organic compounds
5-Chloro-3-hydroxy-2,2-dimethyl-2,3-dihydroquinazolin-4(1H)-one: supramolecular aggregation through a two-dimensional network of N—H⋯O and O—H⋯O interactions
aDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, bDepartment of Chemistry, Durham University, Durham DH1 3LE, England, cCentre for Synthesis and Chemical Biology, Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland, and dSchool of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
*Correspondence e-mail: vembu57@yahoo.com
In the 10H11ClN2O2, the 1,3-diaza ring exists in the skew-boat conformation. Supramolecular aggregation is effected by the formation of an infinite two-dimensional network of O—H⋯O and N—H⋯O interactions.
of the title compound, CComment
Quinazolin-4(1H)-ones, commonly known as benzopyrimidinones, are an important class of (Jain et al., 2000). Some of them occur either as quinazoline (Mohrle & Gundlack, 1970; Baker & McEvoy, 1995) or as their precursors (Brown, 1984). In addition, numerous synthetic quinazoline derivatives are known which exhibit diverse antihistaminic (Graham, 1960), diuretic (Cohen et al., 1960), hypnotic (Chappel & von Seeman, 1963) and anti-inflammatory (Saravanan et al., 1998) properties. In particular, 2,3-dihydro-1H-quinazolin-4-one derivatives are established as biologically and pharmaceutically important compounds (Bonala et al., 1968; Levin et al., 1994; Okumura et al., 1968; Yoo et al., 2005). The present investigation is aimed at the study of the molecular and supramolecular architecture of the title compound, (I), and may serve as a forerunner to a study of the correlation of these features with its biological activity.
The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. The 1,3-diaza ring exists in a skew-boat conformation, with puckering parameters (Cremer & Pople, 1975) QT = 0.396 Å, θ = 64.6° and φ = 295.08°. This is also evident from the torsion angles involving the 1,3-diaza ring (Table 1). The axial orientation of the C10 methyl group, the equatorial orientation of the C8 methyl group, the equatorial orientation of the O atom of the N—OH group, and the relative synclinal orientation of the carbonyl O atom and the O atom of the N—OH group are evident from the corresponding torsion angles (Table 1).
The is stabilized by the interplay of O—H⋯O and N—H⋯O interactions (Table 2), and van der Waals interactions. The hydrogen-bond distances found in (I) agree with those reported in the literature (Desiraju & Steiner, 1999; Desiraju, 1989). The O2—H2O⋯O1 interaction generates a motif of graph set S(5) (Bernstein et al., 1995; Etter, 1990). Two such S(5) motifs from symmetry-related molecules combine to form a binary motif of graph set R22(4). Another R22(4) binary motif is formed by the N2—H2N⋯O2i and N2—H2N⋯O1ii interactions (symmetry codes in Table 2), which is repeated between symmetry-related molecules. These repetitive S(5) and R22(4) motifs combine to form a higher-order motif of graph set R22(10) (Fig. 2). These N—H⋯O and O—H⋯O interactions generate an infinite two-dimensional network along [001] (Fig. 3). There is also a significant intramolecular van der Waals interaction between atoms Cl1 and O1 of 2.938 (2) Å.
of (I)Experimental
6-Chloroanthranilic hydroxamic acid was prepared according to reported methods (Devocelle et al., 2003; Lee et al., 2005). During our attempts to recrystallize the above product from acetone–ethanol (1:1), crystals of the title compound were produced after standing for 30 d. These may have been formed by a condensation reaction of 6-chloroanthranilic hydroxamic acid with acetone. Such a has already been reported for the formation of 2,3-dihydro-1H-quinazolin-4-one derivatives (Yoo et al. 2005).
Crystal data
|
Refinement
|
|
All H atoms were located in a difference map, and their positions and isotropic displacement parameters were refined.
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: MERCURY (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536806040852/sj2138sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806040852/sj2138Isup2.hkl
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.C10H11ClN2O2 | F(000) = 944 |
Mr = 226.66 | Dx = 1.486 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 2345 reflections |
a = 9.7070 (5) Å | θ = 2.5–25.3° |
b = 12.7121 (7) Å | µ = 0.36 mm−1 |
c = 16.4203 (8) Å | T = 120 K |
V = 2026.21 (18) Å3 | Block, colourless |
Z = 8 | 0.14 × 0.12 × 0.10 mm |
Bruker SMART 6K CCD area-detector diffractometer | 1996 independent reflections |
Radiation source: fine-focus sealed tube | 1507 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 0 pixels mm-1 | θmax = 26.0°, θmin = 2.5° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | k = −15→15 |
Tmin = 0.926, Tmax = 0.965 | l = −15→20 |
12430 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.107 | All H-atom parameters refined |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0571P)2 + 0.6859P] where P = (Fo2 + 2Fc2)/3 |
1996 reflections | (Δ/σ)max < 0.001 |
180 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1625 (2) | 0.01410 (16) | 0.30349 (13) | 0.0232 (5) | |
C2 | 0.0732 (2) | 0.04246 (18) | 0.24247 (14) | 0.0272 (5) | |
H2 | 0.061 (2) | −0.0020 (19) | 0.1994 (14) | 0.030 (6)* | |
C3 | 0.0072 (2) | 0.13934 (17) | 0.24633 (14) | 0.0265 (5) | |
H3 | −0.054 (2) | 0.1577 (18) | 0.2025 (14) | 0.028 (6)* | |
C4 | 0.0253 (2) | 0.20484 (17) | 0.31133 (13) | 0.0259 (5) | |
H4 | −0.022 (2) | 0.2718 (19) | 0.3145 (14) | 0.032 (6)* | |
C5 | 0.11145 (19) | 0.17453 (16) | 0.37553 (12) | 0.0231 (4) | |
C6 | 0.18594 (19) | 0.07904 (15) | 0.37162 (12) | 0.0210 (4) | |
C7 | 0.2901 (2) | 0.05918 (15) | 0.43529 (12) | 0.0219 (4) | |
C8 | 0.2240 (2) | 0.28916 (18) | 0.57100 (15) | 0.0288 (5) | |
H8A | 0.146 (2) | 0.3452 (17) | 0.5774 (14) | 0.030 (6)* | |
H8B | 0.244 (2) | 0.2654 (18) | 0.6266 (16) | 0.030 (6)* | |
H8C | 0.303 (3) | 0.320 (2) | 0.5486 (15) | 0.039 (7)* | |
C9 | 0.1737 (2) | 0.19813 (16) | 0.51952 (12) | 0.0245 (5) | |
C10 | 0.0626 (2) | 0.13579 (19) | 0.56367 (15) | 0.0313 (5) | |
H10C | −0.015 (3) | 0.183 (2) | 0.5808 (16) | 0.047 (7)* | |
H10B | 0.102 (3) | 0.101 (2) | 0.6148 (18) | 0.048 (8)* | |
H10A | 0.022 (3) | 0.081 (2) | 0.5298 (17) | 0.050 (8)* | |
H2O | 0.426 (3) | 0.057 (2) | 0.5458 (17) | 0.048 (8)* | |
H2N | 0.102 (3) | 0.301 (2) | 0.4410 (16) | 0.047 (8)* | |
Cl1 | 0.24305 (5) | −0.10747 (4) | 0.29303 (3) | 0.02900 (19) | |
N1 | 0.28885 (18) | 0.12826 (14) | 0.49761 (11) | 0.0260 (4) | |
N2 | 0.12798 (19) | 0.23850 (15) | 0.44190 (11) | 0.0275 (4) | |
O1 | 0.38023 (14) | −0.01006 (11) | 0.43358 (9) | 0.0277 (4) | |
O2 | 0.37357 (16) | 0.10485 (13) | 0.56416 (9) | 0.0312 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0207 (10) | 0.0231 (10) | 0.0258 (11) | −0.0006 (8) | 0.0044 (8) | −0.0004 (8) |
C2 | 0.0283 (12) | 0.0323 (12) | 0.0211 (11) | −0.0029 (9) | −0.0006 (9) | −0.0013 (9) |
C3 | 0.0230 (11) | 0.0338 (12) | 0.0226 (12) | 0.0012 (9) | −0.0041 (9) | 0.0043 (9) |
C4 | 0.0236 (10) | 0.0284 (11) | 0.0258 (12) | 0.0029 (9) | 0.0014 (9) | 0.0022 (9) |
C5 | 0.0206 (10) | 0.0247 (10) | 0.0240 (11) | −0.0012 (8) | 0.0027 (8) | 0.0012 (8) |
C6 | 0.0167 (9) | 0.0249 (10) | 0.0215 (10) | −0.0011 (8) | 0.0015 (8) | 0.0024 (8) |
C7 | 0.0216 (10) | 0.0215 (10) | 0.0227 (11) | −0.0017 (8) | 0.0024 (8) | 0.0021 (8) |
C8 | 0.0296 (12) | 0.0292 (12) | 0.0275 (13) | 0.0005 (9) | 0.0007 (10) | −0.0055 (10) |
C9 | 0.0251 (10) | 0.0258 (11) | 0.0227 (11) | 0.0038 (9) | −0.0003 (9) | −0.0012 (8) |
C10 | 0.0312 (12) | 0.0351 (13) | 0.0275 (13) | −0.0041 (10) | 0.0032 (10) | −0.0007 (10) |
Cl1 | 0.0342 (3) | 0.0250 (3) | 0.0277 (3) | 0.0047 (2) | −0.0037 (2) | −0.0053 (2) |
N1 | 0.0248 (9) | 0.0313 (10) | 0.0220 (9) | 0.0056 (7) | −0.0056 (7) | −0.0033 (7) |
N2 | 0.0351 (10) | 0.0227 (10) | 0.0246 (10) | 0.0055 (8) | −0.0027 (8) | −0.0015 (8) |
O1 | 0.0257 (8) | 0.0292 (8) | 0.0281 (8) | 0.0068 (6) | −0.0046 (6) | −0.0028 (6) |
O2 | 0.0302 (8) | 0.0393 (9) | 0.0243 (9) | 0.0121 (7) | −0.0089 (7) | −0.0075 (7) |
C1—C2 | 1.373 (3) | C8—C9 | 1.514 (3) |
C1—C6 | 1.409 (3) | C8—H8A | 1.05 (2) |
C1—Cl1 | 1.740 (2) | C8—H8B | 0.98 (3) |
C2—C3 | 1.390 (3) | C8—H8C | 0.93 (3) |
C2—H2 | 0.91 (2) | C9—N2 | 1.444 (3) |
C3—C4 | 1.365 (3) | C9—N1 | 1.473 (3) |
C3—H3 | 0.96 (2) | C9—C10 | 1.522 (3) |
C4—C5 | 1.399 (3) | C10—H10C | 1.00 (3) |
C4—H4 | 0.97 (2) | C10—H10B | 1.02 (3) |
C5—N2 | 1.369 (3) | C10—H10A | 0.98 (3) |
C5—C6 | 1.414 (3) | N1—O2 | 1.400 (2) |
C6—C7 | 1.476 (3) | N2—H2N | 0.83 (3) |
C7—O1 | 1.242 (2) | O2—H2O | 0.85 (3) |
C7—N1 | 1.349 (3) | ||
C2—C1—C6 | 121.83 (19) | H8A—C8—H8B | 105.0 (19) |
C2—C1—Cl1 | 116.40 (16) | C9—C8—H8C | 111.2 (16) |
C6—C1—Cl1 | 121.76 (16) | H8A—C8—H8C | 111 (2) |
C1—C2—C3 | 119.4 (2) | H8B—C8—H8C | 109 (2) |
C1—C2—H2 | 119.0 (15) | N2—C9—N1 | 103.41 (16) |
C3—C2—H2 | 121.6 (15) | N2—C9—C8 | 108.69 (17) |
C4—C3—C2 | 121.1 (2) | N1—C9—C8 | 110.62 (17) |
C4—C3—H3 | 121.1 (14) | N2—C9—C10 | 112.83 (18) |
C2—C3—H3 | 117.8 (14) | N1—C9—C10 | 109.90 (17) |
C3—C4—C5 | 119.9 (2) | C8—C9—C10 | 111.14 (18) |
C3—C4—H4 | 121.0 (14) | C9—C10—H10C | 110.6 (15) |
C5—C4—H4 | 119.1 (14) | C9—C10—H10B | 110.7 (16) |
N2—C5—C4 | 120.40 (19) | H10C—C10—H10B | 108 (2) |
N2—C5—C6 | 119.08 (18) | C9—C10—H10A | 112.7 (16) |
C4—C5—C6 | 120.49 (19) | H10C—C10—H10A | 107 (2) |
C1—C6—C5 | 117.16 (18) | H10B—C10—H10A | 108 (2) |
C1—C6—C7 | 124.94 (18) | C7—N1—O2 | 116.67 (16) |
C5—C6—C7 | 117.69 (18) | C7—N1—C9 | 125.78 (17) |
O1—C7—N1 | 119.01 (18) | O2—N1—C9 | 112.57 (16) |
O1—C7—C6 | 126.01 (19) | C5—N2—C9 | 121.84 (17) |
N1—C7—C6 | 114.85 (17) | C5—N2—H2N | 121.1 (19) |
C9—C8—H8A | 110.0 (13) | C9—N2—H2N | 116.5 (19) |
C9—C8—H8B | 110.4 (14) | N1—O2—H2O | 103.1 (19) |
C6—C1—C2—C3 | 2.1 (3) | C5—C6—C7—N1 | 9.2 (3) |
Cl1—C1—C2—C3 | −178.94 (16) | O1—C7—N1—O2 | −11.8 (3) |
C1—C2—C3—C4 | −2.7 (3) | C6—C7—N1—O2 | 172.09 (16) |
C2—C3—C4—C5 | −0.1 (3) | O1—C7—N1—C9 | −164.85 (19) |
C3—C4—C5—N2 | −178.50 (19) | C6—C7—N1—C9 | 19.0 (3) |
C3—C4—C5—C6 | 3.5 (3) | N2—C9—N1—C7 | −43.6 (3) |
C2—C1—C6—C5 | 1.1 (3) | C8—C9—N1—C7 | −159.8 (2) |
Cl1—C1—C6—C5 | −177.76 (14) | C10—C9—N1—C7 | 77.1 (3) |
C2—C1—C6—C7 | −173.57 (19) | N2—C9—N1—O2 | 162.41 (16) |
Cl1—C1—C6—C7 | 7.6 (3) | C8—C9—N1—O2 | 46.2 (2) |
N2—C5—C6—C1 | 178.05 (18) | C10—C9—N1—O2 | −76.9 (2) |
C4—C5—C6—C1 | −3.9 (3) | C4—C5—N2—C9 | 157.99 (19) |
N2—C5—C6—C7 | −6.9 (3) | C6—C5—N2—C9 | −24.0 (3) |
C4—C5—C6—C7 | 171.16 (18) | N1—C9—N2—C5 | 44.8 (2) |
C1—C6—C7—O1 | 8.1 (3) | C8—C9—N2—C5 | 162.40 (18) |
C5—C6—C7—O1 | −166.55 (19) | C10—C9—N2—C5 | −73.9 (2) |
C1—C6—C7—N1 | −176.11 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O2i | 0.83 (3) | 2.52 (3) | 3.174 (2) | 136 (2) |
N2—H2N···O1ii | 0.83 (3) | 2.41 (3) | 3.200 (2) | 158 (2) |
O2—H2O···O1 | 0.85 (3) | 2.08 (3) | 2.595 (2) | 119 (2) |
O2—H2O···O1iii | 0.85 (3) | 2.00 (3) | 2.677 (2) | 136 (2) |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+1/2, y+1/2, z; (iii) −x+1, −y, −z+1. |
Acknowledgements
NV and ECS thank Professor Judith A. K. Howard, Department of Chemistry, Durham University, UK, for discussions. JL, JGK, KBN and MD thank the Irish Government under its `Programme for Research in Third Level Institutions' and the Research Committee of the Royal College of Surgeons in Ireland for financial support.
References
Baker, B. R. & McEvoy, F. J. (1995). J. Org. Chem. 60, 136–142. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bonala, G., Da Re, P., Magistretti, M. J., Massarani, E. & Setnikar, I. (1968). J. Med. Chem. 11, 1136–1139. CrossRef PubMed Web of Science Google Scholar
Brown, D. J. (1984). Comprehensive Heterocyclic Chemistry, edited by A. R. Katritzky & C. W. Rees, Vol III, pp. 57–155. Oxford: Pergamon Press. Google Scholar
Bruker (1998). SMART-NT and SAINT-NT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chappel, C. I. & von Seeman, C. (1963). Prog. Med. Chem. 3, 89–145. CrossRef Google Scholar
Cohen, E., Klarber, B. & Vaughan, J. R. (1960). J. Am. Chem. Soc. 82, 2731–2735. CrossRef CAS Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier. Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc. Google Scholar
Devocelle, M., Mc Loughlin, B. M., Sharkey, C. T., Fitzgerald, D. J. & Nolan, K. B. (2003). Org. Biomol. Chem. 1, 850–853. Web of Science CrossRef PubMed CAS Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Graham, J. D. P. (1960). Arch. Int. Pharmacodyn. Ther. 123, 419–420. PubMed CAS Web of Science Google Scholar
Jain, S. C., Bharadvaja, A., Kumar, R., Agarwal, D. & Errington, W. (2000). Acta Cryst. C56, 592–593. CSD CrossRef CAS IUCr Journals Google Scholar
Lee, J., Chubb, A. J., Moman, E., Mc Loughlin, B. M., Sharkey, C. T., Kelly, J. G., Nolan, K. B., Devocelle, M. & Fitzgerald, D. J. (2005). Org. Biomol. Chem. 3, 3678–3685. Web of Science CrossRef PubMed CAS Google Scholar
Levin, J. I., Chan, P. S., Bailey, T., Katocs, A. S. Jr & Venkatesan, A. M. (1994). Bioorg. Med. Chem. Lett. 4, 1141–1146. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mohrle, H. & Gundlack, P. (1970). Tetrahedron Lett. pp. 3249–3250. Google Scholar
Okumura, K., Oine, T., Yamada, Y., Hayashi, G. & Nakama, M. (1968). J. Med. Chem. 11, 348–352. CrossRef CAS PubMed Web of Science Google Scholar
Saravanan, J., Mohan, S. & Majunatha, K. S. (1998). Indian J. Heterocycl. Chem. 8, 55–58. CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany. Google Scholar
Yoo, C. L., Fettinger, J. C. & Kurth, M. J. (2005). J. Org. Chem. 70, 6941–6943. Web of Science CSD CrossRef PubMed CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.