C6—C5177.76 (14)C10—C9—N1—C777.1 (3)
C2—C1—C6—C7173.57 (19)N2—C9—N1—O2162.41 (16)
Cl1—C1—C6—C77.6 (3)C8—C9—N1—O246.2 (2)
N2—C5—C6—C1178.05 (18)C10—C9—N1—O276.9 (2)
C4—C5—C6—C13.9 (3)C4—C5—N2—C9157.99 (19)
N2—C5—C6—C76.9 (3)C6—C5—N2—C924.0 (3)
C4—C5—C6—C7171.16 (18)N1—C9—N2—C544.8 (2)
C1—C6—C7—O18.1 (3)C8—C9—N2—C5162.40 (18)
C5—C6—C7—O1166.55 (19)C10—C9—N2—C573.9 (2)
C1—C6—C7—N1176.11 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2i0.83 (3)2.52 (3)3.174 (2)136 (2)
N2—H2N···O1ii0.83 (3)2.41 (3)3.200 (2)158 (2)
O2—H2O···O10.85 (3)2.08 (3)2.595 (2)119 (2)
O2—H2O···O1iii0.85 (3)2.00 (3)2.677 (2)136 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z+1.
 

Acknowledgements

NV and ECS thank Professor Judith A. K. Howard, Department of Chemistry, Durham University, UK, for discussions. JL, JGK, KBN and MD thank the Irish Government under its `Programme for Research in Third Level Institutions' and the Research Committee of the Royal College of Surgeons in Ireland for financial support.

References

First citationBaker, B. R. & McEvoy, F. J. (1995). J. Org. Chem. 60, 136–142.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBonala, G., Da Re, P., Magistretti, M. J., Massarani, E. & Setnikar, I. (1968). J. Med. Chem. 11, 1136–1139.  CrossRef PubMed Web of Science Google Scholar
First citationBrown, D. J. (1984). Comprehensive Heterocyclic Chemistry, edited by A. R. Katritzky & C. W. Rees, Vol III, pp. 57–155. Oxford: Pergamon Press.  Google Scholar
First citationBruker (1998). SMART-NT and SAINT-NT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChappel, C. I. & von Seeman, C. (1963). Prog. Med. Chem. 3, 89–145.  CrossRef Google Scholar
First citationCohen, E., Klarber, B. & Vaughan, J. R. (1960). J. Am. Chem. Soc. 82, 2731–2735.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationDevocelle, M., Mc Loughlin, B. M., Sharkey, C. T., Fitzgerald, D. J. & Nolan, K. B. (2003). Org. Biomol. Chem. 1, 850–853.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationGraham, J. D. P. (1960). Arch. Int. Pharmacodyn. Ther. 123, 419–420.  PubMed CAS Web of Science Google Scholar
First citationJain, S. C., Bharadvaja, A., Kumar, R., Agarwal, D. & Errington, W. (2000). Acta Cryst. C56, 592–593.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLee, J., Chubb, A. J., Moman, E., Mc Loughlin, B. M., Sharkey, C. T., Kelly, J. G., Nolan, K. B., Devocelle, M. & Fitzgerald, D. J. (2005). Org. Biomol. Chem. 3, 3678–3685.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLevin, J. I., Chan, P. S., Bailey, T., Katocs, A. S. Jr & Venkatesan, A. M. (1994). Bioorg. Med. Chem. Lett. 4, 1141–1146.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohrle, H. & Gundlack, P. (1970). Tetrahedron Lett. pp. 3249–3250.  Google Scholar
First citationOkumura, K., Oine, T., Yamada, Y., Hayashi, G. & Nakama, M. (1968). J. Med. Chem. 11, 348–352.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSaravanan, J., Mohan, S. & Majunatha, K. S. (1998). Indian J. Heterocycl. Chem. 8, 55–58.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationYoo, C. L., Fettinger, J. C. & Kurth, M. J. (2005). J. Org. Chem. 70, 6941–6943.  Web of Science CSD CrossRef PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds